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As the number of individuals who drive electric vehicles increases, it is becoming
increasingly important to ensure that charging infrastructure is both dependable
and conveniently accessible. Methodology: In this paper, a recommendation
system is proposed with the purpose of assisting users of electric vehicles
in locating charging stations that are closer to them, improving the charging
experience, and lowering range anxiety. The proposed method is based on
restricted Boltzmann machine learning to collect and evaluate real-time data
on a variety of aspects, including the availability of charging stations and
historical patterns of consumption. To optimize the parameters of the restricted
Boltzmann machine, a new optimization algorithm is proposed and referred to
as parallel greylag goose (PGGO) algorithm. The recommendation algorithm
takes into consideration a variety of user preferences. These preferences include
charging speed, cost, network compatibility, amenities, and proximity to the
user’s present location. By addressing these preferences, the proposed approach
reduces the amount of irritation experienced by users, improves charging
performance, and increases customer satisfaction. Results: The findings
demonstrate that the method is effective in recommending charging stations
that are close to drivers of electric vehicles. On the other hand, the Wilcoxon
rank-sum and Analysis of Variance tests are utilized in this work to investigate
the statistical significance of the proposed parallel greylag goose optimization
method and restricted Boltzmann machine model. The proposed methodology
could achieve a recommendation accuracy of 99% when tested on the adopted
dataset. Conclusion: Based on the achieved results, the proposed method is
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effective in recommending systems for the best charging stations for electric
vehicles.

KEYWORDS

machine learning, recommendation systems, charging stations, electric vehicles, gray
goose optimization, restricted Boltzmann machine

1 Introduction

The global automotive industry is experiencing a journey of
change, as noted by the increasing rate of electric vehicle transition
(EVs) (Yao et al., 2020). This movement is due to the increasing
awareness of environmental problems, a demand for sustainable
solutions for transport, and the invention of better battery
technologies (Sdoukopoulos et al., 2019). However, the widespread
use of electric vehicles marks a step in the right direction towards a
greener future. However, challenges lying ahead must be addressed,
and innovative approaches must be used. Another important task
is to look for the best ways to charge electric vehicles (Hasan et al.,
2021; Babanezhad et al., 2022). In addition, electric vehicles appear
more common, and essential and reliable charging networks are
required (Kumar and Alok, 2020). In contrast to conventional
vehicles that are refueled by a well-defined system of stations,
the charging infrastructure is in a transitional state for electric
vehicles (El-kenawy et al., 2022a; Golla et al., 2023). Ensuring that
electric vehicles can be charged conveniently, affordably and in
an energy-efficient manner by the public is critical to establishing
widespread adoption (Aurangzeb et al., 2023; Rizk et al., 2023). The
optimization of charging paths is offered as a strategic approach
to this challenge that would streamline the charging experience
and make it more convenient for all owners of electric vehicles
(M El-kenawy et al., 2022; Djaafari et al., 2022).

By the year 2035, electric cars (EVs) would account for at least
54% of the total number of automobiles sold worldwide (Liberatore,
2022). Despite the fact that battery-powered vehicles accounted for
less than 8% of global sales in the previous year and just 10% in
the first quarter of 2022, these optimistic estimates are still to be
expected. As a result of this, numerous nations around the world
have made commitments to transition away from automobiles that
burn a significant amount of fossil fuel and toward electric vehicles
by the year 2030. This is due to the fact that numerous nations
have either enacted new laws in this area or established ambitious
plans for the purpose of achieving this goal. In addition to this, it
makes a significant contribution to the pace of pollution and carbon
emissions reduction in these countries. However, despite all of these
benefits, two key challenges could prevent the general people from
adopting electric vehicles: the limited number of charging stations
or facilities for electric vehicles and the high cost of electric vehicles.
The cost of charging electric vehicles at home will be quite expensive
due to the existing worldwide demand for energy and the high
pricing of electric vehicles. As a result, they typically charge their
automobiles at charging stations that are owned and operated by the
government. However, this option is not ideal when it comes to the
infrastructure of electric power distribution networks because it has
resulted in a number of challenges. For the past 10 years, scientific
research has been focusing on finding ways to mitigate the adverse
impacts of the proliferation of electric vehicles (EVs) in distribution

networks. This has been accomplished by selecting the most suitable
location for charging stations and developing technology that can
change rapidly, with a time frame of no more than 30 minutes
(Zeb et al., 2020; Mohamed et al., 2021). A few nations have utilized
dispersed renewable energy resources (DER) in recent times to assist
the utility in the process of electrifying charging stations.

A number of studies have investigated various ways to do this
from the perspective of an electric vehicle owner or distribution
network controller. The distribution network aims to accomplish
a number of core goals, including lowering the bus voltage,
minimizing power loss, and boosting the availability of the
distribution system. The owners of charging stations and the
problems that affect them were supported by a few additional
scientists, with money being the most significant of these problems
or the maximum profit being the most vital of these matters. Within
the context of government initiatives aimed at lowering emissions
of greenhouse gases, the rapid deployment of charging stations for
electric vehicles all over the world is becoming an increasingly
critical factor in order to satisfy the growing demand. On the other
hand, the rapid adoption of electric vehicles is not hindered by the
absence of public charging infrastructure. To reach a total of 16.5
million units, sales of electric vehicles increased by 6.6 million units
in 2021.This growth is expected to accelerate asmore charging spots
are established. As a potential link between electric cars and the
utility (also known as V2G) or net benefit, the charging stations can
operate as a link.

Electric vehicles are able to contribute energy to the grid through
existing stations when there is a significant demand for it due to
the Vehicle-to-Grid (V2G) technology. One potential goal function
that might contribute to the design of V2G is the attainment of
the greatest possible net benefit. Without the need for constant
recharging for such a lengthy time, the vast majority of vehicles
remain parked for an average of approximately 6 hours per day in the
same designated area. While parking electric vehicles for extended
periods, it is a good idea to use the batteries of the vehicles to
store the energy that is created when the demand is higher than
the amount of power that is produced and then to re-enter it into
the network when the demand is higher than the quantity that is
produced. V2G is a key component in the fight against climate
change since it makes it possible for our power grid to accommodate
an ever-increasing quantity of renewable energy. For the energy and
transportation sectors to be able to confront the climate disaster
successfully, three things need to take place: decarbonization, energy
efficiency, and electrification.

Optimization strategies are necessary for training and improving
machine learningmodels. Computers are able to learn fromdata and
make predictions or judgments without being programmed due to
the algorithms that are used in machine learning. The parameters
are fine-tuned, and the performance of the machine learning model
is optimized using optimization approaches. The learning task
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is optimized by these methods, which locate the optimal model
parameters in order to increase performance while minimizing
error (El-Kenawy et al., 2022c; El-kenawy et al., 2022b). There are
several different types of machine learning algorithms, including
Bayesian optimization, evolutionary algorithms, stochastic gradient
descent, and gradient descent. These algorithms make adjustments
to the parameters of the model iteratively, taking into account the
training data, which results in improved accuracy and prediction.
Image recognition (Abdelhamid et al., 2022; Khafaga et al.,
2022a), keystroke dynamics (El-Kenawy et al., 2022d), medical
applications (Abdel Samee et al., 2022; Sami Khafaga et al., 2022),
and recommender systems are all areas in which researchers
and practitioners can create powerful and adaptive models that
can learn from complex datasets, extract meaningful patterns,
and make accurate predictions. These models can be created
by combining machine learning with optimization algorithms
(Khafaga et al., 2022b; Afzal et al., 2023; Dharavat et al., 2023). By
utilizing homomorphic encryption, secure protocols, and federated
learning strategies, the research presented in (Mohammed et al.,
2023) presented a revolutionary pedestrian detection system that
was given the name HMFLS. A base station (BS) and a homogenous
federated learning server with weights, surveillance, and traffic light
components are the components that make up the Hybrid Mobile
Federated Learning System (HMFLS).

As a result of the research presented in (Wang et al., 2022),
a fuzzy-based energy-efficient decision support system (FBEES)
was developed. This system cuts down on energy use, delays, and
expenses while simultaneously enhancing scheduling accuracy for
environmentally friendly applications. Vehicles that are connected
to the internet transmit data to fog servers located in a variety of
data centers for processing. Using a mobility-aware multi-scenario
offloading phase (MAMSOP) to manage mobility and offloading
expenses, the authors of (Lakhan et al., 2022) described aVFCN that
utilized a cost-efficient and secure approach.A fully homomorphism
encryption-based security strategy that encrypts and decrypts data
locally and computes encrypted data rather than decrypting it was
proposed as the solution to the problem. The objective was to
ensure that application execution occurred with minimal delays and
expenditures.Thework presented in (Mohammad et al., 2020) is the
year that saw the introduction of machine learning techniques that
have the potential to assist the aviation industry in estimating the
future flow of air passengers, so enhancing the value of stakeholders
and the outcomes for consumers. Machine learning algorithms,
neural networks, and learning methodologies were discussed, along
with the difficulties that have been, are currently, and will be in the
aviation industry in the future.

The fact that charging stations have a few negatives is something
that everyone cannot deny. One of these problems is the fact that
these stations are not uniform because there is no standard for them.
There is no way to deny the existence of this problem. In addition
to the extremely high costs of construction, they also include the
expenditures of operation and maintenance. This results in a loss or,
at best, a small profit, despite the fact that considerable investments
were made in the costs of development. As a result of this, a lot
of companies have recently started investigating the prospect of
utilizing renewable and environmentally friendly sources of energy,
such as solar cells, in order to either reduce expenses or increase
revenues in addition to the several additional programs thatV2Ghas

to offer. In order to describe the broad framework for the challenge
of finding the optimal site for the electric vehicle charging station
in Figure 1, we might make use of the information that was offered
in the preceding narrative.

• In order to achieve the goal of creating a recommendation
system for individuals who drive electric vehicles, it is necessary
to make available for use approaches that are based on machine
learning.
• The optimization-based Parallel Greylag Goose Optimization

Algorithm and Restricted Boltzmann Machines (PGGO-RBM)
algorithm have been suggested for use.
• In order to achieve the objective of enhancing the precision of

the forecasts generated by the dataset that has been reviewed,
an optimized PGGO-RBM-based regression model is currently
being created.
• It is vital to conduct a comparison of the outcomes produced

by the various algorithms in order to ascertain which algorithm
produces the consequences that are the most advantageous of
the bunch.
• By utilizing Wilcoxon rank-sum and Analysis of Variance

(ANOVA) tests, it is possible to investigate the potential
statistical significance between the improved PGGO-RBM-
based model. This is made possible by the utilization of these
tests.
• PGGO-RBM-based regression models are able to be tested and

updated to fit a wide range of datasets due to the malleability
of the model itself. Because the model is so flexible, this is
something that can be accomplished.

This paper is structured in the following: Section II explains
the various technologies that are utilized by charging stations for
electric vehicles. Within Section III of this study, the materials
and methods that were utilized are dissected in detail. Detailed
information regarding the analysis of the data is provided in Section
IV, which also includes the numerical applications. A conclusion is
presented in Section V of the paper.

2 Literature review

Efficiencyoptimizationintransportationandlogistics isthecrucial
element wherein vehicle paths and routes are accordingly optimized
so that organizations can achieve lower costs and improvements
and minimize environmental impacts. In the wake of the growing
global demand for effective and streamlined networks, researchers
and practitioners are moving towards new technologies and means
that would be of great help in the allocation of vehicular paths.
The present review paper dives into the multifaceted and versatile
field of research into maximizing vehicle paths, considering the
different methodologies, algorithms, and practical implications in
actual instances that play a role in the development of this discipline.
The review of current optimization strategies for vehicle paths will be
synthesized. It will strive to provide a comprehensive picture of the
available approach and point out the areas for future exploration.

In view of the increasing environmental problems and energy
deficiency, electric vehicles (EVs) have gained high acceptance as the
next viable option. However, the need for more infrastructure for
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FIGURE 1
Illustration of potential paths to charging stations for three cars and based on five electric stations. The distances show the path lengths.

charging is the main challenge. In (Sun et al., 2020) that tackles this
barrier, IoT technology will be used to make the already existing EV
charging systemmore efficient.The proposed real-time server-based
forecasting application utilizes IoT sensors and broadcasting tools
in a way that offers a dynamic view of the physical world, making it
possible to have such features as schedulingmanagement to decrease
waiting time or real-time CS recommendations (CS stands for
charging station) on the basis of economic cost and shorter charging
time. This system is built on the PHP programming language of
the Linux UBUNTU 16.04 LTS operating system and is managed
through CSQL on the Google Cloud platform. Phase ensures user
privacy, third-party intervention and information exchange. The
effectiveness of the application is validated by achieving low-cost
tests with LTC4150, ESP8266 Wi-Fi module, and Arduino. With
the latest developments in battery technology and the shortening of
charging times for Electric Vehicles (EVs), public charging stations
have become more likely.

In (Savari et al., 2020), we deploy recently developed technology
for tracking locations utilizingmobile phones orwearables; the study
proposes an optimization approach using data to determine the best
charging station locations.The problem is stated as a network design
problem in which demand for goods in a specific geographical area
is to be covered by carrying as few drivers as possible with the
least amount of energy overhead and the lowest number of charging
stations. Because of the calculative problems, the genetic algorithm
can be presented as a proper remedy.This methodology is applied to
Boston’s EV charging station to utilize 1 million users’ CDR, which
provides a statistically significant decrease in excess driving distance,
energy waste, and required charging stations as compared to the
current or local solutions. Furthermore, the research explores the
flexibility of the proposed solution by analyzing periodic human
activity patterns, showing performance improvement in the longer
term. This investigation thereby highlights the capability of data-
driven approaches with a view to achieving optimal distribution of
public charging in the urban environment.

In the desire to lower the emissions coming from traditional
vehicles, it becomes necessary to put the Electric Vehicle Charging
Stations (EVCS) in a strategic place where the charging demand
is met without harming the power system network. THe work
presented in (Vazifeh et al., 2019) is on the design of EVCS

installation in a radial distribution network interlaced with a
road network. The distribution or weight of points of charging
demand is being taken into account in various urban areas such
as supermarkets, road junctions and residences. The objectives
comprise the reduction of the amount of energy lost during
transmission, stabilization of the system voltages in the network, and
minimization of land cost withmaximumpriority given to a number
of EVs served at the least amount of establishment cost. The area is
divided into three zones so that EVCS can be set up in a distributed
manner. Uncertainties linked with EVs are dealt with the aid of
the deployment of the 2 m Point Estimation method (2 m PEM).
The optimization problem is considered using DE (Differential
Evolution) and HHO (Harris Hawks Optimization) techniques.

Many aspects will influence the development of electric
vehicles (EVs). These include acquisition costs, autonomy, charging
processes, and charging infrastructure. The latter topic is focused
on in (Pal et al., 2021), and precisely, the design of a fast-charging
station for EVs. The station aims to increase profitability and build
resilience by using a renewable generation (wind and photovoltaic)
and battery system. A key point of this paper is the use of a charging
process model that embodies characteristics like arrival time and
the electric vehicle’s state of charge. The Monte Carlo method is
used in the first step to simulate the EV demand and the renewable
generation, which are then optimized by the use of the genetic
algorithm (GA) in the second step regarding the installation and
operation of the EV fast-charging station. GA searches for the non-
dominated solution(s) that optimize profitability (NPV). A lot of
future scenarios are analyzed to evaluate the effect of renewable
energy integration and storage systems. The results emphasize
that renewable electricity secured by storage provides the most
economically advantageous solution.

EVs, which have already seen widespread adoption due to their
ability to deal with local pollution and noise emissions efficiently,
have a bright future in the realm of sustainable transportation.
Nevertheless, the shortfall in the adoption of EVs all over the
world is attributable to the need for more suitable charging
infrastructure, which is defined by the absence of stations and
inappropriate locations in various regions. Hence, the placement of
strategic charging stations becomes of utmost importance.Thework
presented in (Domínguez-Navarro et al., 2019) is about the creation
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of a charging station finding method consisting of two stages. The
weighted multicriteria method is responsible for assessing segments
of territory and distributing charging stations within a segment;
this is done with a hexagon-based approach. The distinguishing
factor of this method is the all-encompassing assessment of electric
vehicle potential on a broader scale and the detection of charging
station locations and land use problems on a regional scale. The
methodology is utilized in the case of Hungary for a macro-level
evaluation and a district situated in the capital city of Budapest for
a micro-level assessment. The results show a pattern showing that
there is a high preference for public charging at P + R facilities,
near concentrations of services and high-density areas, and over gas
stations for urban public charging demand.

Accordingly, in an EV world, the future of the infrastructure for
charging electric vehicles is more critical because of the shift in the
trend of electric mobility. Author in (Csiszár et al., 2019) presents a
new agent-based simulation framework that is technology-coupled
with spatial reference data of the built structure of the city. The
framework is modeled on EV user charging behaviors and the
distribution areas of electric vehicles. That is why around 2,500
electrical mobility transition scenarios from a small Swiss townwere
evaluated. The findings of the study indicate that the time to receive
the return on EV charging infrastructure can be as much as 50%
shorter if customers are charged according to the parking prices
rather than selling electricity. On the contrary, the first one details
the fact that income from parking rates is more reactive to the users’
behaviors and choices. The viability of charging infrastructure could
be better under the existing low level of EV adoption, being a crucial
concern for new market entrants. However, after the EV penetration
reaches 10%, the situation will improve. In addition, the research
shows that load shedding at selected transformers is between 78%
and 128% higher than during the peak hour if public charging is
enabled. This is, however, critical to the required upgrades of the
grid in the city as a whole, compared to increases on average in a
city as a whole. Thus, the novel simulation framework can be used
as a significant planning aid for the organization of the EV charging
infrastructure alongside a successful transition to the new electric
mobility regime.

The appropriate selection of locations for EV Charging Stations
(EVCS) is crucial for the considerable expansion of electric
vehicles. The goal of (Pagani et al., 2019) is to achieve the optimal
EV site selection problem using the sustainability criteria while
understanding the uncertainty of the information used in the
process. As a degree basis, fuzzy sets picture (PFS), which comprises
positive, neutral and negative membership degrees, is suggested
as a comprehensive framework for evaluating and choosing the
best EVCS site. This work starts with the identification of the
main criteria and the associated sub-criteria, founded on the
existing literature and expert views. The operational laws for Picture
Fuzzy Number (PFN) are defined, and a group introductory of
Picture FuzzyWeighted Interaction Geometric (PFWIG) operator is
brought forth.The FuzzyAnalytic Hierarchy Process (FAHP), which
is next used to determine criteria weights and local weights for sub-
criteria, gives the Picture of a Fuzzy Decision Matrix: the weighted
average matrix by the PFWIG operator. Later, the Grey Relational
Projection (GRP) method is further improved by the relative grey
relational projection to assess the suitability of different sites for
placement of EVCS, thus enabling ranking and selection based on

how good they are for deployment. An empirical case study of EVCS
site selection in Beijing is given, which shows that the proposed
framework is useful and practical when identifying suitable EVCS
from all possible charging stations.

Installation of electric vehicle (EV) public charging stations
may indeed mitigate range anxiety among EV drivers due to the
smooth EV driving experience comparable to that of internal
combustion engine vehicles. Author in (Ju et al., 2019) provides a
framework for location planning on how to place EVpublic charging
stations strategically for the purpose of maintaining or preserving
the existing activities by the EV drivers. The model is based on a
deterministic process that simulates EV driver charging patterns,
taking into account factors like activity theorem, remaining trip
energy, charging point availability, and range anxiety. Finally, the
service location model is formulated, with the primary objective
of maximizing either the number of visitors or the number of
stations in the location by minimizing the first and second charges,
respectively. The model is applied to the case study of Beijing,
China, which sheds light on the drivers’ trip characteristics and the
influential factors. Our findings show that a large number of drivers
mayneedmore energy storage tomeet the needs of their EVbatteries
during weekdays. Some of the best solutions are that the charging
network should be reasonably and properly distributed to satisfy
the travel demands of 90% of EV drivers without destabilizing lives.
The planning of fast-charging stations is mainly focused on tech
hubs and financial centers. Statistics reported for drivers’ miss-trip
behaviors are disparate profiles with long-distance travel and lack
of home chargers. This study provides crucial information, which,
in turn, helps plan strategically in the roll-out of public charging
infrastructures that will support the proliferation of the EV.

While transport electrification can act as a solution to carbon
emissions, the growing EV fleet raises concerns due to the unknown
impact on the electrical networks. The EV loads must be forecasted
with precision, as the downside of the grid can be avoided by
doing the same. Describes a unique methodology for stochastic
EV load forecasting on the spatial level with different geographies
(Pan et al., 2020). The hierarchical method combines the least
problems into sub-problems at low-level regions. This is done using
standard probabilistic models such as gradient-boosted regression
trees, quantile regression forests and quantile regression neural
networks. Considering the fact that principal component analysis
can be used to reduce the sub-problem dimensionality, it is
included in the method. Then, the hierarchical perspective method
is used to predict the aggregate load at a high geographic level
through an ensemble method based on penalized linear quantile
regression. These systematic reviews encompass the development of
the hierarchical probabilistic forecasting framework, the difference
in comparison with the non-hierarchical analogs, and the effect of
the data dimensionality reduction. Numerous experiments done on
the basis of real EV load data confirm the fact that the hierarchical
approaches enhance the performance of these probabilistic forecasts
up to 9.5%more than the non-hierarchicalmethods.The researchers
here present their findings on improving the accuracy of EV load
forecasting across diverse regions.

As shown in (Buzna et al., 2021), The transformation of the
global transportation sector by major emissions cuts into the future
relies on the large-scale conversion of conventional vehicles into
electricity. This change is especially critical in urban areas where the
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EV range matches the driving, and non-motorized vehicles could
result in lower local emissions. In British Columbia (BC), Canada,
where the accessibility of cleaner renewable electricity enhances the
flexibility of EV deployment, the conspicuous challenge particularly
is that most of the residents are in MURBs evaluating inadequate
EV charging infrastructure. Leveraging from the findings of the
related study by Lopez-Behar et al. (in advance), which examines
the challenges and decision-making processes associated with
extending the EV charging system to the MURBs in BC, we
develop a Causal Loop Diagram (CLD) to explore and analyze
these feedback loops. These findings can be built upon supply-
side intervention policies that are divided into financial/fiscal,
regulatory, and information/awareness-based measures. Financial
policies that target EV owners and building owners with incentives
and help with building retrofitting costs are measures of the
purpose. Policies on regulation are the definition of the rights
of stakeholders and the compulsion of installation of charging
stations in new MURBs. Information/awareness policies encompass
developing further existing guidelines and the promotion of the
charging infrastructure design through the process of infrastructure
planning. These policy recommendations are designed to instruct
and support governmental interventions at both the municipal and
provincial levels in BC, providing insights that may prove to be used
in urban EV markets worldwide.

The optimization of vehicle paths is indeed a dynamic and
complex research area in which its impacts on transportation
systems all over the world are pervasive and pronounced. The
current literature review puts the readers in the right perspective:
researchers have invested considerable efforts in crafting smart
algorithms, using cutting-edge technologies, and taking a number of
factors into account to find the perfect paths for vehicles to follow.
Despite these advances, some challenges remain, encompassing,
among others, real-time data integration as well as environmental
sustainability. Looking into the future, we expect there to be
greater collaboration between academia and industry, as well as
improvements in data analytic techniques and artificial intelligence
systems, which will consequently pave the way for new inventions
in the optimization of vehicle routes. This review would stretch
out the frontiers and inspire future researchers to examine
the subject from a fresh angle or even to look at new areas
in this significant field. A summary of the literature review
on electric vehicle charging station optimization is presented
in Table 1.

3 The proposed methodology

The essence of the proposed methodology can be categorized
into the following areas:
∗Dataset Preprocessing: The technical process first consists of

a comprehensive investigation of the Electric Vehicle Charging
Dataset. The dataset, consisting of the source, structure, and
variables, is described in detail. As precisely stated, preprocessing
steps include data cleaning, normalization, and feature engineering
to make the dataset fit for subsequent manipulations.
∗Recommendation Systems Studied: The research evaluates

three prominent recommendation systems: Markov Chain, Neural
Autoregressive Distribution Estimation (NADE) and Restricted

Boltzmann Machine (RBM). Each system is introduced with
a statement of its convincing theory, a demonstration of its
application, and a description of its role in EV charging path
optimization.
∗Performance Metrics: Multiple performance metrics are

commonly used to assess the performance of recommendation
systems. These measures, however, are useful indicators for
evaluating the efficiency of these systems in correctly assigning the
correct paths for charging vehicles with electricity. The marking
criteria for the system include accuracy, sensitivity, specificity,
precision, recall, F-score, optimum solution, standard deviation
of the optimal solution, and average response time of various system
performance levels.
∗Comparative Analysis - Accuracy: The system of each

recommendation system is compared based on the accuracy that
is measured from the experimental results. In terms of the NADE,
Markov Chain, or RBM, diverse accuracy percentages are achieved,
which gives a glimpse into their relative efficiency in designing
optimal charging paths for electric vehicles.
∗ Statistical Analysis - ANOVA: A specific analysis of

variance (ANOVA) is made to detect the variances between the
recommendation systems. The statistical parameters, including the
sum of squares (SS), degrees of freedom (DF), mean squares (MS),
F-statistic, and p-value, are among those reported. The ANOVA
outcomes mapped out the significance of the discrepancy in the
level of accuracy across recommendation systems.
∗Pairwise Comparison - Wilcoxon Signed Rank Test: Also,

on the basis of a pairwise comparison made using the Wilcoxon
Signed Rank Test, the features differentiating the recommendation
systems are scrutinized. This exact non-parametric test checks for
statistically significant differences in the accuracy of Markov Chain,
NADE, and RBM. Consequently, the results offer valuable points of
view about these recommendation systems.
∗ Feature Selection Techniques: The research investigates how

feature selection can influence the performance of recommendation
systems. Parameter Optimization algorithms, which include parallel
Binary Greylag Goose Optimization (bPGGO), Binary Greylag
Goose Optimization (bGGO), Binary Particle Swarm Optimization
(bPSO), Binary Grey Wolf Optimizer (bGWO), and Binary Genetic
Algorithm (bGA), are studied depending on several metrics such as
average error, number of clones, fitness, best.
∗ANOVA for Feature Selection: The Analysis of the

Recommendation system is very similar to the feature selection
technique. Statistically significant, the difference of means indicates
the performance comparisons between bPGGO, bGGO, bPSO,
bGWOandbGA. SuchAnalysis produces themost efficient Bayesian
models and feature selection techniques for the optimization of
electric vehicle charging paths.
∗Post-Feature Selection System Performance: The effect of

feature selection on the performance of recommendation systems is
examined after the post-feature-selection analyses. Markov Chain,
NADE and RBM systems are also revisited in terms of the selected
features to comprehend themanner in which feature selection either
boosts or alters their applicability in improving electric vehicle
charging routes.
∗Hybrid Models (Combined with RBM): To capitalize on the

individual aspects of recommendation systems and feature selection
methodologies, this paper proposes a novel hybrid model. The
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TABLE 1 Summary of literature review on EV charging stations optimization.

Ref. Focus area Methodology Key contributions

Sun et al. (2020) IoT for EV Charging IoT sensors, PHP, Linux UBUNTU,
CSQL, Google Cloud

Enhances EV charging efficiency, reduces
wait times

Savari et al. (2020) Optimal Location for EV Charging
Stations

Genetic algorithm, mobile tracking data Reduces excess driving, energy waste,
number of stations

Vazifeh et al. (2019) EVCS Design in Distribution Networks 2 m Point Estimation, Differential
Evolution, HHO

Optimizes energy loss, system voltage,
land cost

Pal et al. (2021) Fast-Charging Station Design Monte Carlo simulation, Genetic
Algorithm (GA)

Enhances profitability and resilience with
renewable integration

Domínguez-Navarro et al. (2019) Strategic Placement of Charging Stations Weighted multicriteria, hexagon-based
evaluation

Identifies optimal station locations in
urban areas

Csiszár et al. (2019) EV Charging Infrastructure Simulation Agent-based simulation, spatial data Analyzes economic viability and grid load
impact

Pagani et al. (2019) EV Charging Station Site Selection Picture Fuzzy Sets, Fuzzy AHP, Grey
Relational Projection

Optimizes site selection using
sustainability criteria

Ju et al. (2019) EV Public Charging Station Planning Deterministic modeling, service location
model

Strategically plans station locations to
reduce range anxiety

Pan et al. (2020) EV Load Forecasting Hierarchical stochastic models, ensemble
methods

Enhances accuracy of load forecasting up
to 9.5%

Buzna et al. (2021) EV Charging Systems in Urban Areas Causal Loop Diagrams (CLD) Supports policy-making for EV charging
in urban markets

Proposed Optimizing Electric Vehicle Paths Optimized Restricted Boltzman Machines Improved forecasting of EV paths

effectiveness of RBM for the electric vehicle charging paths is
analyzed by comparing the quality of all the RBM structures, which
are studied as PGGO-RBM, GGO-RBM, PSO-RBM, GWO-RBM,
and GA-RBM.
∗ Statistical Analysis - ANOVA for Hybrid Models: The

hybrid model means are exposed to ANOVA in order to detect
any statistically significant differences by using it as a statistical
hypothesis rejection tool. From this analysis, hybrid models’
behavior as a feature selection technique is well understood, along
with response systems.
∗Pairwise Comparison - Wilcoxon Signed Rank Test for

Hybrid Models: Like that two-way model hyper comparison, hybrid
models are subjected to the Wilcoxon Signed Rank Test, too. This
research examines whether the extent of the difference between the
performance of themodels of PGGO-RBM,GGO-RBM, PSO-RBM,
GWO-RBM, and GA-RBM is considerable or not. The outcomes
provide a benchmark and allow for further recommendations.

The following sections are modeled to present the exhaustive
exploration of the technical process that has been identified in
the following part. This part will provide a detailed analysis of
the held dataset, recommendation system, performance indicators
and the results of all the analyses carried out. The process from
dataset preprocessing to the evaluation of the hybrid models will be
shown and then discussed, and implications for the optimization of
electric vehicle paths will be drawn depending on the findings of this
research.

3.1 Recommendation systems for
optimizing electric vehicle paths

In this section, we delve into the intricacies of the
recommendation systems selected for optimizing electric vehicle
(EV) paths (Lopez-Behar et al., 2019). These systems play a crucial
role in shaping the efficiency and effectiveness of EV charging,
impacting factors such as charging time, cost, and overall user
experience (Xing et al., 2021). We explore three distinct approaches:
Markov Chain, Neural Autoregressive Distribution Estimation
(NADE), and Restricted Boltzmann Machine (RBM) (Mohamed
and Worku, 2020; Wang et al., 2020; Nogay, 2022). Each system
offers unique insights and methodologies, contributing to the
overarching goal of optimizing EV charging paths.

3.1.1 Markov Chain
To start the journey, we navigate through time using the

Markov Chain, a coveted stochastic model that takes its name
from the esteemed Russian mathematician Andrey Markov. Many
branches have adopted this model as its overwhelming simplicity
and efficiency in modeling sequential data are its main features. In
the context of the EV charging paths, the Markov chain is a chain
of events that occurs each time in a given state based on the state
obtained in the previous event. Mathematically, a Markov Chain
is defined by the probability distribution of transitioning from one
state to another. Let Xn represent the state at time n, and Pij denote
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the probability of transitioning from state i to state j. The transition
probability matrix P encapsulates these probabilities, enabling the
prediction of future states based on historical patterns.

Pij = P(Xn+1 = j|Xn = i) (1)

The implementation of Markov Chains employs the historical
patterns of EV drivers’ charging usage. The model is able to
analyze past charging sections to discover recurring events, which
is the basis for the construction of a probabilistic framework to
forecast the next stage in the charging sequence. This simplicity
is a double-edged sword as it treats the future charging behavior
completely as dependent on the current state, forgetting the other
interdependencies present in the printed data. The advantage of
the Markov Chain model being a simple structure is that it is
computationally efficient and easy to interpret. It may feature simple
charge patterns and trend recognition. Therefore, the load curve
can be easily compared against it. Nevertheless, its current status
determination leads to problems with such things as the inability
to reveal long-term dependencies and more complex charging
patterns. Further, the efficiency of the AI model heavily depends on
the quality and representativeness of the historical data.

3.1.2 NADE (Neural Autoregressive Distribution
Estimation)

Now passing over the border of the neural networks, the Neural
AutoregressiveDistributionEstimation (NADE) appears to be a very
capable opponent. NADE exploits the versatility of deep learning
neural networks to represent the nature of charging behaviors.
NADE tends to be more sophisticated than the Markov Chain
model as it can capture complex dependencies and patterns in the
data set, thus offering a better probabilistic modeling approach for
EV charging optimization. The NADE is built on the conditional
probability of a charging session depending on the current state of
the system, which is determined by features that came before. The
network is trained to maximize the product of these probabilities,
which are conditional according to this training scheme, thus
learning complex relationships in the data.

P(xi|x1,x2,…,xi−1) (2)

Implementation: To operate theNADE, the network is trained to
capture the conditional probability distribution of charging sessions.
With backpropagation and optimization techniques like stochastic
gradient descent, network parameters are adjusted in a way that
would make it more likely to see actual charging sequences while
observing them. It is this method that helps NADE detect multi-
level patterns, thus making even the most sophisticated Markov
Chain models look amateurish. Our ability to model the EV
charging behavior based on the NADE algorithm is good due to
its functionality in capturing complex dependencies and patterns.
It can learn from diverse datasets, with the capability to adapt to
variable charging patterns. Nevertheless, neural network training
may be a computationally intensive process requiring large amounts
of data and resources. NADE’s result would also be affected by
hyperparameters and training data quality.

3.1.3 RBM (restricted Boltzmann Machine)
The restricted Boltzmann machine (RBM) incorporates

probabilistic graphical models and machine learning, enriching

the optimization of EV paths. RBM is characterized by its two layers
of nodes: Invisible, visible and Hidden. It picks up a probability
distribution over the visible units, which forms the basis for learning
complex patterns in data. The energy function E(v,h) of an RBM
with visible vector v and hidden vector h is defined as:

E (v,h) = −
Nv

∑
i=1

aivi −
Nh

∑
j=1

bjhj −
Nv

∑
i=1

Nh

∑
j=1

viwijhj (3)

Where ai and bj are biases,wij represents weights between visible
and hidden units, and Nv and Nh are the numbers of visible and
hidden units, respectively. The Boltzmann distribution gives the
probability distribution over visible units.

P (v) = e
−E(v,h)

Z
(4)

The realization of RBM means creating a model that can learn
the hidden probability distribution of demand patterns for charging.
Using models like the contrastive divergence approach, an RBM can
learn to represent complex dependencies and patterns in the data,
which in turn allows it to generate accurate recommendations on
EV charging paths. RBM’s ability to capture the complex interactions
between features makes it a perfect model for comprehending EV
charging behavior. The fact that it uses unlabeled data to learn,
with no need for supervision, makes this model flexible enough
to handle multiple types of data. Besides, the computational cost
can be a drawback of RBM due to the training process, and it may
need fixing, such as overfitting and vanishing gradients in deep
architectures. Besides, interpreting the learned representations of
RBM is complicated because it is of a black-box nature.

3.2 GGO (greylag goose optimization)

The GGO algorithm mainly imitates social action and
coordination, which is characteristic of the migration patterns of
geese. Moreover, it also expresses the imitation behavioral dynamics
of geese (Savitha et al., 2020). Social Behavior of Geese: Geese, when
in united flocks, have a strong loyalty; they pair once with the
same mate and remain so till their lives. The bond between them,
the parental care, and a huge appreciation for their offspring and
their survival even in adverse changing environments are beyond
description, highlighting the strength of their unity, resilience, and
loyalty. Interestingly, the survival of solitary geese among their
kind becomes a challenge in the post-death mates’ search for new
partners. Geese are found to have remarkable foraging devotion
as they collect foliage for their nests and maintain their strong
dedication to their chicks. Examples of the temporal dimension of
ants can be seen in their reproductive cycles, e.g., the male ants
guard the nest, and the female ones take care of the colony growth.
The multifamily unit serving as the shared home of the geese family
is actually a fine example of collective behavior. ”Sentinel” societies
are involved as a community activity to watch out for possible perils.
They serve in pairs, alternately, thus patrolling the archipelago with
a watchbird dress code preventing enemy ships from invading the
shores. The healing process, however, does not stop only among the
settled geese; some of them also look after the ill, forming a solid
community fellowship. Geese, however, onlymove a little while hens
replace each other quite often with migrations that travel delineable
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FIGURE 2
The exploration and exploitation of the proposed parallel GGO (PGGO).

distances. Through their V-shaped flight formation, they avoid air
resistance, thus achieving a higher velocity. Geese possess some
form of adaptive intelligence, which includes the use of long-term
memory and landmark-based navigation.

The GGO algorithm initiates by creating individuals generating
random candidate solutions to the problem. Each individual
represents a candidate solution, denoted as GGO (Xi, i = 1,2,…,n),
with ′n′ indicating the population size (El-kenawy et al., 2024;
Kleindorfer et al., 2024). The group’s objective function, Fn, is
utilized, and the best solution (leader) is F(P). The group behavior
in GGO dynamically allocates individuals to the exploration group
(n1) and the exploitation group (n-2). Group sizes increase based
on the best choice after each iteration. The algorithm starts with
a 50% exploration and 50% exploitation balance, adjusting group
sizes subsequently. If the best solution maintains the same objective
function value for three consecutive iterations, the algorithm
expands the exploration group size (n1) to address alternative
solutions and prevent limit cycles. Figure 2 outlines the exploitation
and exploration phases of the Grey Lag Goose Optimization
(GLGO) algorithm. This way of visualizing the dynamics of GGO
connects the solution space with its essence by optimizing the
exploration (searching for new better solutions) and exploitation
(deepening of existing solutions.) The picture has a motion for
representing GGO’s iterative process, highlighting which algorithm
is capable of balancing exploration and exploitation strategies for
optimized finding the best solutions.

3.2.1 Exploration operation
The exploration process is a key element in the GGO; in

particular, this is a process of looking into the search space for
the best possible solutions to prevent local optimal solutions and
arrive at the global optima. By the action of explorer geese, which

would select spots favorable to current ones, we obtain the optimum
solution Towards the Best Solution. Equations for updating vectors
A and C during iterations are employed, where A = 2a ⋅ r1 − a and
C = 2.r2. The parameter ’a’ linearly changes from 2 to 0:

X (t+ 1) = X∗ (t) −A ⋅ |C.X∗ (t) −X (t) | (5)

where X(t) represents the agent’s position at iteration t, X∗ (t)
denotes the leader’s position, and r1 and r2 are random values within
[0,1]. To enhance exploration further, the algorithm incorporates
an equation considering three randomly chosen search agents
(X”Paddle1” ,X”Paddle2” ,and X”Paddle3”):

X (t+ 1) = w1X”Paddle1” + zw2 (X”Paddle2” −X”Paddle3”)

+ (1− z)w3 (X−X”Paddle1”)
(6)

where w1, w2, and w3 update within [0,2], z decreases exponentially
according to z = 1− (t/tmax)2, where t is the iteration number, and
tmax is the maximum number of iterations. The second updating
process involves decreasing the values of ′a′ and vector ′A′ for
r3 ≥ 0.5:

X (t+ 1) = w4|X∗ (t) −X (t) |ebl

× cos (2πl) + 2w1 (r4 + r5)X∗ (t)
(7)

where b is a constant, l is a randomvalue in [−1,1],w4 updateswithin
[0,2], and r4 and r5 update within [0,1].

3.2.2 Exploitation operation
: The exploitative aspect of GGO is concentrated on improving

the existing points of development, as shown in Figure 2. At the close
of each cycle, the one with the highest fitness is recognized by GGO.
Extractive procedures are realized through two strategies. Moving
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Towards the Best Solution involves guiding individuals (X”NonSentry”)
toward the estimated position of the prey under the guidance of
sentry solutions (X”Sentry1” , X”Sentry2” , and X”Sentry3”):

{{{{
{{{{
{

X1 = X”Sentry1” −A1 ⋅ |C1 ⋅X”Sentry1” −X|

X2 = X”Sentry2” −A2 ⋅ |C1 ⋅X”Sentry2” −X|

X3 = X”Sentry3” −A3 ⋅ |C1 ⋅X”Sentry3” −X|

(8)

Here, A1, A2, A3 are calculated as A = 2a ⋅ r1 − a and C1,C2,C3
are calculated as C = 2r2. The updated positions for the population,
X(t+ 1), are expressed as the average of the three solutions X1,X2,
and X3:

X (t+ 1) = 1/3
3

∑
i=1

Xi (9)

Searching the Area Around the Best Solution involves exploring
regions near the optimal response (leader), denoted as X”Flock1” . The
equation formulates this exploration process:

X (t+ 1) = X (t) +D (1+ z)w(X−X”Flock1”) (10)

where D, z, and w contribute to the exploration process, with z
calculated according to z = 1− (t/tmax)2, where t is the iteration
number, and tmax represents the maximum number of iterations.
The benefit of having GGO’s mutation approach and system
evaluation of the alternatives within the search group is the
selected optimal solution. This approach enhances exploration to
achieve optimization. They also prevent divergence and ensure that
adjustments are well-achieved. The operation process of GGO is
given in Algorithm 1, in which the code representation is depicted
in the pseudo-code.

The initial configuration supplies GGO with vital parameters,
including the size of the population, mutation rate, and the total
number of iterations. The participants are dynamically assigned
into exploration and exploitation groups, prompting the evolution
to occur recursively as the search for the best solution resolves.
GGO incorporates the uncertain feature through randomness such
that solution components can switch roles between groups for
exploration and exploitation. As for using the Elitist approach, the
guarantor of the presence of the enlightener throughout the whole
process is ensured. The sequential application of steps in the GGO
algorithm involves updating the positions of the exploration group
(n1) and the exploitation group (n2). The parameter r1 undergoes
dynamic updating during iterations, defined as r1 = c(1− t/tmax),
where t represents the current iteration, c is a constant, and tmax is
the total number of iterations. At the end of each iteration, GGO
updates agents in the search space, randomly altering their order
to interchange their roles within the exploration and exploitation
groups. In the final step, GGO returns the optimal solution.

3.3 The PGGO-RBM

This proposed optimization algorithm, the Parallel Greylag
Goose Optimization (PGGO) algorithm, has garnered a lot of
attention due to the fact that it is excellent at handling difficult
optimization problems, as shown in Figure 2. Restricted Boltzmann
Machines (RBMs) will be optimized using PGGO in this work.

This will be the application of PGGO. RBM is a probabilistic
graphical model that can be interpreted as a stochastic neural
network according to one’s perspective. You are able to improve the
performance of the model by fine-tuning the RBM parameters, such
as weights and biases, by making use of PGGO. When it comes
to finding ideal solutions, the iterative process of the algorithm
mimics the behavior of a graylag goose, which is characterized by a
combination of exploitation and exploration. In order to successfully
model the underlying probability distribution of the data that is
provided, RBMs can be tuned to make use of the power of PGGO.
This gives them the ability to learn complicated patterns and produce
high-quality outputs.

By first establishing an aim to reduce across all training set
examples, ClassRBM can be trained to tackle a wide variety
of classification problems. Such training can be accomplished.
”Dtrain = (xt ,yt) Beginning with the most common training goal,
the generative training goal, wewill examine themany training goals
that will be taken into consideration in the next section. When we
have a model that defines a value for the joint probability as p(y,x),
a generative training objective is a useful alternative to consider.

Lgen (Dtrain) = −
|Dtrain|

∑
t=1

log p(yt,xt) (11)

Due to the fact that it is the most widely used training objective
for RBMs, a significant amount of effort has been taken to improve
estimates for its gradient. In point of fact, as was mentioned earlier,
it is often impossible to compute p(yt ,xt) for some example (xt ,yt),
as well as logp(yt ,xt) and its gradient with respect to any value of the
ClassRBM parameter.

ϑ log p(yt,xt)
ϑθ

= −Eh|yt,xt [
ϑ
ϑθ

E(yt,xt,h)]

+Ey,x [
ϑ
ϑθ

E (y,x,h)]
(12)

In particular, the first expectation is manageable, but the second
expectation is not. A lot of different approaches have been proposed
to estimate this second expectation. Among these methods, the
contrastive divergence estimator has proven to be suitable for
practical application. In this approximation, point estimates are
utilized rather than expectations, and the starting state of the
sampler for the observable variables is set to the training example
consisting of the coordinates (xt ,yt).

In order to acquire an accurate representation of the data, it
is customary to use only a single iteration of the Gibbs sampling
technique. A training method known as stochastic gradient descent
can make use of the estimated gradient information. Introducing
approaches that are based on machine learning in order to
construct a recommendation system that is specifically adapted to
this user group is one of the ways in which this work has the
potential to make a substantial contribution to machine learning
and recommendation systems for drivers of electric vehicles. The
suggested approach makes use of the PGGO-RBM approach. In
order to improve the accuracy of predictions made with the
evaluated dataset, the study is centered on the development of
an optimized PGGO-RBM-based regression model. This paper
provides a comparative analysis of the results that were generated
by several algorithms in order to determine which of the findings
produced the most desirable outcomes. A further investigation into

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1401330
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Alharbi et al. 10.3389/fenrg.2024.1401330

1: Initialize PGGO population Xi(i = 1,2,…,n), size

   n, iterations tmax, objective function Fn.

2: Initialize PGGO parameters a, A, C, b, l, c, r1,

   r2, r3, r4, r5, w, w1, w2, w3, w4, A1, A2, A3, C1,

   C2, C3, t = 1

3: Calculate objective function Fn for each agents

   Xi

4: Set P = best agent position

5: Update Solutions in exploration group (n1) and

   exploitation group (n2) for each agent Xi

6: Compare each agent objective function

7: while t ≤ tmax do

8:  for (i = 1:i < n1 +1) do

9:   if (t%2 == 0) then

10:    if (r3 < 0.5) then

11:     if (|A| < 1) then

12:        Update position of current search agent

           as X(t+1) = X∗ (t) −A.|C.X∗ (t) −X(t)|

13:      else

14:      Select the best position search agents

15:      Update (z) by the exponential form of

         z = 1− ( t

tmax
)
2

16:      Update position of current search agent as

         X(t+1) = w1 ∗ XPaddle1 +z ∗ w2 ∗ (XPaddle2 −XPaddle3)

      +(1−z) ∗ w3 ∗ (X−XPaddle1)

17:     end if

18:    else

19:     Update position of current search agent as

        X(t+1) = w4 ∗ |X∗ (t) −X(t)|.ebl.cos(2πl) + [2w1(r4 +r5)]

        ∗X∗(t)

20:   end if

21:  else

22:   Update individual positions as

      X(t+1) = X(t) +D(1+z) ∗ w ∗ (X−XFlock1)

23:   end if

24:  end for

25:  for (i = 1:i < n2 +1) do

26:   if (t%2 == 0) then

27:    Calculate X1 = XSentry1 −A1.|C1.XSentry1 −X|,

       X2 = XSentry2 −A2.|C2.XSentry2 −X|,

       X3 = XSentry3 −A3.|C3.XSentry3 −X|

28:    Update individual positions as X(t+1) = Xi|
3

0

29:  else

30:   Update position of current search agent as

      X(t+1) = X(t) +D(1+z) ∗ w ∗ (X−XFlock1)

31:   end if

32: end for

33: Calculate objective function Fn for each agent

    Xi

34: Update parameters

35: Set t = t+1

36: Adjust beyond the search space solutions

37: end while

38: Return best agent P

Algorithm 1. Proposed PGGO Algorithm.

statistical significance is carried out by employing the Wilcoxon
rank-sum and analysis of variance (ANOVA) tests. PGGO-RBM-
based regression models are noted for their adaptability and
potential for wider applicability because they can be evaluated and
altered to fit a variety of datasets. This demonstrates the model’s
versatility.

3.3.1 Complexity analysis
Analyzing the complexity of the proposed algorithm involves

understanding the computational cost of the operations within
each iteration and their repetition over multiple iterations. In the
following, the steps and the complexity analysis are presented:

• Steps in the Algorithm:

1. Initialization: Parameters and a population of agents are
initialized.

2. Objective Function Calculation: Computed for each
agent.

3. While Loop: Repeats until the maximum number of
iterations (’tmax’) is reached.
• For Loop for Group1 (”n1” agents): Includes

conditions and updates based on different parameters.
• For Loop for Group2 (”n2” agents): Similar to the first

group but with different update mechanisms.
• Parameter Update and Objective Function

Recalculation: This is performed for each iteration.

• Complexity Analysis:

1. Initialization Complexity: O(n) where n is the number of
agents, assuming initialization of each agent is O(1).

2. Objective Function Calculation: O(n) for calculating the
function across all agents once per iteration.

3. Update Mechanisms:
• The complexity of updating each agent can vary,

but assuming O(1) for the operations like arithmetic
calculations, conditional checks, and updates.
• The update loops run for n1 and n2 agents respectively

within each iteration. Assuming the worst-case
scenario where n1 + n2 = n, the complexity within the
while loop for these operations is O(n).

• Total Complexity:
• Within Each Iteration: O(n) for objective function

calculations and O(n) for the updates in the two groups.
• Overall Complexity: Since the while loop runs for tmax

iterations, the total computational complexity is O(tmax ⋅ n).

4 Experimental results

A thorough testing procedure was carried out to determine
whether or not the PGGO-RBMalgorithm is superior andbeneficial.
Working on an Intel(R) Core(TM) i5 CPU working at 3.00 GHz,
the tests were carried out on a machine that was running Windows
10 and Python 3.9. In the context of a case study, the experiments
were carried out with the primary purpose of contrasting the results
obtained from the PGGO-RBM approach with the results obtained
from other models that were based on the RBM technique. Other
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optimization strategies included in the conducted experiments, such
as the binary particle swarm optimizer (bPSO) (Awange et al., 2018;
Martínez-Rodríguez et al., 2023), the binary whale optimization
algorithm (bWOA) (Mirjalili and Lewis, 2016), the binary grey
wolf optimizer (bGWO) (Mirjalili et al., 2014; Liu et al., 2023), the
binary multiverse optimizer (bMVO) (Mirjalili et al., 2016), and
the binary satin bowerbird optimizer (bSBO) (Samareh Moosavi
and Khatibi Bardsiri, 2017), the binary firefly algorithm (bFA)
(Fister et al., 2013), the binary genetic algorithm (bGA) (Immanuel
and Chakraborty, 2019).

4.1 Dataset

Electric vehicles (EVs) are a significant breakthrough that
marks the transition in modern mobility into more environment-
friendly and environment-conscious innovation. Nonetheless, the
extensive implementation of EVs is subject to diverse challenges,
of which overnight charging stations play a crucial role. In order
to disentangle various complexities of EV charging dynamics and
create the right strategies for it, the availability of a comprehensive
and sound dataset is irreplaceable (Varga et al., 2019). Here, we start
a meticulous analysis of the Electric Vehicle Charging Dataset with
the following objectives:

• Revealing the peculiarities of the dataset.
• Unraveling the mysteries of the data preprocessing pipeline.
• Taking a deep dive into descriptive statistics.

The detailed explication creates a presupposition for thorough
and profound research, which will keep the dataset intact and
multifaceted enough for us to pursue our research objectives. The
field experiment conducted by Professor Omar Asensio’s team
has managed to record a variety of charging behaviors among
85 EV (electric vehicle) drivers. According to the dataset, the
network covers 105 charging stations located in 25 different places,
covering the time framework from November 2014 to October
2015; as a whole, the number of charging sessions was 3395. It
shows the period of transition in EV technology development,
which is a complex process, to capture the depth of users’
behavior in reaction to charging infrastructure development and
technological advancements. The records from dataset allocation
are an inexhaustible source of information that condenses the key
features of the charging experience. Between times, timestamps
present the date and duration of each charging session, calling for
insights into temporal patterns. The amount of power consumed
in EVs, associated costs, and all aspects of charging locations
as appropriate contextual attributes come together to construct a
holistic narrative of EV charging behaviors (Arif et al., 2021).

4.2 Preliminary results

Table 2 and Figure 3 compare Markov chain, NADE, and
RBM for electric vehicle path recommendation. Each algorithm’s
performance is measured with 100 iterations and 10 agents across
multiple metrics. RBM has the highest predictive accuracy at 0.94,
followed by NADE at 0.93 and Markov chain at 0.92. RBM regularly

TABLE 2 The preliminary results of the recommendation based on the
basic methods.

Metric Markov chain NADE RBM

Accuracy 0.92 0.93 0.94

Sensitivity 0.91 0.92 0.94

Specificity 0.93 0.94 0.94

p-value 0.92 0.93 0.94

Nvalue 0.92 0.93 0.94

F-Score 0.91 0.92 0.94

Optimal solution 5741.48 5532.37 5136.36

Optimal solution Std 69.75 65.46 61.75

Avg. response time (s) 22.23 21.36 20.35

FIGURE 3
The preliminary accuracy of the recommendation results.

has the highest sensitivity, specificity, p-value, N-value, and F-
score metrics, proving its ability to forecast ideal electric vehicle
trajectories. In addition to predicted accuracy, the table shows
algorithm computational efficiency. RBM again has the lowest ideal
solution of 5136.36 with a standard deviation of 61.75, indicating
great consistency in its suggestions. RBM has the fastest average
response time of 20.35 s, suggesting it can deliver optimal solutions
quickly. These results demonstrate RBM’s advantages in predicted
accuracy and computational efficiency for electric vehicle path
recommendation. However, the performance differences between
the algorithms are small. Thus, all three are feasible solutions based
on requirements and limits. Further investigation may be needed
to understand RBM’s better performance and to optimize or adjust
the algorithms to improve their capabilities. This comparison helps
electric vehicle stakeholders find the best path recommendation
solutions.

Table 3 provides a statistical analysis of preliminary results from
three algorithms—Markov chain, NADE, and RBM—for electric
vehicle path recommendation. The analysis includes data-driven
indicators that reveal algorithm performance and distribution. The
measurements show that all three algorithms were assessed using
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TABLE 3 Statistical analysis of the preliminary results.

Metric Markov chain NADE RBM

Number of values 5 5 5

Minimum 0.92 0.92 0.94

25% Percentile 0.92 0.92 0.94

Median 0.92 0.93 0.94

75% Percentile 0.92 0.93 0.94

Maximum 0.92 0.94 0.95

Range 0.01 0.02 0.01

Mean 0.92 0.93 0.94

Std. Deviation 0.003 0.005 0.003

Std. Error of Mean 0.001 0.002 0.001

Sum 4.59 4.64 4.71

the same five values. Including minimum, 25th percentile, median,
75th percentile, and maximum numbers gives a good summary
of the results range and distribution. RBM outperforms the other
algorithms with a minimum accuracy of 0.94, a maximum of 0.95,
and a small range of 0.01. Markov chain, NADE, and RBM have
mean accuracy values of 0.92, 0.93, and 0.94, respectively, with RBM
having slightly greater accuracy. Standard deviation values, which
measure accuracy value dispersion from the mean, are low across all
algorithms, showing consistent performance.

RBM has the lowest standard deviation of 0.003, demonstrating
its accuracy in recommendations. Additionally, each algorithm’s
accuracy sum measures its performance over the examined dataset.
RBM has the greatest sum of 4.71, proving its superiority over
the Markov chain and NADE in predicting electric car optimal
pathways. This statistical research sheds light on electric vehicle
path suggestion method dispersion and performance. While all
algorithms are precise and consistent, RBM performs best across
metrics, proving its reliability in making suggestions. To better
understand each algorithm’s real-world capabilities and limits, these
results may need further investigation and validation.

Table 4 shows the results of an ANOVA test on preliminary
data from electric vehicle path suggestion algorithm evaluation.
The ANOVA test compares sample group means. The ANOVA
test determines whether the accuracy values of the Markov
chain, NADE, and RBM algorithms show statistically significant
differences. The ANOVA test findings are divided into Treatment,
Residual, and Total. The Treatment section describes algorithm
variations. Sums of squares, degrees of freedom, mean squares,
F-statistic, and p-value are included. The treatment SS is 0.0014
with 2 degrees of freedom, yielding an MS of 0.0007. The F-
statistic (F(2,12) = 48.64) reveals a substantial difference in accuracy
between methods (p < 0.0001). After treatment differences, the
Residual section shows algorithm group variability. For residual
variance, it comprises SS, DF, and MS. With 12 degrees of

TABLE 4 Analysis of Variance (ANOVA) test results based on the
preliminary results.

ANOVA SS DF MS F (DFn, DFd) p-value

Treatment 0.0014 2 0.0007 F(2,12) = 48.64 p < 0.0001

Residual 0.0002 12 0.00001

Total 0.0016 14

freedom, the residual SS is 0.0002, and the MS is 0.00001. This
residual variance explains the unexplained accuracy variationwithin
algorithm groups. The Total part summarizes data variability,
including treatment (algorithm differences) and residual variability.
The overall SS is 0.0016 with 14 degrees of freedom. ANOVA test
results show a statistically significant difference in accuracy between
the three methods. This shows that one algorithm recommends
optimal electric car paths better than the others. Post-hoc analyses
like pairwise comparisons may be performed to discover algorithms
with significant performance differences. The ANOVA test also
emphasizes the relevance of algorithm selection in electric vehicle
path recommendation systems for best performance.

Table 5 shows the Wilcoxon signed-rank test results from
preliminary electric car path suggestion algorithm evaluation data.
The non-parametric Wilcoxon signed-rank test compares matched
samples to determine if their distributions differ significantly. Based
on accuracy results, the test seeks to assess whether Markov chain,
NADE, and RBM algorithms perform statistically differently. The
Wilcoxon signed-rank test results are categorized to provide rank
distributions and p-values for each algorithm pair comparison. The
theoretical median for each method pair is 0, reflecting the null
hypothesis that the two algorithms perform similarly. The medians
for Markov chain vs NADE, RBM, and NADE vs RBM are 0.9176,
0.9277, and 0.9401, respectively, rejecting the null hypothesis for all
comparisons. Every algorithm pair comparison considers 5 values,
reflecting the size of the paired samples. For each algorithm pair
comparison, the sumof signed rankings, positive ranks, andnegative
ranks equals 15, confirming rank symmetry and no significant
deviations from the null hypothesis. The Wilcoxon signed-rank
test results’ p-values, which assess the statistical significance of
algorithm pair performance differences, are the most important. In
this scenario, all p-values for Markov chain vs NADE, RBM, and
NADE vs RBM comparisons are 0.00625, strongly rejecting the null
hypothesis and indicating that each pair of algorithms performs
differently. Wilcoxon signed-rank test findings show considerable
disparities in algorithm performance when selecting ideal electric
vehicle paths. These findings emphasize the necessity of carefully
selecting the best electric vehicle path selection algorithm for
optimal performance and user happiness.

4.3 Feature selection results

Table 6 and Figure 4 compare feature selection results using
the proposed bPGGO (binary parallel greylag goose optimization)
algorithm to other optimization algorithms like bGGO, bPSO,
bGWO, and bGA. Model building requires feature selection to
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TABLE 5 Wilcoxon signed rank test results based on the preliminary
results.

Metric Markov chain NADE RBM

Theoretical median 0 0 0

Actual median 0.9176 0.9277 0.9401

Number of values 5 5 5

Sum of signed ranks 15 15 15

Sum of positive ranks 15 15 15

Sum of negative ranks 0 0 0

p-value (two tailed) 0.00625 0.00625 0.00625

Exact or estimate? Exact Exact Exact

alpha = 0.05 ? Yes Yes Yes

determine the most important subset of features that improve
predicted performance. Compared to competing algorithms,
bPGGO performs well across all measures. Its lowest average error
of 0.29 indicates its ability to select a feature subset that improves
forecast accuracy. The bPGGO has the lowest average selected
feature size of 0.28, indicating that it can identify a compact subset
of highly useful characteristics for electric vehicle path suggestion.
The average fitness for bPGGO is 0.39, showing that the selected
feature subset produces models with superior overall performance
than other algorithms. The standard deviation of fitness for bPGGO
is 0.21, indicating improved stability in feature subset quality across
optimization iterations. Although bPGGO performs well, bGWO
and bGA also perform well in some criteria. The lowest worst fitness
value of 0.46 is for bGWO, indicating that its feature subset is
effective even in the worst case. At 0.22, bGA has the lowest fitness
standard deviation, indicating strong consistency in developing
feature subsets with good performance. The comparative analysis in
the table shows that many optimization techniques are needed to
find appropriate feature subsets for electric vehicle path suggestions,
even though bPGGO looks promising. This study and validation
may be needed to determine the robustness and generalizability of
these findings across datasets and application domains.

The ANOVA test results, in Table 7, reveal the efficacy of
feature selection approaches for electric vehicle path suggestion,
including the suggested binary parallel greylag goose optimization
(bPGGO) algorithm. The ANOVA test determines if feature
selection approaches perform statistically differently based on
observed metrics. The outcomes are separated into Treatment,
Residual, and Total. The Treatment section describes feature
selection technique variations.The sumof squares (SS) for treatment
is 0.04 with 4 degrees of freedom (DF), yielding a mean square (MS)
of 0.0099. The F-statistic (F(4, 30) = 210.8) suggests a substantial
difference in efficacy among feature selection approaches (p <
0.0001). After treatment differences, the Residual section shows
variability within each feature selection method group. For residual
variance, it comprises SS, DF, and MS. The residual SS is 0.001, with
30 degrees of freedom, yielding 4.68E-05 MS. This residual variance

TABLE 6 Feature selection results using the proposed bPGGO algorithm.

Metric bPGGO bGGO bPSO bGWO bGA

Avg. error 0.29 0.32 0.37 0.38 0.35

Avg. Select
size

0.28 0.48 0.48 0.65 0.42

Avg. Fitness 0.39 0.40 0.40 0.44 0.41

Std. Fitness 0.29 0.32 0.38 0.38 0.32

Worst Fitness 0.39 0.39 0.45 0.46 0.43

Std. Fitness 0.21 0.21 0.21 0.27 0.22

FIGURE 4
Average error of the feature selection results.

TABLE 7 ANOVA test results for the proposed feature selection method.

ANOVA SS DF MS F (DFn, DFd) p-value

Treatment 0.04 4 0.0099 F (4, 30) = 210.8 p < 0.0001

Residual 0.001 30 4.68E-05

Total 0.041 34

explains the inexplicable variation in feature selection technique
performance. The Total part summarizes data variability, including
treatment (feature selection methods) and residual variability.
The overall SS is 0.041 with 34 degrees of freedom. ANOVA
test findings show a statistically significant difference in feature
selection method performance based on observed metrics. This
shows that at least one technique selects informative features
for electric car path suggestions better than the others. Post-hoc
analysis, like pairwise comparisons, may be performed to discover
approaches with significant performance differences. These findings
emphasize the relevance of feature selection for electric vehicle path
recommendation system accuracy and efficiency.

Table 8 shows the Wilcoxon signed-rank test results for feature
selection methods used for electric vehicle path recommendation,
including the proposed binary parallel greylag goose optimization
(bPGGO) algorithm and its comparison with bGGO, bPSO,
bGWO, and bGA. The non-parametric Wilcoxon signed-rank test
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TABLE 8 Wilcoxon signed rank test results for the proposed feature
selection method.

bPGGO bGGO bPSO bGWO bGA

Theoretical
median

0 0 0 0 0

Actual
median

0.29 0.32 0.37 0.38 0.35

Number of
values

7 7 7 7 7

Sum of
signed ranks

28 28 28 28 28

Sum of
positive
ranks

28 28 28 28 28

Sum of
negative
ranks

0 0 0 0 0

p-value (two
tailed)

0.02 0.02 0.02 0.02 0.02

alpha = 0.05 ? Yes Yes Yes Yes Yes

Discrepancy 0.29 0.32 0.37 0.38 0.35

compares matched samples to determine if their distributions
differ significantly. Statistics for each feature selection approach are
shown in each row. The null hypothesis that all methods perform
similarly is represented by the theoretical median of 0. The median
values for bPGGO, bGGO, bPSO, bGWO, and bGA are 0.29, 0.32,
0.37, 0.38, and 0.35, respectively, rejecting the null hypothesis
for all comparisons. Each technique comparison uses 7 numbers,
indicating a matched sample size. For each technique comparison,
the sum of signed rankings, positive ranks, and negative ranks
equals 28, confirming rank symmetry and no significant deviations
from the null hypothesis. Each technique comparison’s p-values are
0.02, below the significance level (alpha) of 0.05, showing statistical
significance. This shows large performance disparities between
each set of feature selection approaches. The table also shows the
difference between each method’s theoretical and actual medians,
highlighting performance discrepancies. Wilcoxon signed-rank test
findings indicate that the bPGGOalgorithmoutperforms alternative
feature selection methods for electric vehicle path suggestions.
These findings demonstrate bPGGO’s ability to choose informative
attributes for electric vehicle path recommendation.

4.4 Evaluation of recommendation results

Table 9 shows the accuracy of recommendation systems for
electric vehicle charging station selection after feature selection
(FS) using the binary parallel greylag goose optimization (bPGGO)
algorithm. The Markov chain, NADE, and RBM models were
tested for optimal charging station recommendations. After feature

TABLE 9 Recommendation accuracy results after feature selection.

After FS Markov chain NADE RBM

Accuracy 0.93 0.95 0.96

Optimal solution 4940.77 4731.66 4335.65

Optimal solution Std 59.40 55.11 51.40

Avg. response time (s) 18.58 17.71 16.70

TABLE 10 Recommendation accuracy using the optimized models.

PGGO
RBM

GGO
RBM

PSO
RBM

GWO
RBM

GD
RBM

Accuracy 0.99 0.98 0.98 0.97 0.96

Opt.
solution

3219.0 3358.3 3680.3 4076.3 4285.4

Opt.
solution
Std

37.01 38.78 40.04 43.75 48.04

Avg.
response
(sec)

9.12 12.09 13.45 14.47 15.34

FIGURE 5
Recommendation accuracy based on the optimized models.

selection, each model’s accuracy metrics were calculated. RBM had
the greatest accuracy of 0.96, followed by Markov chain at 0.93
and NADE at 0.95. Each model’s accuracy rate shows how well it
guides electric vehicle owners to the best charging stations. The
table offers additional metrics needed to evaluate recommendation
systems. The ”Optimal solution” metric measures each model’s
average recommended charging station distance. Lower values
indicate better travel distance suggestions since optimal recharge
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FIGURE 6
Convergence of the optimization algorithms.

TABLE 11 ANOVA test results of the recommendation results based on
the optimized models.

ANOVA SS DF MS F (DFn, DFd) p-value

Treatment 0.005 4 0.0012 F (4,45) = 182.1 p < 0.0001

Residual 0.0003 45 0.00001

Total 0.005 49

stations are closer. The ”Optimal solution Std” (standard deviation)
shows the variability of the optimal solution distances around
the mean value. Smaller standard deviation values indicate more
consistent and accurate recommendations across circumstances,
strengthening recommendation systems. Additionally, the ”Avg.
response time” indicator shows how long each model takes to make
recommendations. Shorter response times reflect faster decision-
making, making recommendation systems more useful. The RBM
model had the highest accuracy post-feature selection, suggesting
it can recommend electric vehicle charging stations. RBM also
performs well in optimal solution distance and response time,
making it suitable for real-world use in guiding electric vehicle
customers to ideal charging options.

Table 10, Figures 5, 6 shows electric vehicle path
recommendation accuracy using improved models from various
optimization strategies. Each column represents an optimization
method paired with RBM, including PGGO, GGO, PSO, GWO,
and GA. The improved models perform well across all techniques,
with accuracy values between 0.96 and 0.99. The most accurate
electric vehicle path recommendation model is the PGGO-RBM
model at 0.99. The GGO-RBM and PSO-RBM models perform well
in path recommendation tasks with accuracy values of 0.98 each.
The table also shows how objective function values affect optimal
solution quality.The objective function—the proposed paths’ quality
or cost—is minimized by optimization methods. Low objective
function values imply good pathways. The optimal solutions (Opt.
solution) from PGGO-RBM, GGO-RBM, PSO-RBM, GWO-RBM,

TABLE 12 Wilcoxon signed test results of the recommendation results
based on the optimized models.

PGGO
RBM

GGO
RBM

PSO
RBM

GWO
RBM

GA
RBM

Theoretical
median

0 0 0 0 0

Actual
median

0.99 0.98 0.98 0.97 0.96

Number of
values

10 10 10 10 10

Sum of
signed
ranks

55 55 55 55 55

Sum of
positive
ranks

55 55 55 55 55

Sum of
negative
ranks

0 0 0 0 0

p-value
(two tailed)

0.002 0.002 0.002 0.002 0.002

alpha = 0.05
?

Yes Yes Yes Yes Yes

Discrepancy 0.995 0.983 0.979 0.974 0.965

and GA-RBM have objective function values of 3219.0, 3358.3,
3680.3, 4076.3, and 4285.4. The PGGO-RBM model produces
the best pathways among the algorithms. The table also shows
the optimized solutions’ standard deviation (Std.), revealing each
algorithm’s unpredictability or stability. Lower standard deviations
indicate optimization stability. The PGGO-RBM model consistently
has the lowest standard deviation (37.01), indicating a more stable
optimization process. Finally, each optimizedmodel’s computational
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efficiency is shown by its average reaction time (Avg. response).
The PGGO-RBM model has the fastest average response time at
9.12 s, followed by GGO, PSO, GWO, and GA. This shows that
PGGO-RBM is a good candidate for real-time electric vehicle
path recommendation systems since it has higher accuracy and
solution quality and a lower processing time. The PGGO algorithm
outperforms existing optimization algorithms in electric vehicle
path suggestion accuracy, solution quality, stability, and computing
efficiency.

Table 11 shows the results of an Analysis of Variance (ANOVA)
test on optimized models for electric vehicle path recommendation
using various optimization algorithms, including bPGGO and
others. The ANOVA test determines if optimization algorithm
recommendation results differ statistically. The ANOVA test
findings are separated into Treatment, Residual, and Total. The
Treatment section describes the heterogeneity in optimization
algorithm suggestion results. The sum of squares (SS) for treatment
is 0.005, with 4 degrees of freedom (DF), yielding a mean square
(MS) of 0.0012. The estimated F-statistic, F(4,45) = 182.1, reveals
significant differences in optimization algorithm recommendations
(p < 0.0001). After treatment differences are taken into account,
the residual portion shows variability within each optimization
algorithm group. For residual variance, it comprises SS, DF, and MS.
With 45 degrees of freedom, the residual SS is 0.0003, and the MS
is 0.00001. This residual variance explains the unexplained variation
in optimization algorithm group recommendation results. Finally,
the Total section summarizes the recommendation outcomes’ total
variability, including treatment (optimization method) and residual
variability. The overall SS is 0.005, with 49 degrees of freedom.
Optimization algorithms differ significantly in recommended
results, according to ANOVA. One optimization technique appears
to bemore effective in recommending appropriate electric car paths.
To discover algorithms with significant performance differences,
post hoc analysis like pairwise comparisonsmay be performed.These
findings emphasize the need to use an appropriate optimization
technique to improve electric vehicle path suggestion systems.

The Wilcoxon signed rank test on optimized models for
electric vehicle path recommendation using various optimization
algorithms, including bPGGO, GGO, PSO, GWO, and GA, is
shown in Table 12. Suitable for assessing optimization algorithm
performance, the Wilcoxon signed rank test determines if matched
samples differ statistically. Many Wilcoxon-signed rank test
measures are listed in Table 1 Theoretical median and real median:
The theoretical median is 0, meaning optimization algorithm
recommendation outcomes are identical. The median difference in
recommendation accuracy for each method is 0.96–0.99. (2) Values:
The Wilcoxon signed rank test for each optimization approach
uses paired samples. (3) Sum of signed ranks, positive ranks, and
negative rankings: These metrics measure the sum of ranks for
positive and negative differences between paired samples, revealing
their magnitude and direction. (4) p-value (two-tailed): The p-
value is the probability of obtaining the observed difference (or
more extreme) under the null hypothesis that there is no difference
between optimization algorithm recommendation results. A small
p-value (0.002) indicates statistical significance, suggesting that
optimization algorithms offer different recommendation results.
(5) Alpha = 0.05: This measure indicates that the Wilcoxon signed
rank test’s significance level (alpha) is 0.05. (6) Discrepancy: This

statistic quantifies the difference between the observed median
recommendation accuracy and the theoretical median of zero,
revealing the extent of optimization algorithm recommendation
accuracy variances. Wilcoxon signed-rank test results indicate
a statistically significant difference in optimization algorithm
recommendation outcomes. Some optimization algorithms may
be better at recommending appropriate electric car paths. Further
investigation may reveal the optimization algorithms that perform
well in electric vehicle path suggestion tasks and their causes.

5 Conclusion

Establishing a charging infrastructure that is dependable and
simple to use is becoming increasingly important as the number
of electric vehicles (EVs) continues to increase. A recommendation
system that is specifically designed to aid electric vehicle owners
in discovering charging stations that are convenient for them,
improving the charging experience, and reducing range anxiety is
presented in this research. This study has the potential to make
important contributions to the disciplines of machine learning
and recommendation systems that are specifically designed for
drivers of electric vehicles.This is because it incorporates techniques
from machine learning and creates a recommendation system that
caters specifically to this user demography. With its foundation
in optimization concepts, the proposed methodology makes use
of the algorithm known as Parallel Greylag Goose Optimization
and Restricted Boltzmann Machines (PGGO-RBM). The goal is to
construct an improved PGGO-RBM-based regression model with
the expectation of achieving a higher level of prediction accuracy
by making use of the investigated dataset. As part of the research,
a comparative examination of the results produced by a number of
different algorithms is being carried out in order to determine which
outcomes are themost favorable. Evaluation of the findings is carried
out through the utilization of statistical significance evaluations,
such as the Wilcoxon rank-sum and ANOVA tests. The fact that the
PGGO-RBM-based regressionmodel can be evaluated andmodified
to incorporate a wide range of datasets highlights the adaptability of
the model as well as its potential for wider application in the context
of future research. This exemplifies the adaptability of the concept
and draws attention to the fact that it has application potential in a
larger context.
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