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With the large-scale development of renewable energy power, China has faced
with the challenges of the reverse regional distribution of wind and solar
resources and power load, as well as the intermittency and randomness of
renewable energy power. Therefore, China is vigorously developing ultra-high
voltage direct current (UHVDC) transmission technology to solve the problem of
insufficient flexibility caused by the uncertainty of renewable energy and the
fluctuation of multi-energy loads in integrated community energy systems.
UHVDC plays an increasingly pivotal role in the west-east transmission system
in China’s power system due to its high transmission capacity and long
transmission distance. Once the fault occurs in the ultra-high voltage direct
(UHVD) transmission line, quick and accurate fault location identification is of
great significance. Hence, this paper proposes a UHVDC transmission line
diagnosis method based on wavelet analysis for integrated community energy
systems. Wavelet transform (WT) is used to decompose the transient signal on a
multi-scale, and then power systems computer-aided design (PSCAD) software is
utilized for simulation calculation to obtain the singular spectrum entropy of each
layer and facilitate wavelet transformations for signal denoising with advanced
tools such as MATLAB. The prediction results can distinguish outside the
rectification side fault, within the rectification side fault, and outside the
inverter fault with an accuracy of 100%. A large number of simulations
demonstrate that combining singular spectrum entropy with support vector
machines (SVM) has emerged as a robust technique for integrated community
energy systems, suggesting its potential as a standard method in UHVDC
transmission line diagnosis. This study is of significant reference for realizing
the complementarity of multiple types of power supply and ensuring a reliable
power supply.
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1 Introduction

As global energy demand rises and the public’s awareness of
environmental protection increases, there is a growing demand for
clean energy sources. China’s energy resource centers and load
centers are distributed in the reverse direction, and the energy
flow is in the pattern of “sending coal from the west to the east
and from the north to the south” as well as “sending electricity from
the west to the east and electricity from the north to the south.”
China’s wind and solar energy resources have great potential for
development, with the most abundant distribution in the northwest,
Xinjiang, and Inner Mongolia regions. Although these regions have
abundant wind and solar resources, the load power is low due to
factors such as productivity and population, which is exactly the
opposite of the central and eastern regions, leading to serious wind
and solar abandonment in the northwest region (Zhou, 2019). In the
future, China’s energy production centers are expected to move west
and north, while the gravity center of demand may remain in the
central and eastern regions for a long time, and the scale and
distance of energy flow will further increase. For future large-
scale access to new energy under the conditions of a large-
capacity “west to east” scenario, there is a need to plan ahead
with the appropriate transmission mode (Pan et al., 2016; Ding
et al., 2021), posing higher requirements for electric energy
transmission technology. Among various energy transmission
methods, UHVDC technology has played an increasingly
important role in power transmission and has well solved the
problem of unbalanced distribution between energy centers and
load centers due to its advantages of large transmission power, low
line cost, and good control performance (Wang et al., 2007;
Muzzammel, 2020). From an economic point of view, UHVDC is
more suitable for long-distance power supply; the longer the
distance, the higher the economy. From the existing UHV lines
in our country, UHVDC transmission is generally chosen for ultra
long-distance power transmission. The main way to fully implement
the new national energy development plan is to transmit wind and
photovoltaic power from large energy bases in the “Three Northern
Regions” to the eastern and central load centers through the
UHVDC transmission system.

Numerous studies have been dedicated to efficiently
accommodating excess renewable generation, reducing renewable
curtailment, and improving overall energy efficiency. According to
the development research of the State Grid, clean energy, such as
wind power located in the energy base of North China (including
western Inner Mongolia), can be transmitted through UHVDC
systems. Similarly, clean energy from energy bases in the
northeast and northwest (including Xinjiang) regions can only be
transported through UHVDC systems (Zhen et al., 2008; Shu et al.,
2012). Ma et al. (2018) and Wang L. et al. (2018) established an
planning model to minimize investment, construction, and
operating costs. Zeng et al. (2018) studied methods for handling
multiple uncertainties in the programming models. Zhou et al.
(2020) studied the planning method based on maximum
utilization hours and established to minimize construction and
operating costs throughout the entire cycle. However, the above
studies have overlooked the complex geographical environment
along the UHVDC transmission line. The fault rate of the
transmission line is high in the event of extreme events, making

it difficult to ensure continuous energy supply to important users
and rapid recovery from faults, which compromises the safety and
reliability of the direct current transmission systems (Meghwani
et al., 2017). Therefore, the protection of UHV transmission lines
becomes paramount, highlighting the importance of fast and
accurate fault diagnosis for the safe and stable operation of the
UHVDC transmission systems. Based on this phenomenon, Niazy
and Sadeh (2013), Singh Brains et al. (2017), Wang Y. et al. (2018),
and Shu et al. (2020) conducted certain research. At present,
transient protection utilizing the boundary to the attenuation
characteristics of high-frequency quantities is the development
direction of UHVDC transmission line protection. Studies by
Yong et al. (2009), Yan et al. (2017), Sheng et al. (2019), and
Muzzammel, (2020) have made significant progress in this realm.
However, these studies overlook the complex regional environment
along UHVDC transmission lines. In the case of extreme events, it is
difficult to ensure the continuous energy supply to important users
and the rapid recovery of faults due to the high transmission line
failure rate seriously affecting the safety and reliability of the HVDC
transmission system.

Support Vector Machines (SVM) is a machine learning method
based on statistical learning developed in the 1990s (Bauer et al.,
2011), aimed at classifying samples by finding an optimal
classification hyperplane between them (Xue et al., 2015). Given
that SVM is a superior statistical learning method known for
recognizing patterns in small sample data, the objective of
distinguishing fault types is achieved through training and testing
the sample sets (Shu et al., 2010; Liu and Chen, 2017; Wang C. et al.,
2018; Zhen et al., 2019). Zhu et al. (2011) introduced a new
identification method combining SVM and multi-resolution
singular spectral entropy to address the problem of classifying
islanding and grid interference. Considering the practical
difficulty in obtaining a large number of typical samples of
UHVDC line boundary and fault transient signals, the
combination of multi-resolution singular spectrum entropy and
support vector machine is applied to the problem of fault
identification inside and outside the UHVDC line transient
protection. This approach demonstrates the effectiveness in
classifying fault categories with minimal sample data, yielding the
desired outcomes (Adly et al., 2020; Chen et al., 2020). Hence, this
study mainly proposes a transient protection method for UHVDC
lines based on SVM and multi-resolution singular spectrum
entropy. Section 2 provides a brief overview of the methodology
designed in the study. Section 3 discusses the modeling of
verification. Section 4 elaborates on the analysis of frequency
domain waveform and singular spectral entropy to classify
signals in three different positions. Finally, Section 5 concludes
key insights derived from this study.

2 Methodology

2.1 Singular spectral entropy

Singular spectrum analysis represents an effective time-domain
analysis method that transforms the embedding space into an
equivalent orthogonal coordinate system. This transformation
facilitates obtaining signal trajectories in the subspace with the
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minimum embedding dimension, thereby eliminating linear
dependencies and artificial symmetry between delay coordinates. As
a result, this process enhances the signal-to-noise ratio and sharpens
signal singularity. However, as a time-domain analysis method,
traditional singular spectrum analysis is not conducive to multi-scale
monitoring of signal singularity and fault localization. Thus, the multi-
resolution singular spectrum entropy combines the idea of multi-
resolution analysis and information entropy to characterize the
singular state of signal energy distribution and the probability of
geometric feature distribution at different scales (Wu et al., 2012).

2.1.1 Wavelet singular spectral entropy extraction
1) A discrete sampling sequence f(k)(k � 1, 2, ..., N) (N is the

sampling point) is provided. If f(k) represents the
approximate value at scale j � 0, denoted as c0 � f(k), then
the formula for discrete dyadic wavelet transform can be
expressed in Eq. 1.

cj+1 � Hcj k( )
dj+1 � Gdj k( ){ (1)

whereH and G are low-pass filters and high-pass filters respectively.
In addition, cj(k) and dj(k) represent the approximate and

detailed parts of the signal at scale, respectively. The discrete signal
f(k) is decomposed into d1, d2, . . . , dj, cj by scale 1, 2, . . . , J which
contains information from different frequency bands from the high-
frequency to the low-frequency.

2) Perform wavelet reconstruction on each decomposed layer of
the signal. Suppose only the wavelet coefficients of a certain
frequency band are retained and the wavelet coefficients of
other frequency bands are set to 0. In that case, a singular
spectrum analysis of the reconstructed time-domain signal is
performed. The reconstruction formula is in Eq. 2.

cj k( ) � H*cj+1 k( ) + G*dj+1 k( ), j � J − 1, J − 2, ..., 0, (2)

where H* and G* are respectively the dual operators of H and G.

3) Set on layer j, the discrete wavelet reconstructed signal from
the multi-resolution analysis is Dj � dj(k), k � 1, 2, ..., N{ },
and the reconstructed signal Dj is mapped to the embedding
space. For the sequence Dj(1), Dj(2),Λ, Dj(N){ } of pointN,
the reconstruction state at discrete time I is:
Xj

i � [Dj(i), Dj(i + J),Λ, Dj(i + (m − 1)J]T, where J
represents the reconstruction delay, m denotes the
embedding dimension, and the corresponding
reconstruction trajectory is in Eq. 3.

Xj � Xj
1, X

j
2,Λ, Xj

K[ ]
K � N − m − 1( )J
Aj � Xj ·XjT

(3)

Among them, the element of Aj ∈ RN×N is the correlation
function, in Eq. 4.

Aj( )
mn

� Rx m − n( )J[ ] (4)

4) Perform singular value decomposition on each layer of
matrix Aj, assuming the singular value is δji. Then, δji

forms the singular spectral value of the signal on that layer.
Suppose k is the number of non-zero singular values. In
that case, the value of k reflects the number of different
patterns in each column of the feature matrix A. The
magnitude of singular value δji reflects the proportion of
corresponding patterns in the total pattern. Therefore, the
singular value δji is a partition of vibration signals in the
time-frequency domain of wavelet signals. According to
information entropy theory, the singular spectral entropy
of the reconstructed signal at this level can be calculated in
Eq. 5.

Hj � −∑k
i�1
pji logpji (5)

where pji � δji∑k
i�1

δji

.

2.1.2 Wavelet singular spectrum entropy
eigenvector extraction

Specific steps of feature vector extraction:

1) Perform WT on the selected voltage signal for analysis, use
phase space reconstruction, equivalently exchange the
embedding space into an orthogonal coordinate system, and
construct a (N − n + 1) × n matrix Ajin Eq. 6.

Aj �
dj 1( ) / dj n( )
..
.

1 ..
.

dj N − n + 1( ) / dj N( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

2) Perform singular value decomposition of matrix Aj for
each layer.

3) Perform singular spectral entropy operation on the singular
values of each layer, combine the singular spectral entropy
values of each layer, and obtain the eigenvector Tin Eq. 7.

T � e1, e2,/, ej[ ] (7)

where e1, e2,/, ej represent the entropy value of each layer, and the
corresponding frequency band is from high frequency to
low frequency.

2.2 Support vector machines (SVM)

The singular spectral entropy value of the transient signal at the
initial moment of a fault in a DC transmission line can reflect the
information regarding the fault in the UHVDC transmission line.
However, the values are all less than 1. Therefore, due to the presence
of abnormal data and a limited number of faults, along with a small
number of training samples, it is proposed to use the singular
spectral entropy as the input for the SVM classification model to
determine the type of fault.

The learning strategy of SVM is to find the optimal hyperplane,
maximizing the interval between hyperplanes and transforming it
into a convex quadratic problem. Nonlinear mapping is used to map
the sample space to a high-dimensional feature space, and linear
learning machines are applied in the feature space to solve nonlinear
classification and regression problems in the sample space (Zhang
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et al., 2020). Figure 1 shows the network structure of the SVM, with
the detailed definitions of variables and functions provided in the
following text.

2.2.1 Principles of SVM
For a non-linear separable sample set, introducing the relaxation

variable (ξi ≥0) and penalty factor C, the objective function is in Eq. 8:

FIGURE 1
Network structure of SVM.

FIGURE 2
The external grounding fault and line short circuit on the rectifier side in the frequency domain.
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FIGURE 3
The internal grounding fault and line short circuit in the frequency domain.

FIGURE 4
The external grounding fault and line short circuit on the inverter side in the frequency domain.
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φ W, ξ( ) � 1
2
W‖ ‖2 + C ∑n

i�1
ξi⎛⎝ ⎞⎠ (8)

where W denotes the normal direction vector for dividing
the hyperplane. The decision function of the optimal
hyperplane is in Eq. 9.

TABLE 1 Training set of line short circuit.

Number e1 e2 e3 e4 e5 e6 y

1 4.234 851 4.007 698 3.530 038 2.426 193 2.153 935 1.620 465 1

2 4.230 357 4.007 169 3.541 980 2.470 981 2.151 344 1.416 290 1

3 4.226 877 4.006 925 3.542 546 2.491 254 2.498 893 1.239 845 1

4 3.992 142 3.968 133 3.608 143 2.954 392 2.368 172 1.700 132 2

5 4.001 413 3.968 919 3.610 928 2.967 437 2.371 527 1.709 861 2

6 4.009 175 3.964 558 3.609 616 2.903 287 2.325 60 1.731 467 2

7 4.032 883 3.958 139 3.604 873 2.964 006 2.355 154 1.554 912 2

8 3.966 016 3.901 362 3.610 336 2.880 234 2.321 510 1.699 400 2

9 3.977 207 3.900 431 3.609 016 2.895 399 2.342 394 1.715 578 2

10 3.988 813 3.897 810 3.610 564 2.886 855 2.349 761 1.766 450 2

11 4.022 361 3.904 598 3.609 334 2.880 222 2.334 955 1.632 571 2

12 4.023 365 3.912 566 3.609 254 2.881 215 2.335 145 1.653 458 2

13 4.260 101 4.006 756 3.550 898 2.533 301 2.185 532 1.645 652 3

14 4.254 768 3.998 255 3.586 552 2.478 692 2.184 178 1.564 385 3

15 4.253 896 3.989 569 3.612 551 2.434 569 2.183 158 1.512 548 3

TABLE 2 Testing set of line short circuit.

Number e1 e2 e3 e4 e5 e6 Actual classification y Output results y

1 4.233 234 4.011 294 3.545 682 2.444 781 2.175 692 1.731 926 1 1

2 4.237 742 4.010 300 3.533 309 2.420 985 2.160 731 1.695 838 1 1

3 4.239 541 4.009 894 3.527 514 2.400 612 2.155 879 1.667 456 1 1

4 4.127 146 3.950 120 3.587 153 2.939 680 2.372 009 1.761 636 2 2

5 4.124 025 3.955 669 3.590 703 2.945 490 2.363 065 1.710 628 2 2

6 4.124 349 3.965 404 3.594 802 2.874 286 2.328 265 1.644 996 2 2

7 4.162 143 3.973 289 3.606 325 2.872 658 2.303 787 1.570 906 2 2

8 4.073 362 3.655 916 3.584 639 2.880 284 2.339 811 1.800 524 2 2

9 4.083 346 3.671 308 3.591 093 2.826 990 2.307 579 1.781 310 2 2

10 4.074 555 3.685 678 3.595 680 2.729 995 2.274 955 1.766 197 2 2

11 4.131 489 3.746 499 3.611 569 2.720 045 2.257 295 1.647 411 2 2

12 4.121 654 3.745 412 3.612 125 2.720 001 2.256 748 1.667 845 2 2

13 4.256 340 3.984 575 3.615 606 2.705 496 2.239 537 1.682 504 3 3

14 4.264 150 3.994 711 3.607 863 2.674 488 2.227 026 1.671 522 3 3

15 4.268 754 3.998 785 3.600 988 2.645 456 2.225 625 1.658 958 3 3
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f x( ) � sgn W*( )Tx + b*[ ] � sgn ∑n
i�1
αi*yixi*x + b*⎛⎝ ⎞⎠ (9)

where indicates that αi* and b* are the parameters for determining the
optimal partition hyperplane. x and xi* represent points in the sample
space, that is, support vectors. Moreover, yi symbolizes the value
of the prediction factor, and sgn() indicates a signed function.

2.2.2 Selection of kernel function and parameter
optimization methods

This paper uses the Gauss kernel function, whose formula is in
Eq. 10:

k X, Y( ) � e−
X−Y| |2
2δ2 (10)

where X − Y represents the distance between two vectors and δ

denotes the width of the kernel function.
The bilinear search method and grid search method are methods

used to determine the SVM classifier. Unlike the bilinear search
method, the grid searchmethod offers the advantage of parallel SVM
training for C and δ as they are independent of each other.
Therefore, this paper adopts the grid search method, taking M C
and N δ separately to form M × N combination (C, δ), which are
trained separately. Subsequently, the learning accuracy is estimated,
obtaining the combination with the highest learning accuracy
among all combinations as the optimal parameter.

2.3 Failure diagnosis method

Tang et al. (2013), Wang et al. (2015), and Abdullah (2017)
analyzed the attenuation characteristics of UHVDC transmission
lines and their boundaries for high-frequency quantities of fault

transient signals. According to the attenuation characteristics of
the fault transient signal caused by the lines and their boundaries,
wavelet decomposition applied to the fault signals in three
different positions, including outside the rectification side,
within the rectification side, and outside the inverter side to
obtain different reconstructed high-frequency coefficient
amplitudes (Verrax et al., 2020; Mohammadi et al., 2021).
Subsequently, phase space reconstruction is performed on the
high-frequency coefficients of each layer, followed by singular
value decomposition on the phase space of each layer to obtain
singular values of different sizes (Song et al., 2011; Metidji et al.,
2013; Xiang et al., 2018).

Since the magnitude of singular values reflects the differences
between various fault states, singular spectral entropy can
quantitatively describe the degree of change (Li C. et al., 2018; Li
Y. et al., 2018; Li and Chen, 2019). Singular spectral entropy serves as
a reflection of the uncertainty of signal energy. The simpler the
signal component, the smaller the singular spectral entropy value,
indicating more concentrated signal energy. Conversely, the more
complex the signal components, the larger the singular spectral
entropy value, indicating that the energy is more dispersed, and the
signal is more evenly distributed throughout the entire frequency
component (Moreno et al., 2014; Wang and Zheng, 2014).

Therefore, the singular spectral entropy of the fault signal at
different decomposition levels is calculated, and then the fault signal
is diagnosed through the singular spectral entropy (Xing et al.,
2016). Singular spectral entropy can be used to reflect the different
changes in fault signals at three different locations, including outside
the rectification side, within the rectification side, and outside the
inverter side after boundary and line attenuation.

3 Simulation verification

The simulation model is established based on the actual
parameters of the Yunguang ±800 kV UHVDC transmission
system. For training, 3 external grounding faults are considered
on the rectifier side, 3 external grounding faults on the inverter side,
and 9 internal grounding faults. The training set is shown in Table 1.
For testing, 3 external grounding faults on the rectifier side,
3 external grounding faults on the inverter side, and 9 internal
grounding faults are used. The testing set is shown in Table 2, and
the identification results of the grounding fault are shown in Table 3.

As can be seen in Table 6, electing appropriate C and δ can
achieve the best testing accuracy.

When C = 2 and δ = 2, the testing accuracy of the external
grounding fault on the rectifier side, the internal grounding
fault, and the external grounding fault on the inverter
side is 100%.

TABLE 3 Identification results.

C δ Number of
training samples

Number of
testing samples

Testing accuracy/%

External grounding fault
on the rectifier side

Internal
grounding fault

External grounding fault
on the inverter side

2 2 15 15 100 100 100

TABLE 4 Feature vectors of three different locations.

Number Fault location e1 e2 e3 y

1 External on the rectifier side 4.192 7 3.966 0 3.527 6 1

2 External on the rectifier side 4.192 5 3.958 6 3.501 9 1

3 External on the rectifier side 4.192 3 3.951 7 3.4886 1

4 Internal 3.959 7 3.901 1 3.609 3 2

5 Internal 3.974 4 3.896 8 3.607 8 2

6 Internal 3.999 2 3.889 2 3.60 63 2

7 External on the inverter side 4.248 8 3.983 4 3.606 9 3

8 External on the inverter side 4.253 8 4.011 8 3.572 0 3

9 External on the inverter side 4.255 7 4.035 4 3.542 5 3

Frontiers in Energy Research frontiersin.org07

Yuan et al. 10.3389/fenrg.2024.1401285

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1401285


4 Results and discussions

4.1 Frequency domain waveform analysis

This paper uses PSCAD to establish a model, with a sampling
frequency of 40 kHz, a sampling time of 0.05 s, and a total of
2000 sampling points. The WT uses the db4 wavelet with a
decomposition level of 6.

The reconstructed waveform of the high-frequency
coefficients obtained from the WT reflecting ground faults at three
different locations, outside the rectification side, within the rectification
side, and outside the inverter side, is shown in Figures 2–4.

It can be seen from the waveform that the waveform changes of
fault information at different positions are noticeable in the frequency
domain, and the amplitude in the high-frequency range also varies.

FIGURE 5
Flow chart of SVM algorithm.

TABLE 5 Testing set of three different locations.

Number Fault location e1 e2 e3 y

1 External on the rectifier side 4.181 4 3.972 4 3.540 4 1

2 External on the rectifier side 4.182 2 3.976 8 3.536 2 1

3 External on the rectifier side 4.183 0 3.978 2 3.521 2 1

4 Internal 4.000 1 3.897 8 3.608 2 2

5 Internal 4.005 1 3.900 8 3.610 3 2

6 Internal 4.009 8 3.901 7 3.612 9 2

7 External on the inverter side 4.258 5 4.031 0 3.551 5 3

8 External on the inverter side 4.255 8 4.010 0 3.538 5 3

9 External on the inverter side 4.251 3 3.998 9 3.525 9 3
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4.2 Singular spectral entropy analysis

Three different fault signals, namely, external ground fault on
the rectification side, internal ground fault, and external ground
fault on the inverter side, are decomposed at three scales, and the
wavelet singular spectral entropy is computed for each layer to form
a feature vector. Three sets of characteristic vectors are taken for the
external ground fault signals on the rectifier side, internal ground
fault signals, and external ground fault signals on the inverter side, as
listed in Table 4.

The y in Table 4 denotes the category, and the meaning of y in
the following tables is the same as that in Table 4.

According to the presented data in Table 4, in the low frequency
band e3, there is not much difference in the singular entropy values
of the external grounding fault on the rectifier side, the internal
grounding fault, and the external grounding fault on the inverter
side. This phenomenon arises due to the attenuation of the low-
frequency signal along the line and line boundary can be
approximated to be zero. Consequently, the distribution of
energy in this frequency band is relatively concentrated, leading
to relatively low uncertainty in energy distribution. In the high-

frequency range, the singular spectral entropy values of e1 and e2 are
relatively large, exhibiting a significant difference, with values of the
internal < the external on the rectifier side < the external on the
inverter side. This is because when there is an external grounding
fault on the inverter side, the high-frequency signal needs to pass
through the double attenuation effect of the line and the line
boundary to reach the installation site of the rectifier side
protection. This severe high-frequency signal attenuation and the
relatively uniform energy distribution in this frequency band
increase the uncertainty of energy distribution.

In addition, Table 4 demonstrates the relative stability of wavelet
singular spectral entropy for fault information at the same location.
Therefore, this study uses the singular spectral entropy of faults
outside the rectification side, within the rectification side, and
outside the inverter side as input variables for SVM to
classify faults.

4.3 SVM fault recognition algorithm

SVM algorithm process:

1) Perform wavelet multi-resolution decomposition on
the fault signals at three different positions to obtain
the corresponding reconstructed high-frequency
coefficients;

2) Calculate the singular spectral entropy of the wavelet
reconstruction coefficients of the fault signals at three
different positions to obtain the feature vectors;

3) Utilize a portion of the feature vectors as the training set and
apply the grid search method to determine the SVM classifier
parameter C, δ;

4) Input the remaining part of the feature vector as the test set
into the SVM classifier for testing and obtaining the
classification results.

The SVM algorithm process is shown in Figure 5.
The nine samples in Table 4 are employed as a training set, and

the parameters C, δ of the SVM classifier are obtained using the grid
search method.

TABLE 6 SVM diagnosis of three different locations.

Number e1 e2 e3 Actual classification y Output results y

1 4.181 4 3.972 4 3.540 4 1 1

2 4.182 2 3.976 8 3.536 2 1 1

3 4.183 0 3.978 2 3.521 2 1 1

4 4.000 1 3.897 8 3.608 2 2 2

5 4.005 1 3.900 8 3.610 3 2 2

6 4.009 8 3.901 7 3.612 9 2 2

7 4.258 5 4.031 0 3.551 5 3 3

8 4.255 8 4.010 0 3.538 5 3 3

9 4.251 3 3.998 9 3.525 9 3 3

The data in Table 6 indicate that an ideal accuracy can be achieved for small sample training and learning by selecting appropriate kernel parameters.

FIGURE 6
SVM classification diagram. +1━The external fault on the rectifier
side; *2━The internal grounding faults;·3━The external grounding
faults on the inverter side; 4━SVM.
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Then, three groups of feature vectors are selected to form a
testing set and input to the SVM for testing. The test set samples are
shown in Table 5.

The testing set is tested in Table 5, and the following results
are obtained:

1) When C = 1024, δ = 1024, the correct rate is very low, which is
13.33%. Only the external grounding fault on the inverter side is
correctly classified, and the faults in the external grounding on the
rectifier side and the internal grounding are not correctly classified.

2) When C = 512, δ = 512, the correct rate is 33.33%, and there
are two samples with the external grounding fault on the
rectifier side that is not correctly classified.

3) When C = 128, δ = 128, the correct rate is 83.33%, and there is
one sample with the external grounding fault on the rectifier
side that is not correctly classified.

4) When C = 2, δ = 2, the correct rate is 100%, and all samples are
correctly classified. The classification results are shown in Table 6.

When C = 2, δ = 2, the above external grounding fault on the
rectifier side, the internal grounding fault, and the external grounding
fault on the inverter side are classified by SVM, resulting in the
classification diagram is obtained, as shown in Figure 6.

As can be seen from the SVMdiagnosis results in Table 6 and the
SVM classification diagram in Figure 6, the trained SVM classifier
parameters can correctly classify the grounding fault signals in three
different positions.

5 Conclusion

This study presented a fault diagnosis method for UHVDC
transmission lines in a regional integrated energy system,
establishing an accurate mathematical model and making a multi-
scale analysis of fault signals using wavelet analysis. Then, the method
for fault identification inside and outside the UHVDC line area using a
multi-resolution singular spectrum entropy and SVM was proposed by
analyzing the UHVDC transmission line boundary and the attenuation
effect of lines on the high-frequency of fault transient signals. For this
purpose, MATLAB software was utilized to facilitate wavelet
transformations for signal denoising and various machine learning
techniques for predictive modeling. Compared with the traditional
artificial neural network, the revealed mathematical model offers the
advantages of fewer training samples, shorter training time, less
overfitting, and higher recognition accuracy.

This study revealed the fault diagnosis method for UHVDC
transmission lines within a regional integrated energy system. The
fault identification problem of transient protection for UHVDC
transmission lines inside and outside the region was transformed
into a pattern classification problem. As a result, the sample
identification accuracy improved from 13.3% to 100% by
establishing a mathematical model and selecting a suitable SVM
classifier parameter. Thus, the external fault on the rectifier side, the
internal fault, and the external fault on the inverter side could be
distinguished at the same time, and automation in the whole
classification process could be realized. Given the challenges of
acquiring a large number of typical samples of UHVDC line
boundary and fault transient signals of the line, the combination of

multi-resolution singular spectrum entropy and SVM was applied to
the problem of fault identification inside and outside the UHVDC line
transient protection. With only small sample data, the fault categories
could be effectively classified, and the expected results could be
achieved. The accuracy reached 100%, indicating the correctness and
effectiveness of the method. This study not only makes a great
contribution to the fault diagnosis of UHVDC transmission lines in
regional integrated energy systems but also lays a new theoretical
foundation for the fault diagnosis of other regional integrated energy
systems in the process of energy signal transmission.
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