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In recent years, the penetration of solar and wind power has rapidly increased to
construct renewable energy-dominated power systems (RPSs). On this basis, the
forecasting errors of renewable generation power have negative effects on the
operation of the power system. However, traditional scheduling methods are
overly dependent on the generation-side dispatchable resources and lack
uncertainty modeling strategies, so they are inadequate to tackle this problem.
In this case, it is necessary to enhance the flexibility of the RPS by bothmining the
load-side dispatchable resources and improving the decision-making model
under uncertainty during the energy and reserve co-dispatch. In this paper,
due to the great potential in facilitating the RPS regulation, the demand
response (DR) model of fused magnesium load (FML) is first established to
enable the deeper interaction between the load side and the whole RPS.
Then, based on the principal component analysis and clustering algorithm, an
improved typical scenario set generation method is proposed to obtain a much
less conservative model of the spatiotemporally correlated uncertainty. On this
basis, a two-stage distributionally robust optimization model of the energy and
reserve co-dispatch is developed for the RPS considering the DR of FML. Finally,
the proposed method is validated by numerical tests. The results show that the
costs of day-ahead dispatch and re-dispatch are significantly decreased by using
the improved typical scenario set and considering the DR of FML in regulation,
which enhances the operation economywhilemaintaining the high reliability and
safety of the RPS.

KEYWORDS

distributionally robust optimization, demand response, fused magnesium load, optimal
dispatch, typical scenario generation

1 Introduction

Under the background of increasingly serious environmental problems and accelerated
depletion of resources, renewable energy-dominated power systems (RPSs) are developing
rapidly (Cai et al., 2022; Liu et al., 2023). The novelty of RPSs is reflected by two main
characteristics: environmentally friendly and highly flexible. Being environmentally friendly
requires the large-scale application of renewable energy sources (RESs) in generation, but
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the complex uncertainty of RESs poses a great challenge to power
system scheduling and dispatch. Therefore, the RPS must have an
abundance of dispatchable resources and effective optimal dispatch
methods, which means that the RPS needs to be highly flexible
(Cheng et al., 2023; Trojani et al., 2023).

In the traditional power system, dispatchable resources mainly
refer to thermal power, hydropower, and other conventional units
on the generation side, so the dispatch mode is generation-follow-
load. However, with the progress of carbon peaking and carbon
neutrality, thermal power units in the RPS will inevitably be replaced
by RES generation on a large scale, causing a paradoxical situation of
increasing system uncertainty and decreasing generation-side
regulation capability. In this case, the demand response (DR)
mechanism, as a method to exploit the potential of load-side
participation in system scheduling, has gained wide attention in
recent years (Xie et al., 2023; Yang et al., 2024).

Currently, most related studies focus on the DR modeling of
residential loads and commercial loads (Chen et al., 2022; de
Chalendar et al., 2023). Compared with residential and
commercial loads, industrial loads account for a higher
proportion in the whole power system. In particular, the energy-
consuming industrial loads have the advantages of complete
infrastructures, large capacities, and strong willingness to
participate in DR, so they have huge dispatch potential. However,
the relevant research studies are still insufficient at present.

As typical energy-consuming industrial loads, there have
been reports about the participation of iron/steel loads and
fused magnesium loads (FMLs) in DR and RPS dispatch.
Boldrini et al. (2024) investigated the potential of
participation in DR for the electric arc furnace (EAF)
technology using hydrogen as the reductant of iron. Wang
et al. (2023) considered the production plans of the steel
refining process to be adjustable, so that the ladle furnaces are
treated as cuttable loads and modeled as DR resources. FML was
reported to participate in the primary frequency control market,
and the corresponding declared capacity optimization method
was proposed by Guo et al. (2023). In summary, it is the heat
storage processes of the iron/steel loads and FMLs using EAFs
that can be regarded as DR resources. EAFs melt raw materials
with electric heating technology to manufacture products, which
is simple and less sensitive to power fluctuations, making them
highly flexible during RPS dispatch. In addition, EAFs typically
have large capacities, so rational production arrangements for
enterprises using such equipment can provide significant
dispatchable capacity for the power system. Hence, it is
necessary to construct DR models for these energy-consuming
industrial loads, so that their flexibility can contribute to the RPS.
Different from FMLs, iron/steel loads have many consecutive
processes such as refining and rolling. Due to the limited amount
of equipment in each process, it is necessary to consider their
coordination in the DR model, which is relatively complex.
Therefore, to focus on the DR potential exploitation, FMLs are
taken as the representative of the energy-consuming
industrial loads.

To fully utilize the flexible resources of both generation and load
sides, effective dispatch decisionmethods are also needed to enhance
the ability of the power system to cope with the uncertainty of RESs.
According to decision conservativeness, commonly used methods

are usually classified into two categories: scenario-based stochastic
optimization (SO) and robust optimization (RO) (Mazidi et al.,
2019; Tan et al., 2019; Cheng et al., 2024).

For example, a stochastic scenario-based optimization model
was proposed by Derakhshandeh et al. (2017) to optimize the
generation scheduling of microgrids integrated with plug-in
electric vehicles. A stochastic and affinely adjustable robust
optimization method was constructed by Huang et al. (2019) for
the co-dispatch of energy and reserve of the RPS. However, the two
methods have their drawbacks.

The SO methods rely on the uncertainty sets generated by
parameterized probability distribution functions. However, it is
difficult to guarantee the validity of the chosen parameterized
function. In addition, the obtained uncertainty sets are less
capable of considering the extreme scenarios, so the dispatch
results tend to be over-optimistic and insufficiently reliable. The
RO methods only consider the extreme scenarios corresponding to
the uncertainty space boundaries, some of which are completely
impossible in reality, so the derived dispatch schemes are overly
conservative. Both methods lack the capability to deal with the
spatiotemporal correlation between uncertainty variables.

To combine SO and RO to achieve complementary effects, the
distributionally robust optimization (DRO) theory is proposed and
gradually promoted for use, which is also convenient for taking into
account the spatiotemporal correlation of uncertainty variables
(Shui et al., 2019; Gao et al., 2020; Liu et al., 2022).

The balance between the economy and reliability of the decision
using DRO is closely related to the way of selecting the typical
scenarios of uncertainty. The space enclosed by the typical scenarios
is required to contain as many samples in the historical data as
possible and to contain as little redundant area where no sample is
located as possible. For example, the historical samples were directly
used to derive an empirical probability distribution by Wang et al.
(2020), where the interval centers of the distribution were adopted as
the typical scenarios to construct a DRO dispatch model for the
distribution network. The Wasserstein metric-based uncertainty set
construction methods are also popular choices but need to consider
large numbers of historical scenarios when solving the DRO model,
which causes computational burden (Saberi et al., 2021; Feizi et al.,
2022; Zheng et al., 2023). In recent years, minimum volume
enclosing ellipsoid (MVEE)-based uncertainty set construction
methods have achieved better results in typical scenario selection.
Zhang et al. (2022) first obtained the MVEE that covers all the
historical samples with an iteration algorithm, and then the vertices
on each symmetry axis of the MVEE are regarded as the typical
scenarios. However, the space enclosed by these vertices is the
inscribed polyhedron of the MVEE and is not guaranteed to
cover all the historical samples. To solve this problem, an
expansion method of the inscribed polyhedron was proposed by
Zhang et al. (2021) to obtain the vertices of its corresponding
circumscribed polyhedron. Unfortunately, although all samples
are covered after such treatment, the redundant scenarios in the
polyhedral space increase significantly, some of which even exceed
the upper and lower bounds of the uncertainty variables. These
impossible scenarios result in great conservativeness of the decision
scheme, which makes the DRO lose advantages. It can be observed
that directly using the vertices of the inscribed and circumscribed
polyhedron as typical scenarios for DRO is inappropriate.
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According to the above analysis, the RPS still has deficiencies
in both flexible resource mining and dispatch capability
enhancement, so this paper focuses on the relevant works
shown as follows:

1) FML is taken as the representative of energy-consuming
industrial loads, and its lean DR model integrated with
time-coupled constraints is established to further exploit the
regulation potential of the RPS load side.

2) An improved typical scenario generation method is proposed
by uniting the boundary points with cluster centers of the
historical samples and then adjusting the impossible points.
Then, an improved typical scenario-based DRO (ITSDRO)
dispatch model for the RPS is established to lower the
conservativeness and achieve a better balance between
reliability and economy.

The rest of the paper is organized as follows: in Section 2,
the two-stage DRO model is constructed for the co-dispatch of
energy and reserve for the RPS considering the DR of FML;
Section 3 details the improved typical scenario set generation
method, and it is integrated into the model established in
Section 2; then, the solving algorithm of the proposed DRO
model is given in Section 4; numerical tests are carried out and
discussed in Section 5; and the conclusion is summarized
in Section 6.

2 DRO co-dispatch of energy and
reserve for the RPS considering the DR
of FML

In this section, the two-stage DRO co-dispatch model of energy
and reserve for the RPS is established considering the participation
of the FML in the DR. Although only the DR of the FML is
integrated into the model, DR models of other types of loads can
be added conveniently.

2.1 DR model of the FML

The FML utilizes EAFs to prepare electrically fused magnesia as
its product, whose main component is MgO. The production
process is to use the electric arc to heat the raw materials
containing MgO until they are melted in the EAF. The molten
raw materials are cooled naturally, and magnesite crystals grown
from the molten material are ground to obtain the magnesium sand.
In this process, the EAF can lift or lower the electrode to control the
current, so it can regulate its power consumption. Since the rated
power of a single EAF can reach the MW class, the participation of
the FML in the DR project provides considerable flexible capacity for
the RPS dispatch.

However, as one type of high energy-consuming industrial load,
the pre-requisite for the participation of the FML in the DR is to
ensure its production safety and the achievability of production
tasks. Hence, it is necessary to construct the DR model of a single
EAF based on the constraints in the production process and then to
form the DR model of the FML accordingly.

2.1.1 Regulation capacity constraints of the EAF

PM
m,t � PM,base

m,t + PM,u
m,t − PM,d

m,t , (1)
.0≤PM,u

m,t ≤ sum,tP
u
max ,m, 0≤P

M,d
m,t ≤ s

d
m,tP

d
max ,m, (2)

sum,t + sdm,t � 1, (3)

where t is the index of time. PM
m,t is the regulated power of the

mth EAF. PM,base
m,t is the base power of the mth EAF. PM,u

m,t and PM,d
m,t

are the upward and downward regulated power of the mth EAF,
respectively; Pu

max ,m and Pd
max ,m are the upper limits of PM,u

m,t and P
M,d
m,t

due to the safety consideration, respectively; and sum,t and sdm,t are
binary variables indicating the EAF to be in upward and downward
regulation states, respectively.

2.1.2 Constraints of regulation times of the EAF
Within a day, the total upward and downward regulation times

of an EAF should not exceed a scheduled maximum number. This
avoids the overly frequent regulation of one EAF and ensures its
productivity and product purity.

0≤∑T
t�2

sum,t − sum,t−1
∣∣∣∣ ∣∣∣∣≤M, (4)

where M is the scheduled maximum regulation number of one
EAF in 1 day. T is the number of time slots in 1 day.

Upward and downward regulation times are both considered in
(4), which is intuitively demonstrated by introducing binary
auxiliary variables in Section 2.2.4.

2.1.3 Regulation duration constraints of the EAF
One EAF should not be in the upward regulation state for several

consecutive periods; otherwise, the temperature of the molten liquid
continues to increase, resulting in accidents such as furnace
eruption. In addition, if the power of the EAF is continuously
regulated downward for too long, the temperature in the furnace
cannot meet the production requirements, which affects the purity
of the products. Therefore, the upward and downward regulation
duration constraints of the EAF are constructed as follows:

sum,t Tu
m − ∑t−1

τ�t−Tu
m−1

sum,τ
⎛⎝ ⎞⎠≥ 0

sdm,t Td
m − ∑t−1

τ�t−Td
m−1

sdm,τ
⎛⎜⎝ ⎞⎟⎠≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (5)

where Tu
m and Td

m are the maximum duration of upward and
downward power regulation of the EAF, respectively.

2.1.4 Constraints of the power and production of
the FML

The power consumed by the FML is accumulated from all EAFs:

∑
m

PM
m,t � PFML

t , (6)

where PFML(t) is the total power of all the EAFs belonging to the
FML at time t.

Then, the FML is modeled as a shiftable load in (7), whichmeans
that the energy consumed in 1 day should remain unchanged
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whether FML participates in DR projects or not. This constraint
ensures that production is not affected by the DR.

∑
t

∑
m

PM,base
m,t � ∑

t

PFML
t . (7)

2.2 Construction of the two-stage DRO co-
dispatch model

To optimize the day-ahead energy and reserve strategy of the
RPS, the DRO model constructed in this paper is composed of two
stages. In the first stage, the base case of the day-ahead RES and load
prediction is used to optimize the unit commitment and reserved
capacity of conventional units. In the second stage, a prediction
error scenario set is constructed and used to optimize the operation
of flexible resources to ensure the RPS reliability considering the
day-ahead RES and load prediction uncertainty.

By the interaction of decision variables of the two stages, the
determined unit commitment and reserved capacity finally achieve a
balance between reliability and economy.

2.2.1 Objective function
The overall objective of the proposed model is to minimize the

total operation costs of the two stages, as shown in (8):

min
x

Cop x( ) +max
pk∈Ω

∑nsce
k�1

pk min
yk

Creg x, yk( ), (8)

x � Ii,t, Pi,t, αui,t, α
d
i,t, R

u
i,t, R

d
i,t[ ]

yk � Pu
i,t,k, P

d
i,t,k,W

cur
w,t,k, L

sh
b,t,k, P

M,u
m,t,k, P

M,d
m,t,k, s

u
m,t,k, s

d
m,t,k[ ] , (9)

where x and Cop(x) are the decision variables and objective
function in the first stage, respectively. The values of x remain
unchanged during the optimization of the second stage. nsce is the
number of prediction error scenarios employed in the second stage.
k is the index of the scenarios. pk is the occurrence of scenario k.Ω is
the uncertainty space of the probability distribution {pk|k = 1, . . .
,nsce}. yk and Creg(x, yk) are the decision variables and objective
function in the second stage, respectively.

According to (8), the two-stage dispatch model is established based
on the DRO theory. The max–min structure in the second stage is used
to search for the worst distribution of the prediction error scenarios
within Ω, which ensures that the optimized strategy can adapt to this
worst distribution, so that the reliability and economy are balanced.

The functions of Cop(x) and Creg(x, yk) are shown as (10) and
(11), respectively:

Cop x( ) � ∑
t

∑
i

Cfuel
i Fi Pi,t( ) +∑

i

Sui α
u
i,t + Sdi α

d
i,t( ) +∑

i

Cu
i R

u
i,t + Cd

i R
d
i,t( )⎡⎣ ⎤⎦,
(10)

Creg x, yk( ) � ∑
t

∑
i

Qu
i P

u
i,t,k + Qd

i P
d
i,t,k( ) +∑

w

CwWcur
w,t,k

⎡⎣
+∑

b

CldLcur
b,t,k| +∑

m

CM,usum,t,k + CM,dsdm,t,k( )⎤⎦,
(11)

where Cfuel
i is the fuel price of unit i. Fi(·) is the linearized

function of the consumed fuel and the power output of unit i. Ru
i,t

and Rd
i,t are upward and downward reserve capacity of unit i at time

t, respectively. Sui and Sdi are startup and shutdown costs of unit i,
respectively. αui,t and αdi,t are binary variables of unit i indicating the
occurrence of startup and shutdown at time t, respectively. Cu

i and
Cd
i are the up and down reserve prices of unit i, respectively. Pu

i,t,k

and Pd
i,t,k are the upward and downward regulated powers of unit i at

time t in scenario k, respectively. Qu
i and Qd

i are up and
downregulation prices of unit i, respectively. Wcur

w,t,k and Lcurb,t,k are
the amount of curtailed power of RES stationw and load shedding of
bus b at time t in scenario k, respectively. Cw and Cld are the penalty
prices of RES curtailment and load shedding, respectively. CM,u and
CM,d are the subsidized prices of upward and downward regulation
of the FML, respectively.

2.2.2 Power system operation constraints
The constraints in the first stage correspond to the RES power

prediction base case. The constraints in the second stage correspond
to the RES power prediction error cases. The details are given below.

Constraints in the first stage:

(1) Minimum up/down time of conventional units:

∑t−1
τ�t−Ton

i

Ii,τ − Ton
i

⎛⎝ ⎞⎠ Ii,t−1 − Ii,t( )≥ 0

∑t−1
τ�t−Toff

i

1 − Ii,τ( ) − Toff
i

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ Ii,t − Ii,t−1( )≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
, (12)

where Ton
i and Toff

i are the minimum duration of the on and off
statuses of unit i, respectively. Ii,t is a binary variable of unit i at time
t, which takes 1 for the on status and 0 for the off status.

(2) Startup and shutdown limits of conventional units:

αu
i,t − αdi,t � Ii,t − Ii,t−1

αui,t + αdi,t ≤ 1
{ . (13)

(3) Output power and ramp rate limits of conventional units:

Ii,tPi,min ≤Pi,t ≤ Ii,tPi,max

−DRi ≤Pi,t − Pi,t−1 ≤URi
{ , (14)

where Pi,min and Pi,max are the minimum and maximum output
power of unit i, respectively. URi and DRi are the maximum upward
and downward ramp power of unit i, respectively.

(4) Limits of the unit reserve capacity and system reserve
requirement:

0≤Ru
i,t ≤ min URi, Ii,tPi,max − Pi,t( )

0≤Rd
i,t ≤ min DRi, Pi,t − Ii,tPi,min( ){ , (15)

∑
i

Ru
i,t ≥R

u
t ,∑

i

Rd
i,t ≥Rd

t , (16)

where Ru
t and Rd

t are the upward and downward reserve power
requirements of the RPS at time t, respectively.

(5) Power balance limits:

∑
i

Pi,t +∑
w

Ŵw,t � ∑
b

Lb,t +∑
m

PM,base
m,t , (17)
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where Ŵw,t is the predicted output power of RES station w at
time t in the base case. L̂b,t is the predicted load consumption of bus
b at time t in the base case.

(6) Transmission capacity limits of power lines based on the DC
power flow model:

∑
b

klb(∑
i∈b

Pi,t + ∑
w∈b

Ŵw,t − L̂b,t − ∑
m∈b

PM,base
m,t

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣≤flmax, (18)

where klb is the power transfer distribution factor of bus b to line
l, which represents the DC power flow model (Cai and Xu, 2021).
flmax is the maximum transmission power of line l.

Constraints in the second stage:

(1) Output power and ramp rate limits of conventional units:

Ii,tPi,min ≤Pi,t + Pu
i,t,k − Pd

i,t,k ≤ Ii,tPi,max

−DRi ≤Pi,t + Pu
i,t,k − Pd

i,t,k − Pi,t−1 + Pu
i,t−1,k − Pd

i,t−1,k( )≤URi.
0≤Pu

i,t,k ≤Ru
i,t

0≤Pd
i,t,k ≤Rd

i,t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(19)

(2) Power balance limits:

∑
i

Pi,t + Pu
i,t,k − Pd

i,t,k( ) +∑
w

Ŵw,t + ΔWw,t,k −Wcur
w,t,k( )

� ∑
b

L̂b,t + ΔLb,t,k − Lsh
b,t,k( ) +∑

m

PM
m,t, (20)

where ΔWw,t,k and ΔLb,t,k are the prediction error of RES station
w and bus b at time t in scenario k, respectively.

(3) Transmission capacity limits of power lines based on the DC
power flow model:

∑
b

klb ∑
i∈b

Pi,t + Pu
i,t,k − Pd

i,t,k( ) + ∑
w∈b

Ŵw,t + ΔWw,t,k −Wcur
w,t,k( )⎡⎣∣∣∣∣∣∣∣∣∣

− L̂b,t + ΔLb,t,k − Lsh
b,t,k( ) − ∑

m∈b

PM
m,t

⎤⎦∣∣∣∣∣∣∣∣∣≤flmax

.

(21)

(4) Wind curtailment and load shedding limits:

0≤Wcur
w,t,k ≤ Ŵw,t + ΔWw,t,k

0≤ Lsh
b,t,k ≤ L̂b,t + ΔLb,t,k

{ . (22)

(5) FML constraints

As indicated by (9), the DR of the FML is regarded as a flexible
resource to cope with the prediction errors of the RES output.
Therefore, (1–7) are treated as constraints in the second stage, where
the FML decision variables should be included in yk and the index k
needs to be added to these variables.

2.2.3 Power prediction error probability
distribution constraints

Using the norm-1 and norm-inf, the uncertainty space Ω in (8)
can be constructed by the power prediction error probability
distribution constraints below:

Ω � pk :

∑Nsce

k�1
pk � 1, pk ≥ 0

∑Nsce

k�1
pk − pk0

∣∣∣∣ ∣∣∣∣≤ θ1
max

1≤ k≤Nsce

pk − pk0

∣∣∣∣ ∣∣∣∣≤ θ∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (23)

where pk0 is the initial probability of scenario k obtained by
analyzing the historical samples. θ1 and θ∞ are the variation
tolerance in the form of norm-1 and norm-inf, respectively, which
can be calculated with the formula given by Wang et al. (2020).

The non-linear absolute term in (23) is linearized by introducing
auxiliary variables. The constraints of these auxiliary variables are
given below:

zk+ + zk− ≤ 1
0≤pk+ ≤ zk+θ1, 0≤pk− ≤ zk−θ1
0≤pk+ ≤ zk+θ∞, 0≤pk− ≤ zk−θ∞

⎧⎪⎨⎪⎩ , (24)

where zk+ and zk− are binary auxiliary variables. pk+ and pk− are
real auxiliary variables.

The linearized form of (23) is shown as

FIGURE 1
Typical scenario sets constructed by the circumscribed and
inscribed polyhedra of the MVEE.

FIGURE 2
Flowchart of the solving algorithm for the two-stage RPS
dispatch model.
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pk � pk0 + pk+ − pk−

∑Nsce

k�1
pk+ + pk−( )≤ θ1

pk+ + pk− ≤ θ∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (25)

2.2.4 Linearization of non-convex constraints
The constraints shown in (4), (5), (12), and (15) are non-convex,

so the formulated model above cannot be directly solved by common
commercial solvers. In this section, they are all linearized to obtain
an equivalent convex form of the proposed DRO model.

For (4), binary auxiliary variables are introduced to derive its
equivalent linearized form as shown below:

zum,t + zdm,t ≤ 1
sum,t − sum,t−1 � zum,t − zdm,t

0≤∑T
t�2

zum,t + zdm,t( )≤M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (26)

where zum,t and z
d
m,t are the introduced pair of binary variables. z

u
m,t =

1 indicates that upward regulation happens in time t. Similarly, zdm,t

is the indicator of downward regulation.
For (5) and (12), both are the constraints of duration, so they

have nearly the same structure. For such a structure, the linearized
form is obtained by dividing T into three sections, which is given by
Carrion and Arroyo (2006). For succinctness, the deduction is not
repeated here.

For (15), the non-convexity of the two constraints is aroused by
the nested min terms. Each of them can be replaced by two separated
constraints to avoid the usage of the min terms, which is
shown below:

0≤Ru
i,t ≤URi, Ru

i,t ≤ Ii,tPi,max − Pi,t

0≤Rd
i,t ≤DRi, Rd

i,t ≤Pi,t − Ii,tPi,min
{ . (27)

3 Improved typical scenario set
generation method

Whether the balance between economy and reliability can be
achieved or not by DRO is closely related to the way how typical
scenarios of prediction errors are selected. Previous DRO
methods usually adopt the cluster centers of historical
prediction errors as the typical scenarios, which are unable to
test whether the determined day-ahead strategy can cope with the
possible extreme prediction errors or not. Hence, these methods
are too optimistic to consider the uncertainty in the day-ahead
stage thoroughly. However, if the traditional box uncertainty set
of RO is directly transferred to DRO, the spatiotemporal
correlation between RES power outputs and loads is neglected,
which results in an overconservative decision. In this case, to
consider the spatiotemporal correlation, an MVEE containing all
the historical prediction error samples is often constructed. The
vertices of its inscribed and circumscribed polyhedra are used as
the typical scenarios, which is shown by Figure 1 (Zhang et al.,
2021; Zhang et al., 2022).

As shown in Figure 1, the inscribed polyhedron is unable to
cover all the historical samples. In addition, for both the inscribed

and circumscribed polyhedra, the coordinate values of the vertices
may exceed the maximum or minimum values of the
historical samples.

To solve this dilemma, an improved typical scenario set
generation method is proposed based on the principal
component analysis and K-means clustering algorithm, which
unites the cluster centers and the extreme points of the historical
prediction error samples to reduce decision conservativeness while
maintaining reliability.

1) The prediction error vector is denoted by Eq. 28

u � ΔW ,ΔL[ ], (28)
where ΔW and ΔL are the power prediction error vector of RES
stations and load buses, respectively, which are detailed by Eq. 29

ΔW � ΔW1,1, ...,ΔWw,t, ...,ΔWNW ,T[ ]
ΔL � ΔL1,1, ...,ΔLb,t, ...,ΔLNb ,T[ ] , (29)

where NW is the total number of RES stations. Nb is the total
number of load buses.

2) The eigenvectors are computed, and the coordinates of the
vertices along the direction of each eigenvector are obtained.
Zhang et al. (2022); Zhang et al. (2021) used the iterative
MVEE algorithm to obtain these coordinates, but the iteration
will significantly decelerate when the area covered by historical
samples lacks symmetry. Therefore, the iteration-free principal
component analysis algorithm is chosen to obtain the
abovementioned eigenvectors and vertices quickly and
accurately. The process is detailed below.

The historical prediction error samples of the RES stations and
load buses are denoted as matrix U in Eq. 30

U � u1, ..., us, ..., uN[ ]T. (30)
U is processed with the zero mean method as shown in Eq. 30:

~U � U − 1N ⊗ �uT � ~u1, ..., ~us, ..., ~uN[ ]T, (31)

where ~U is the version of U after the zero mean processing. �u is
the mean vector of all historical samples. ~us is the sth sample after the
zero mean processing. N is the number of historical samples.

The covariance matrix of ~U is obtained, and then, eigenvalue
decomposition on the covariance matrix is performed by Eq. 32:

S � 1
N − 1

~U
T ~U

S � QΛQT

Q � q1, ...., qh, ...., q Nb+NW( )T[ ]
Λ � diag λ1, ..., λh, ..., λ Nb+NW( )T{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (32)

where S is the covariance matrix of ~U . qh is the hth eigenvector of
S. λh is the eigenvalue corresponding to qh. Λ is a diagonal matrix
formed by all eigenvalues.

Each sample in ~U is transformed into a new coordinate system
defined by the eigenvectors as shown in Eq. 33

~vs � QT~us � ~v1,s,/, ~vh,s,/, ~v Nb+NW( )T,s[ ]T, (33)
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where ~vs is the projection point of ~us in the eigenvector coordinate
system. ~vh,s is the projection value of ~us in the direction of qh.

After all samples are projected, the coordinates of the two vertices
are determined in the direction of each eigenvector by Eq. 34

~vmin
h � min ~vh,1,/, ~vh,N{ } · eh
~vmax
h � max ~vh,1,/, ~vh,N{ } · eh{ , (34)

where ~vh min and ~vmax
h are the coordinates of the two vertices in the

direction of the hth eigenvector under the eigenvector coordinate
system. eh is a unit vector, with the hth element equal to 1.

3) All the vertices obtained above enclose the inscribed
polyhedron. Then, the scaling factor η is introduced by Eqs
35 and 36 to expand it to the circumscribed polyhedron.

min∑N
s�1

βs
        1

s.t.
~vmin
1 ,/, ~vmax

Nb+NW( )T[ ] β1, ..., βs, ..., βN[ ] � ~v1, ..., ~vs, ..., ~vN[ ]
βs � β1,s,/, β2 NW+Nb( )T,s[ ]T

⎧⎨⎩
,

(35)
η � max β1

        1,/, βN
        1{ }, (36)

where ||βs||1 is the norm-1 of βs.
The vertices of the circumscribed polyhedron under the original

coordinate system are calculated as

umin
h � ηQ~vmin

h + �u
umax
h � ηQ~vmax

h + �u
{ , (37)

where uh min and uh max are the coordinates of two vertices in the
direction of qh under the original coordinate system.

As shown in Figure 1, some coordinate values of the vertices
obtained by (37) may exceed the limits of the historical samples,
which is impossible in the actual operation. Hence, adjustment is
designed and imposed on these vertices by Eq. 38

umin ormax
h,e �

max u1,e,/, uN,e{ } umin ormax
h,e > max u1,e,/, uN,e{ }

min u1,e,/, uN,e{ } umin ormax
h,e < min u1,e,/, uN,e{ }

umin ormax
h,e otherwise

⎧⎪⎨⎪⎩ ,

(38)
where umin ormax

h,e represents the eth element of uh min or uh max.
The adjusted vertices of the circumscribed polyhedron are the

extreme scenarios of the prediction errors. They are denoted as uvtx,
which contains 2(Nb + Nw)T scenarios and shown in Eq. 39

uvtx � umin
h , umax

h

∣∣∣∣h � 1,/, Nb +NW( )T{ }
� uvtx

j

∣∣∣∣∣j � 1,/, 2 Nb +NW( )T{ } . (39)

4) The attribution of each historical sample to every extreme
scenario is analyzed.

First, the Euclidean distance between each extreme scenario in
uvtx and every historical sample is computed by Eq. 40.

ds,j � us − uvtx
j

          2, (40)

where ds,j is the Euclidean distance between the sth sample us and the
jth extreme scenario uvtxj .

Then, us is attributed to the nearest extreme scenario by Eq. 41.

j � argmin
j

ds,j

n j( ) � n j( ) + 1

⎧⎨⎩ , (41)

where the array n is a 2(Nb + Nw)-dimensional vector with all its
components initialized to 0.

Every time a sample is attributed to the jth extreme scenario, the
kth element of array n is incremented by 1. After this operation is
performed for each sample, the final n is the one that reflects the
attribution of samples to extreme scenarios.

5) The K-means algorithm is used to obtain the cluster
centers of historical samples, which is denoted by uclu.
At the same time, the proportion of each cluster is
derived and regarded as the occurrence of the
corresponding cluster center, which is shown in Eq. 42.

uclu � uclu
1 ,/, uclu

o ,/, uclu
nclu

{ }
pclu � pclu

1 ,/, pclu
o ,/, pclu

nclu
{ } , (42)

where ucluo is the oth cluster center. pclu
o is the occurrence of the oth

cluster center. nclu is the number of cluster centers, which can be
adaptively determined by the contour coefficient,
Calinski–Harabasz criterion, and so on (Balavand et al., 2018;
Yuan and Yang, 2019; Karna and Gibert, 2022).

6) uclu and uvtx are incorporated to form the improved typical
scenario set utyp by Eq. 43, whose scenario number is the value
of nsce in (8).

utyp � uvtx, uclu{ } � utyp
k

∣∣∣∣k � 1,/, nsce{ }. (43)

Subsequently, the initial probability of each typical scenario in utyp is
determined by (44).

pk0 �
n j( )
N

· ω, if utyp
k � uvtx

j

pclu
o · 1 − ω( ), if utyp

k � uclu
o

⎧⎪⎪⎨⎪⎪⎩ , (44)

where pk0 is the initial probability of u
typ
k . ω is the weight of extreme

scenarios in the typical scenario set, which is determined by the
system operators according to the actual RPS structure and expected
reliability level.

FIGURE 3
RPS structure.
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Apparently, the improved typical scenario set utyp includes both
adjusted extreme scenarios and cluster centers, so the
conservativeness is reduced.

4 Solution method

Combining Sections 2 and 3, the ITSDRO model for the co-
dispatch of energy and reserve is finally established for the RPS. The
objective function is composed of (8), (10)–(11), and the constraints
are shown as (1)–(7), (12)–(22), and (24)–(27). For a given first-
stage decision variable x, if there exists a second-stage decision
variable y that can ensure the steady operation of the RPS under all
extreme scenarios, then x is a robust solution to the RPS
dispatch problem.

The proposed two-stage tri-level model is a mixed-integer linear
programming problem, so it can be rewritten as (45).

Original problem (OP):

min
x

αTx +max
pk

∑nsce
k�1

pk min
yk

γTyk

s.t.
Ax ≥ θ
Zyk ≥ ε − Fx − Gutyp

k

EP ≥ ξ, P � p1,/, pk,/, pnsce[ ]
⎧⎪⎨⎪⎩ .

(45)

Then, the column and constraint generation algorithm is
adopted to solve the model, of which the detailed procedures are
given below.

1) (45) is decomposed into a master problem (MP) in Eq. 46 and
two subproblems (SPs) shown by Eqs 47 and 48.

MP:

min
x

αTx + λ

s.t.

Ax ≥ θ

λ≥∑nsce
k�1

pg
kγ

Tyk

Fx + Zyk ≥ ε − Gutyp
k g � 1,/, l − 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,
(46)

where λ is an auxiliary real variable. pg
k is the updated values of pk in

the gth iteration. l is the counter of iteration.
SP1:

min
yk

γTyk

s.t. Zyk ≥ ε − Fx − Gutyp
k

. (47)

SP2:

max
pk

∑nsce
k�1

pkγ
Tylk

s.t. EP ≥φ

. (48)

TABLE 1 Parameters of thermal units.

G1 G2 G3 G4 G5

Pmin/MW 50 30 50 10 10

Pmax/MW 200 80 220 80 20

Minimum up time/h 8 2 4 4 1

Minimum down time/h 8 2 4 4 1

Ramping rate/MW·h−1 60 40 60 30 10

Initial status/h 10 −3 5 −4 2

a/MBtu·(MW2h)−1 4.4 × 10−3 0.046 4 × 10−4 1 × 10−3 5 × 10−3

b/MBtu·(MWh)−1 13.29 15.47 13.51 32.63 17.7

c/MBtu·h−1 39 74.33 176.95 129.97 137.41

Fuel price/$·MBtu−1 1 1 1.4 1.4 1.4

Startup cost/$ 1,500 100 1,000 500 120

Up and down reserve price/$·MW−1 6 13 7.5 7.5 10

Up and downregulation price/$·MW−1 12 27 15 15 20

FIGURE 4
Maximum and minimum prediction errors at each hour of three
wind farms in historical data.
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2) The lower and upper bounds of the objective of OP are
denoted as LB and UB, respectively. The MP and two SPs
are iteratively solved to update the LB and UB. Whether the

difference between the LB and UB is small enough is
determined. If so, the iteration ends; otherwise, the next
iteration is run. The more specific procedures are given below.

FIGURE 5
Comparison of the typical scenario sets of the three methods. (A) Typical scenarios and the corresponding probability of IPRO, (B) typical scenarios
and the corresponding probability of CPDRO, and (C) typical scenarios and the corresponding probability of ITSDRO.

TABLE 2 Regulation parameters of the FML.

Rated
power/
MW

Maximum
upregulation

time/h

Maximum
downregulation

time/h

Maximum
upregulation
power/MW

Maximum
downregulation

power/MW

Up and
downregulation

price/$·h−1

70 6 4 14 10.5 25.3
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Step 1: UB0 is initialized to +∞ and LB0 to −∞. The counter l is
set to 1, and the threshold coefficient ξ is set to 0.01.

Step 2: The lth iteration is entered. The MP is solved to update x
and LB, shown as Eq. 49.

LBl � αTxl + λl. (49)

Step 3: SP1 is solved to update ylk and taken into SP2 to update
pl
k. Based on ylk and pl

k, UB is updated by Eq. 50

UBl � min UBl−1, αTxl +∑nsce
k�1

pl
kγ

Tylk⎛⎝ ⎞⎠. (50)

Step 4: Whether |UBl-LBl|≤ξ·UB is true or not is identified. If
true, the iteration ends and returns the current x as the final day-
ahead dispatch decision scheme; otherwise, new constraints shown
in (51) are added into the MP and run to the (l+1)th iteration:

s.t.
λ≥∑nsce

k�1
pl
kγ

Tyk

Fx + Zyk ≥ ε − Gutyp
k

⎧⎪⎪⎨⎪⎪⎩ . (51)

The flowchart of the solving algorithm is shown in Figure 2.

5 Numerical tests

5.1 Basic settings

Numerical tests are carried out on a six-bus test system, the
structure of which is shown in Figure 3. The parameters of the five
thermal units are given in Table 1. The parameters of the seven
transmission lines are given in the study by Jiang et al. (2012). Three
wind farms, namely, WF1, WF2, and WF3, are connected to bus 4,

bus 5, and bus 6, respectively. The predicted power curves of the
total wind farm output and the system load excluding the FML are
shown in Figure 3. Bus 3, bus 4, and bus 5 are load buses, peak load
values of which are 196 MW, 98 MW, and 196 MW, respectively.
The load buses are assumed to have a perfect positive correlation.
The penalty prices of wind curtailment and load shedding are 100
$/MW and 500 $/MW, respectively.

The historical prediction error data are obtained from the study
by Cai (2024). According to the historical data, the extreme power
outputs of the three wind farms are computed and shown
in Figure 4.

The FML is connected to bus 3, the regulation parameters of
which are shown in Table 2.

The numerical tests are run on an Intel core i5-13500H personal
computer with 32 GB RAM and solved using CPLEX 12.10 in
MATLAB R2020b.

5.2 Comparison between ITSDRO with the
existing RO and DRO methods

To demonstrate the performance of the ITSDRO method, the
inscribed polyhedron-based RO (IPRO) in the study by Zhang et al.
(2022) and the circumscribed polyhedron-based DRO (CPDRO) in
the study by Zhang et al. (2021) are employed for comparison. All
three methods are data-driven and need to construct the typical
scenario set based on historical prediction error samples before
formal optimization. For better presentation, only the typical
scenarios in which the initial probability is non-zero are given
in Figure 5.

Figures 4, 5 show that the typical scenarios of the three methods
are not simply located at the maximum or minimum prediction
errors of the wind farms because of the spatiotemporal correlation
between the prediction errors. However, IPRO and CPDRO directly

FIGURE 6
Day-ahead dispatch solution of the RPS by IPRO. (A) Scheduled
power and (B) unit commitment.

FIGURE 7
Day-ahead dispatch solution of the RPS by CPDRO. (A)
Scheduled power and (B) unit commitment.
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adopt the vertices of the inscribed and circumscribed polyhedra of
the MVEE as the typical scenario sets, respectively, in which some
impossible scenarios exceed the limits of the prediction errors.

Then, the dispatch solutions of the three methods are shown in
Figures 6–9. The corresponding dispatch costs of the test system
optimized by the three methods are listed in Table 3.

Figures 6–9 and Table 3 show that

1) The solutions of the three methods can cope with all the
uncertain scenarios they take into account, so they are all
sufficiently robust.

2) The cost terms of the second stage are directly affected by the
selected typical scenarios. IPRO and CPDRO only consider the
extreme scenarios, while the uncertainty set of ITSDRO

additionally contains the cluster centers. Since the re-
dispatch costs of extreme scenarios are much higher than
those of the cluster centers, the second-stage cost of ITSDRO is
lower than that of the other two methods.

3) The cost terms of the first stage are indirectly affected by the
selected typical scenarios. If only the extreme scenarios are
taken into account in the DRO, the first-stage dispatch
schemes will completely prepare for the extreme scenarios

TABLE 3 Comparison of the dispatch costs optimized by the three methods.

Cost/$ IPRO CPDRO ITSDRO

Day-ahead cost Day-ahead generation cost 1.935 × 105 1.902 × 105 1.873 × 105

Reserved capacity cost 1.498 × 104 1.416 × 104 1.240 × 104

Unit startup cost 220 220 220

Maximum real-time cost Maximum unit re-dispatch cost 7.570 × 103 1.940 × 104 9.601 × 103

Maximum wind power curtailment cost 3.562 × 104 6.023 × 104 1.380 × 103

Maximum load shedding cost 2.738 × 104 4.859 × 104 1.627 × 103

Average real-time cost Average unit re-dispatch cost — 5.310 × 103 5.342 × 103

Average wind power curtailment cost — 2.989 × 103 96.844

Average load shedding cost — 4.846 × 103 184.320

Total cost 2.791 × 105 2.178 × 105 2.055 × 105

FIGURE 8
Day-ahead dispatch solution of the RPS by ITSDRO. (A)
Scheduled power and (B) unit commitment.

FIGURE 9
Total day-ahead reserved capacity of all units. (A) Up reserved
capacity and (B) down reserved capacity.
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with very low probabilities and arrange too much reserve
capacity, as shown in Figure 9. In this case, unit
commitment schemes are also forced to be in the relatively
uneconomic region. As an example, IPRO and CPDRO start

up more units than ITSDRO in 8, 9, and 14 h, as shown in
Figures 6–8.

4) In the absence of a targeted adjusting mechanism, these
impossible scenarios of IPRO and CPDRO lead to
conservative decisions and higher operation costs. As one of
the RO methods, IPRO is more significantly affected because
its solution is aimed at addressing the worst-case scenario. As
one of the DRO methods, CPDRO is less affected because the
initial probabilities of the impossible scenarios are much
smaller than those of the other extreme scenarios.

The simulation results above are discussed below.

1) The second stage of a two-stage model is constructed to
examine whether the RPS can sufficiently dispatch the
flexible resources to cope with various scenarios including
the extreme ones. However, most existing RO and DRO
methods only consider extreme scenarios in the second
stage, forcing the day-ahead dispatch to perform targeted
preparation, which leads to redundancy in the flexible
resource allocation and an increase in dispatch costs.

2) The proposed ITSDRO designs and employs an improved
typical scenario set to reduce waste in the allocation of
flexible resources without sacrificing the ability to cope with
extreme scenarios. Therefore, the derived day-ahead
dispatch scheme becomes more economical without the
loss of robustness.

5.3 Validation of the DR of the FML

To validate the participation of the FML in the DR, two cases are
designed for comparative analysis.

Case 1: Only conventional units are regarded as flexible resources
in the second stage.

Case 2: Both conventional units and the DR of the FML participate
in the re-dispatch in the second stage.

TABLE 4 Comparison of the dispatch results of case 1 and case 2.

Case 1 Case 2

Maximum wind power curtailment/MW·h 15.39 13.80

Maximum load shedding/MW·h 3.754 2.252

Average wind power curtailment/MW·h 0.972 0.968

Average load shedding/MW·h 0.435 0.369

Day-ahead dispatch cost/$ 2.043×105 1.999×105

Re-dispatch cost/$ 5.651×103 5.623×103

Total dispatch cost/$ 2.099×105 2.055×105

FIGURE 10
Predicted load and wind power.

FIGURE 11
Wind curtailment in case 1 and case 2 under theworst scenario of
wind curtailment.

FIGURE 12
Load shedding amount in case 1 and case 2 under the worst
scenario of load shedding.
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Based on the basic information given in Section 5.1, ITSDRO
is performed to solve the two cases. The resulting dispatch costs
are shown in Table 4, along with the amount of wind power
curtailment and load shedding in the second stage.

Table 4 shows that, after the FML participates in DR projects, the
maximum and average load shedding decrease by 13.32% and
15.17%, respectively, and the maximum and average wind power
curtailment decrease by 10.33% and 0.41%, respectively. This
indicates that the RPS becomes more flexible in coping with the
power prediction error.

Figure 10 shows that the predicted wind power curve presents
the anti-peak shaving characteristics. In load peak and valley
periods, the FML can proactively decrease and increase its power
consumption to reduce load shedding and wind curtailment
amounts. From this perspective, since the DR of the FML plays
the role of the regulation resource of RPS in the second stage, the
reserved capacity in the first stage can be reduced accordingly.
Therefore, the final total dispatch cost is decreased by 2.10%.

As shown in Figures 11 and 12, the wind curtailment is avoided
and the load shedding amount is decreased even under the worst
scenario, which verifies the effectiveness of the DR of the FML.

6 Conclusion

This paper focuses on establishing the ITSDRO method, which
is a two-stage co-dispatch method of energy and reserve for the RPS
considering the DR of the FML. First, the FML is regarded as a
flexible regulation resource, and its constraints for participating in
DR projects are constructed. Then, an improved typical scenario set
generation method is proposed with the spatiotemporal correlation
between the power prediction errors considered. Based on this
typical scenario set and the DRO theory, the ITSDRO model is
formed and then solved by the column and constraint generation
algorithm. Numerical tests are designed to verify the correctness and
effectiveness of ITSDRO. According to the simulation results, some
conclusions are drawn below.

1) An impossible extreme scenario identification and adjustment
mechanism is proposed to address the feasibility issue of the
existing inscribed and circumscribed polyhedron-based
methods. Then, the extreme scenarios are united with cluster
centers of the historical prediction error samples to form an
improved typical scenario set with much lower conservativeness.

2) The two-stage ITSDRO dispatch model and corresponding
solution method are proposed to optimize the co-dispatch
strategy of energy and reserve for the RPS. The simulation
results indicate that because of the utilization of the improved
typical scenario set, the day-ahead dispatch cost can be
reduced while keeping a small amount of load shedding
and RES power curtailment.

3) The DR model of the FML is constructed and integrated
into the ITSDRO dispatch model. The simulation results
indicate that, with the proactive participation of the FML in
the DR, the amount of load shedding and RES power
curtailment is significantly decreased even under large
prediction errors. This means that the flexibility of the
RPS to cope with uncertainty is enhanced due to the DR
of the FML.
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Nomenclature

A. Indices

m Index of EAFs

i Index of units

k Index of scenarios

t Index of time

b Index of buses

w Index of RES stations

l Index of transmission lines

B. Variables

PM,u
m,t and PM,d

m,t
Upward and downward regulated power of the mth EAF,
respectively

sum,t and sdm,t Indicator of the EAF in upward and downward regulation
states, respectively

x and yk Decision vectors in the first and second stage of the
proposed DRO model, respectively

αui,t and αdi,t Variables indicating the occurrence of startup and
shutdown of unit i at time t, respectively

Ru
i,t and Rd

i,t
Upward and downward reserve capacity of unit i at time t,
respectively

Pu
i,t,k and Pd

i,t,k
Upward and downward regulated power of unit i at time t
in scenario k, respectively

Wcur
w,t,k and Lcurb,t,k Amount of curtailed power of RES station w and load

shedding of bus b at time t in scenario k, respectively

Ii,t Status indicator of unit i at time t

pk Occurrence of scenario k

C. Constants and
functions

M Total number of EAFs

T Number of time slots in 1 day

nsce Number of prediction error scenarios

NW Number of RES stations

Nb Number of load buses

N Number of historical prediction error samples

Tu
m and Td

m
Maximum duration of upward and downward power
regulation of the EAF, respectively

Cfuel
i

Fuel price of unit i

Sui and Sdi Startup and shutdown costs of unit i, respectively

Cu
i and Cd

i
Upward and downward reserve prices of unit i, respectively

Qu
i and Qd

i
Upward and downward regulation prices f unit i, respectively

Cw and Cld Penalty prices of RES curtailment and load shedding, respectively

CM,u and CM,d Subsidized prices of upward and downward regulation of
the FML, respectively

Ton
i and Toff

i
Minimum duration of the on and off statuses of unit i,
respectively

Pi,min and Pi,max

Minimum and maximum output power of unit i,
respectively

URi and DRi Maximum upward and downward ramp power of unit i,
respectively

Ru
t and Rd

t
Upward and downward reserved power requirements of
the RPS at time t, respectively

Ŵw,t and L̂b,t Predicted power of RES station w and load bus b at time t in
the base case, respectively

klb Power transfer distribution factor of bus b to line l

flmax Maximum transmission power of line l

ΔWw,t,k and ΔLb,t,k Prediction error of RES station w and bus b at time t in
scenario k

Ω Uncertainty space of the probability distribution

pk0 Initial probability of scenario k

Cop(·) and Creg(·) Objectives of the first and second stages of the proposed
DRO model, respectively

Fi(·) Linearized function of the consumed fuel and the power
output of unit i

U Matrix composed of historical prediction error samples of
the RES stations and load buses

~U Modified U after the zero mean processing

S Covariance matrix of ~U

qh hth eigenvector of S

λh Eigenvalue corresponding to qh

Λ Diagonal matrix formed by all λh

~vmin
h and ~vmax

h
Two vertices in the direction of qh under the eigenvector
coordinate system

umin
h and umax

h Two vertices in the direction of qh under the original
coordinate system

uvtx Adjusted vertices of the circumscribed polyhedron

uclu Cluster centers of historical samples

utyp Improved typical scenario set

D. Abbreviations

RPS Renewable power system

FML Fused magnesium load

EAF Electric arc furnace

RES Renewable energy source

DR Demand response

SO Stochastic optimization

RO Robust optimization

DRO Distributionally robust optimization

MVEE Minimum volume enclosing ellipsoid

ITSDRO Improved typical scenario-based DRO

IPRO Inscribed polyhedron-based RO

CPDRO Circumscribed polyhedron-based DRO
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