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In the context of the new power system, the widespread access to massive
distributed new energy sources has led to the power distribution and
consumption tasks characterized by multiple time scales, wide random
distribution, and large demand differences, resulting in unpredictable resource
peaks in the tasks computing resource demand curve. In view of this situation, a
method of forecasting and dynamic balancing of computing resource demand
for power distribution and consumption tasks based on state iteration was
proposed: firstly, the tasks computing resource demand model was
established under the analysis of the attributes and parameter demand of the
power distribution and consumption tasks scenario. Secondly, on the basis of the
short-term effectiveness prediction of the traditional Markov model, the first-
order difference of the state is used for data training to track the state fluctuation,
and the historical state and the predicted state are used for state iteration, so as to
avoid the convergence of long-term prediction. Finally, a dynamic balancing
model is established according to the time-scale characteristics of cyclical and
non-cyclical tasks, and the optimal configuration of load imbalance is achieved
through the identification and adjustment of historical data and burst data. The
simulation results show that the improved Markov model based on first-order
difference and state iteration has the short-term accuracy of the traditional
model and the long-term traceability of data fluctuations. The dynamic
balancing model can combine the characteristics of historical data and burst
data to effectively reduce the imbalance of resource demand, and show good
ability to cope with resource imbalance deviation.
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1 Introduction

The new power system is a modern power system that is efficient, flexible, and
intelligent, with new energy as the main body. While developing in the future, new
power systems are also facing some problems. The widespread access to new energy
sources such as photovoltaics and wind power that are different from traditional energy
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structures has led to the power distribution and consumption tasks
are characterized by multiple time scales, wide random distribution,
and large demand differences (Küfeoğlu et al., 2019; Infield et al.,
2020), a situation that has been led to by the widespread access to
massive distributed new energy sources. Consequently, new features
such as randomness and occasional demand for computing
resources are presented (Xiao et al., 2023; Xiao et al., 2024).
Unpredictable resource peaks in the tasks computing resource
demand curve are directly led to by the characteristics of new
elements, which affect the balanced relationship between resource
supply and tasks demand (Cao et al., 2020; Kumar et al., 2023),
making it difficult for the system to be predicted and responded to in
advance (Dong et al., 2022). To reconstruct the power distribution
and consumption task processing framework under the new power
system, it is crucial to develop an urgent prediction solution that
incorporates data mining and data reuse. Building upon this
foundation, a novel solution suitable for dynamically balancing
task differentiation can be explored, which fully promotes the
development of distribution network automation in the new
power system. (Kumar et al., 2021).

The orientation of traditional computing resource demand
forecasting is towards the deconstruction and application of
historical data. A cloud virtual machine resource hotspot
classification mechanism is established in literature (Liu et al.,
2017) to provide migration objects and targets for load
prediction and dynamic scheduling. The proposal in literature
(Wang et al., 2016) is to migrate high-load physical node tasks to
low-load physical nodes while predicting cloud virtual machine
historical data. The proposition of literature (Wang et al., 2022)
is to conduct coupling dependency analysis on timing characteristics
under multi-time scale tasks disassembly and fusion, thereby
achieving long-term resource load prediction. Subsequent
prediction based on container historical data and a large neural
network model is realized in literature (Ma, 2020), which holds
certain reference value for realizing dynamic prediction and
resource scheduling flexibility. However, with the widespread
access to massive new energy sources, traditional prediction
solutions that rely solely on historical data are difficult to
support, knowledge-driven ideas that take into account historical
data mining and prediction data reuse have become an important
driving force to improve the accuracy of demand forecasting.

The orientation of research on computing resource demand
balance is towards the analysis and modeling of tasks characteristics.
In terms of tasks characteristics, the feasibility of dynamically
allocating processing units based on tasks characteristics is
discussed in literature (Baital et al., 2020). The traditional first-
come, first-served queue scheduling is changed based on tasks time
characteristics in literature (Huang et al., 2018). The coupling of
tasks characteristics for cluster division is considered in literature
(Abbasi et al., 2021), where an affinity-based tasks scheduling
algorithm is proposed. However, the identification of tasks
characteristics is lacking in literature (Huang et al., 2018; Baital
et al., 2020; Abbasi et al., 2021), resulting in the balanced solution
not reflecting the differentiated processing process. On the topic of
tasks computing resource demand modeling, tasks sequence
demand is modeled based on cyclicity and similarity in literature
(Alam et al., 2018). An assessment and modeling of computing
resource demand for the tasks of smart distribution stations is

conducted in literature (Cen et al., 2022). A deployment plan
after resource assessment based on tasks characteristics and
logical composition is established in literature (Zhou et al., 2022),
based on (Cen et al., 2022). Although the proposal to model tasks
needs is made in literature (Alam et al., 2018; Cen et al., 2022; Zhou
et al., 2022), their solutions still remain at the passive assessment
level and lack differentiated solution construction driven by
different task perspectives.

In response to the challenges of predicting and balancing the
demand curve for computing resources in power distribution and
consumption tasks, a method for predicting and dynamically
balancing the demand for computing resources in power
distribution and consumption tasks based on state iteration is
proposed in this paper. Firstly, this paper innovatively constructs
a unified computing resource demand model based on the scenario
attributes and parameter requirements of power distribution and
consumption tasks. Secondly, this paper constructs a first-order
difference model through state iteration based on the traditional
Markov model. It creatively establishes a connection between
historical states and predicted states, enabling continuous updates
for state sequences. Finally, a dynamic balancing model is
established based on the time scale characteristics of cyclical and
non-cyclical tasks, and the optimal configuration of load imbalance
is achieved by identifying and adjusting historical data and burst
data. This paper proposes a coherent set of prediction and balancing
solutions, with the goal of providing analytical tools and a
foundation for equitable load balancing of computing resources
in the power distribution and consumption tasks.

2 Computing resource demand model
and characteristic analysis of power
distribution and consumption tasks

2.1 Key issues in building computing
resource demand model

Against the background of the new energy wave and
digitalization wave in the power system, the demand for
computing resource in the power distribution and consumption
tasks has always maintained a high growth trend. However, there is
often a certain lag in the configuration of terminal computing
resource, which creates bottleneck constraint between computing
resource demand and configuration. At the same time, due to the
differences in parameter attributes of the power distribution and
consumption tasks, its computing resource demand are bound to
show “resource peaks” and “resource troughs” in different time
periods. Therefore, it is very necessary to establish a reasonable
computing resource demand model. It can not only provide
mathematical model for improving the supply and demand of
computing resource, but also meet the needs for flexible
adjustment of resource allocation.

Drawing upon the aforementioned analysis, this chapter
initiates an examination of the diverse scenario types within the
power distribution and consumption tasks. Subsequently, it delves
into the intricacies of the power distribution and consumption tasks’
characteristics and underscores the imperative of constructing a
demand model for computing resources. Finally, from the vantage
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point of time, resources, and complexity, the calculation of the
resource demand model for the power distribution and
consumption tasks occurs across three dimensions, thereby
establishing the groundwork for subsequent state prediction. The
problem-solving process is depicted in Figure 1.

2.2 Power distribution and consumption
tasks scenarios and types

The provision of a variety of services to users within the scope of
the distribution network, including power supply, power quality,
comprehensive energy, energy efficiency management, and market
transactions, is referred to as the power distribution and
consumption tasks (Chen et al., 2016). The connection of
massive new energy sources such as photovoltaics, wind turbines,
energy storage, and electric vehicles to the distribution network has
been facilitated by the advancement of new power system
transformation (Cheng, 2022). The power distribution and
consumption tasks is characterized by the explosive growth of
heterogeneous multi-source tasks data, resulting in large volume
and variety. The typical power distribution and consumption tasks
can currently be divided into two dimensions: data sensing and data

applications in the entire chain utilization of power information.
Data sensing, which includes online monitoring, states sensing, etc.,
functions to collect information from users and equipment in
distribution network scenarios. Data applications, which include
metering operation andmaintenance, power trading, etc., can realize
functions such as market transactions and rapid control.

2.3 Analysis of power distribution and
consumption tasks characteristics

The power distribution and consumption tasks, which serves as
an effective carrier of system informatization, automation, and
intelligent upgrading and transformation, faces challenges due to
its complex task characteristics, particularly in facilitating the
development of distribution network interconnection. These
characteristics include multiple time scales, wide random
distribution, large demand differences, and parameters that are
difficult to define. Owing to these characteristics, the computing
resource demand curve, which is comprehensively generated by
multiple types of power distribution and consumption tasks, will
exhibit random and sporadic resource demand peaks. In order to
proactively respond to this imbalanced state, it is urgently required
to construct a multi-dimensional and fine-grained computing
resource demand model from the perspective of power
distribution and consumption task characteristics is
urgently required.

2.4 Computing resource demand model for
power distribution and consumption tasks

This section establishes a computing resource demand model
based on the analysis of power distribution and consumption task
characteristics. The model is expanded to include three dimensions:
time, resources, and complexity: (1) Time parameters: tasks that
recur at certain time intervals and tasks that do not recur at time
intervals are included in power distribution and consumption tasks.
The full life cycle process of these tasks encompasses arrival time,
execution time, end time, and delay cycle. (2) Resource parameters:
A wide range of resource demand is presented by the power
distribution and consumption tasks, due to the diversification of
service objects and the differentiation of processing data. (3)
Complexity parameters: The degree of change in computing
resource demand is referred to as the complexity of power
distribution and consumption tasks, and its parameters are
described by tasks sensitivity and unit scale. The task interval
response time demand is referred to as its sensitivity, which is a
key parameter for the dynamic and balanced deployment of tasks;
The unit scale serves as a dimension for classifying task types and
task needs, and is responsible for the differentiated expression of
power distribution and consumption tasks.

On the basis of the definition of three types of parameter
dimensions, the power distribution and consumption tasks is
described in this section as a cyclical tasks model and a non-
cyclical tasks model: The cyclical tasks is characterized by its
fixed sampling cycle. In the power distribution scenario, to
ensure the balance of “two-way power flow”, the output of

FIGURE 1
Flow chart of computing resource demand and characteristics
analysis of power distribution and consumption tasks.
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distributed new energy sources needs to be quickly adjusted by the
distribution network control system to deal with disturbances. These
operations typically requires fixed sampling at the millisecond-level.
To ensure the optimal match between electricity prices in the
electricity market and real-time electricity information, rapid
processing is required by the electricity market. Transaction data
should be allocated reasonably to supply and demand, and this
allocation usually requires fixed sampling at the second-level. In
combination with parameter definition, the tasks model with a fixed
sampling cycle that has been built is described as follows:

PEms
cal � ∑i∑α1

PEcal
i ε t − α1Ti( ) − ε t − α1Ti − τi( )[ ]

PEs
cal � ∑j∑α2

PEcal
j ε t − α2Tj( ) − ε t − α2Tj − τj( )[ ]{ (1)

In the formula: PEms
cal, PE

s
cal represent the total computing

resource demand curves of millisecond-level and second-level
cyclical tasks respectively. i, j represent the number of
millisecond-level and second-level cyclical tasks respectively.
α1, α2 respectively represent the total number of steps in the
time segment for millisecond-level cyclical tasks i and second-
level cyclical tasks j . PEcal

i , PEcal
j respectively represent the

computing resource demand of millisecond-level cyclical tasks
i and second-level cyclical tasks j . Ti, Tj respectively represent
the execution cycle of millisecond-level cyclical tasks i and
second-level cyclical tasks j . τi, τj respectively represent the
execution time of millisecond-level cyclical tasks i and second-
level cyclical tasks j.

Non-cyclical tasks are characterised by their lack of a fixed
sampling cycle and their sudden nature. They often involve
scenarios such as load forecasting for distribution stations and
fault protection actions. The arrival time of such tasks is
uncertain and the execution time is relatively long. Combined
with the parameter definition, The non-cyclical tasks model
constructed in this article using arrive time tar, execution time τk
and completion time tddl is described as follows:

ACk � tar, τk, tddl, AC
cal
k( ) (2)

In the formula: ACk is used to describe the non-cyclical tasks.
ACcal

k is used to describe the computing resource demand of non-
cyclical tasks k. Based on the construction of cyclical tasks and non-
cyclical tasks models, a segment division model is established for
subsequent resource demand forecasting and dynamic balancing:

Scal � PEms
cal + PEs

cal + ∑kAC
cal
k

Savecal �
∫
t
Scal

t

⎧⎪⎪⎨⎪⎪⎩ (3)

In the formula: Scal represents the multi-tasks
comprehensive computing resource demand curve. Savecal

represents the average computing resource demand. For the
division of the multi-tasks comprehensive demand model into
segments and the realization of the resource demand prediction,
the division boundary between the resource imbalance
decreasing segment and the resource imbalance increasing
segment is defined by the change amount of the standard
deviation of the computing resource demand and the average
computing resource demand. Thus, the division judgment
mechanism is thus defined:

ηba �
∑ΔtR

diff
S Scal − Savecal( )2√

Δηba �
∑Δt Scal − Savecal( )2√

−
∑Δt−1 Scal − Savecal( )2√

Mcond � 1,Δηba <Δηthreba

2,Δηba ≥Δηthreba

{

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(4)

In the formula: ηba represents the standard deviation between
the computing resource demand and the average computing
resource demand in Δt . Rdiff

S represents the proportion of each
value of the computing resource demand curve in Δt. Δηba
represents the change in the standard deviation of computing
resource demand and average computing resource demand
during Δt . Δηthreba represents the boundary threshold that divides
the resource imbalance decreasing segment and the resource
imbalance increasing segment. Mcond represents the resource
imbalance state matrix. Mcond � 1, 2 respectively represent the
decreasing resource imbalance segment and the increasing
resource imbalance segment.

3 State iterative prediction model and
dynamic load balancing model

3.1 Key issues in state iterative prediction
model and dynamic load balancing model

Building upon the computing resource demandmodel for power
distribution and consumption tasks, this chapter introduces an
improved Markov model based on first-order differences,
following the segment division framework. By incorporating first-
order differences and state iteration, this approach addresses the
limitations of traditional prediction models, such as insufficient
posteriority and stochasticity. Furthermore, a dynamic balancing
model is developed for increasing resource imbalance segment,
leveraging predictive insights. This model effectively tackles the
imbalance in computing resource consumption by differentially
adjusting cyclical and non-cyclical tasks.

3.2 Resource demand states prediction
model of power distribution and
consumption tasks

To predict occasional peaks in computing resource demand, the
computing resource demand curve of the power distribution and
consumption tasks can be statistically constructed into a trendy and
random state sequence from a statistical perspective. The Markov
chain can be utilized as the applicable prediction model for the
nature of this sequence. The characteristics of the traditional
Markov prediction model are analysed in this chapter, and an
improved Markov model based on first-order difference and
sequence iterative update is proposed to ensure the accuracy and
effectiveness of resource demand states prediction for the power
distribution and consumption tasks.

3.2.1 Traditional Markov prediction model
The Markov prediction model is a probabilistic prediction

method about the occurrence of an event. It predicts the states of
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the event at various times in the future based on the current states of
the event. In each step of the Markov prediction model, the system
can realize mutual migration between states according to the
probability distribution of state transitions. This section provides
an overview of the steps included in the traditional Markov
prediction model. Suppose a certain system state sequence:

X � x1, x2,/xn{ } (5)

The Markov prediction model emphasizes that the predicted
state is only related to the previous state, so the transition probability
between any states can be obtained based on this principle, that is,
the one-step state transition matrix can be obtained:

P1 �
p11 p12 / p1n

p21 p22 / p2n

..

. ..
.

1 ..
.

pn1 pn2 / pnn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6)

According to the current state xn of the state sequence and the
one-step state transition matrix, the next state P1 can be predicted:

xn+1 � xnP
1 (7)

Based on this, the prediction of the next stage of state can be
obtained. According to the traditional Markov prediction model, the
subsequent prediction is described by the k-step state
transition matrix.

xn+k � xnP
k � x1P

n+k (8)
The basic steps of the traditional Markov prediction model can

be obtained from comprehensive formulas (5-8). Certain limitations
are inherent in the traditional Markov model. When the curve
change rate experiences sudden changes and the numerical value
undergoes violent fluctuations, the complex changes that occur in
the prediction process cannot be handled by a single state transition
matrix. The traditional Markov model, which predicts based solely
on the current state, is directly led to an inability to have aftereffects.
The state value of the model will pass through the same state interval
multiple times, causing the model to enter a stationary distribution
and rendering it incapable of making effective predictions. In other
words, the convergence of subsequent prediction data is
excessively strong.

3.2.2 Improved Markov model based on first order
difference and sequence iterative update

As noted in section 3.2.1, the traditional Markov model, on one
hand, exhibits poor sensitivity to rate mutations and data
fluctuations, and is incapable of handling complex changes that
occur in the prediction process. On the other hand, its data training
is based solely on historical data and lacks the reuse of prediction
data, limiting the number of steps that can be accurately predicted to
three to five steps. This directly results in the state prediction falling
into a stationary distribution. In light of the shortcomings of the
traditional Markov model, the proposal in this section is to perform
first-order difference processing on the state sequence based on the
accurate prediction in the previous stage of the traditional Markov
model and update the prediction data to the original sequence for
iteration. The first-order difference value is able to reflect not only of

reflecting data fluctuations, but also of reflecting the changes in the
sequence, thereby preventing the sequence prediction from
developing to extremes. The scheme is depicted in Figure 2.

As can be seen from Figure 2, the improvedMarkovmodel based
on first-order difference and sequence iterative update includes
three steps.

(1) First, the numerical sequence of power distribution and
consumption tasks resource demand is constructed as:

ηba X( ) � ηba x1( ), ηba x2( ),/ηba xn( ){ } (9)

(2) Then perform first-order difference processing on the
numerical sequence of power distribution and
consumption tasks resource demand, and combined with
Equation 10:

Δηba X( ) � Δηba x1( ),Δηba x2( ),/Δηba xn−1( ){ } (10)

FIGURE 2
Improved markov prediction flowchart based on first-order
differencing and iterative sequence updating.

TABLE 1 State transfer probability matrix.

Transfer states Total

Mcond � 1 Mcond � 2

Current states Mcond � 1 p11

P1

p12

P1
1

Mcond � 2 p21

P2

p22

P2
1
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According to the resource imbalance state matrix and Equation
10, the one-step state transition matrix can be obtained by Table 1.

In the table: p11, p12 respectively represent the number of
transitions from state Mcond � 1 to state Mcond � 1,Mcond � 2.
p21, p22 respectively represent the number of transitions from
state Mcond � 2 to state Mcond � 1,Mcond � 2 . P1, P2 respectively
represent the number of each state in the resource imbalance state
matrix Mcond. In order to facilitate the calculation of subsequent
state transition matrices, the initial value of the current unbalanced
state Δηba(xn) is described by matrix Δηba(x(n)), where Δηba(x(n))
is a 1 × 2 boolean matrix, as follows:

Δηba x n( )( ) � 1, 0( ),Mcond Δηba xn( )( ) � 1
Δηba x n( )( ) � 0, 1( ),Mcond Δηba xn( )( ) � 2

{ (11)

In the formula: Δηba(x(n)) � (1, 0),Δηba(x(n)) � (0, 1)
respectively indicate that the current states is a decreasing
resource imbalance segment or a increasing resource imbalance
segment. According to the one-step state transition matrix P1

cond and
the current imbalance state Δηba(x(n)) obtained in Table 1, the next
stage state prediction value Δηba(xn) can be calculated:

Δηba xn+1( ) � Δηba x n( )( )P1
cond (12)

After the state transition prediction calculation, Δηba(xn+1) is a
non-Boolean matrix. For subsequent calculations, Δηba(xn+1) needs
to be converted into a 1 × 2 Boolean matrix:

Δηba x n+1( )( ) � 1, 0( ), max Δηba xn+1( )( ) � Δηba xn+1( ) 1( )
Δηba x n+1( )( ) � 0, 1( ), max Δηba xn+1( )( ) � Δηba xn+1( ) 2( ){ (13)

According to Eq. 13, the predicted state probability can be
equivalent to the segment in which the current predicted state is
in resource imbalance.

(3) Finally, the predicted state is added to the original state
sequence to form a new state sequence. According to the
one-step state transition matrix P2

cond updated in Table 1 and
equations (11-13), a continuous iterative prediction of the
power distribution and consumption tasks resource demand
state is formed:

Δηba xn+2( ) � Δηba x n+1( )( )P2
cond

..

.

Δηba xn+k( ) � Δηba x n+k−1( )( )Pk
cond

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

In the formula: Δηba(xn+k) represents the predicted state at step
k. Δηba(x(n+k−1)) represents the Boolean matrix at step k-1. Pk

cond

represents the one-step state transition matrix after k updates.
Eventually, the number of steps accurately predicted by the

traditional Markov front stage covers the iterative prediction
sequence. In this case, accurate coverage is achieved in 3 steps.
The improved Markov prediction, which is based on first-order
difference and iterative sequence updating, combines the short-term
accurate prediction characteristics of traditional models with the
data-sensitive identification characteristics of existing models.
Concurrently, the convergence of the traditional k-step state
transition matrix in prediction is overcome by the addition of
state iterative updates and the iteration based on a state
transition matrix.

3.3 Dynamic load balancing model of power
distribution and consumption tasks

Based on the prediction of computing resource demand states of
power distribution and consumption tasks, reducing the peak
demand for resource is an urgent issue that needs to be solved in
the next step. This section considers establishing a load balancing
model for the increasing resource imbalance segment. On the one
hand, based on the prediction of the increasing resource imbalance
segment, a dynamic balancing model for cyclical tasks based on
historical data can be established; On the other hand, based on the
burst characteristics of non-cyclical tasks, a non-cyclical task
dynamic balancing model considering current data is established.

3.3.1 Cyclical tasks dynamic balancing model
The unbalanced increasing segment of the resource curve is

attributed to the overlap of cyclical tasks, resulting in a significant
gap between the resource demand curve and the average resource
demand in that time cycle. In order to ensure the optimal balance of
resource demand, this section combines the characteristics of
cyclical tasks with fixed-interval sampling, and performs iterative
updates for cyclical tasks to minimize resource imbalance based on
the principle of peaking shifting. Despite the different time scales of
millisecond-level cyclical tasks and second-level cyclical tasks, the
adjustment ideas and principles are unified. The adjustment of
second-level cyclical tasks is taken as an example for analysis in
this context. The process is depicted in Figure 3.

As can be seen from Figure 3, this section divides the adjustment
of second-level cyclical tasks into six steps:

(1) The first step is to define the first time point with the lowest
resource demand of all second-level cyclical tasks in the
increasing resource imbalance segment as ts 1

low.
(2) The second step is sort all second-level cyclical tasks in the

increasing resource imbalance segment according to resource
demand, defined as PErank

j � PEcal max
j ,/, PEcal min

j{ }.
(3) The third step is to move the second-level cyclical task

PEcal max
j to time ts 1

low and start execution. Cyclical tasks
with peaking shifting need to meet the cycle response
time limit

a. When ts 1
low is less than the cyclical response time of the task:

PEs 1
cal � ∑

j
∑

α2
PEcal max

j ε t − ts 1
low − α2Tj( ) − ε t − ts 1

low − α2Tj − τj( )[ ]
(15)

In the formula: PEs 1
cal represents the total resource demand of all

second-level cyclical tasks after the first peaking shifting.
b.When ts 1

low is greater than the cyclical response time of the task,
the latest response time in each cycle is used as the target point for
peaking shifting:

PEs 1
cal � ∑

j
∑

α2
PEcal max

j ε t − tM�2 − Tj − τj( ) − α2Tj[ ]{
−ε t − tM�2 − Tj − τj( ) − α2Tj − τj[ ]} (16)

In the formula: tM�2 represents the starting point of the resource
imbalance increasing segment.
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(4) The fourth step involves redefining the first time point with
the lowest resource demand, following the procedure outlined
in step (1) and utilizing Eqs 15 and 16. Following this logic,
the minimum resource demand time point sequence ts m

low can
be obtained one after another.

(5) The fifth step involves performing themth peaking shifting, as
outlined in step (3), based on the resource demand time point
sequence ts m

low .

PEs m
cal � ∑

j
∑

α2
PEcal

j ε t − ts m
low − α2Tj( ) − ε t − ts m

low − α2Tj − τj( )[ ]
(17)

In the formula: PEs m
cal represents the total computing resource

demand curve of second-level cyclical tasks after adjustment in the
mth step.

(6) The sixth step is to define minimizing the imbalance degree as
the objective optimization function and corresponding
constraints:

min ηsba � ∑ωs
t PEs m

cal − PEs ave
cal( )2 (18)

s.t.

C1: max PEs m
cal( )≤Ccal

C2: ts m
low � ts m

low , ts m
low ≤ α2Tj

Tj − τj, ts m
low > α2Tj

{ (19)

In the formula: ηsba represents the sum of squares of the
difference between the computing resource demand of all
second-level cyclical tasks in the segment and the average
computing resource demand. ωs

t represents the time proportion
of each resource value. PEs ave

cal represents the average computing
resource demand of all second-level cyclical tasks in the segment.
Constraint C1 means that the maximum total computing resource
demand of the second-level cyclical tasks after the mth step peaking
shifting adjustment must not exceed the resource supply amount
Ccal; Constraint C2 means that peaking shifting must ensure that
cyclical tasks are sampled within the response time of each cycle.

Determine whether the iteration meets the termination
condition. If so, terminate it. If not, return to step (4). In the
same way, the peaking shifting processing and parameter
expression of millisecond-level cyclical tasks are similar to the
second-level cyclical tasks.

3.3.2 Non-cyclical tasks dynamic balancing model
The previous dynamic balancing model of cyclical tasks

based on historical data for state prediction has effectively
reduced resource imbalance. However, due to the burst
characteristics of non-cyclical tasks, the balance of the
original leveling model will be broken when such tasks
moves. To address this issue, this section initially
distinguishes the response cycles of cyclical tasks during the
non-cyclical tasks execution time. Subsequently, it performs
differential leveling based on the results of this
differentiation. The specific diagram is depicted in Figure 4:

As can be seen from Figure 4, the main principle of the non-
cyclical tasks dynamic balancing model is to avoid cyclical tasks
stagnation during its execution time: on one hand, for short-
response cyclical tasks, partial avoidance can be achieved by
leveraging the characteristics of their short cycle response time.
on the other hand, for long-response cyclical tasks, all non-cyclical
tasks can be avoided based on the characteristics of long cycle
response time. According to this idea, this model uses the short
response cyclical tasks back-moving time ΔTbm

d and the long
response cyclical tasks back-moving time ΔTbm

l as decision
variables to optimize the non-cyclical tasks segment to minimize
the load imbalance. The specific model is as follows.

To implement this idea, the adjustable cyclical step waveform
during the non-cyclical tasks time is shifted backward:

ΔPEd AC( )
cal � PEcal

p ε t − α3Tp − ΔTbm
d( ) − ε t − α3Tp − ΔTbm

d − τp( )[ ]
ΔPEl AC( )

cal � PEcal
q ε t − α4Tq − ΔTbm

l( ) − ε t − α4Tq − ΔTbm
l − τq( )[ ]⎧⎨⎩

(20)
In the formula: ΔPEd(AC)

cal ,ΔPEl(AC)
cal respectively represent the

expressions under the final step waveform adjustment of short
response cyclical tasks and long response cyclical tasks.
PEcal

p , PEcal
q respectively represent the computing resource

demand of short response cyclical task p and long response
cyclical task q. The meaning of parameters α3, Tp, τp and
α4, Tq, τq is consistent with the previous ones, indicating the
number of steps, execution cycle and execution time of short
response cyclical tasks and long response cyclical tasks
respectively. Reference formula (18) defines minimizing load
imbalance as the objective optimization function and
corresponding constraints:

FIGURE 3
Schematic diagram of cyclical task dynamic balancing.
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ACcal � ACcal
k ε t − tar( ) − ε t − tar − τk( )[ ]

PEd l
cal � ΔPEd AC( )

cal + ΔPEl AC( )
cal + ACcal

+∑PEd ¬AC( )
cal +∑PEl ¬AC( )

cal

min ηd l
ba � ∑ωd l

t PEd l
cal − PEd l ave

cal( )2
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (21)

s.t.

C1: max PEd l
cal( )≤Ccal

C2:
ΔTbm

d ≤ τp
ΔTbm

l ≤ τq
{

C3:
ΔTbm

d + α3Tp ≤ tendM�2 − τp
ΔTbm

l + α4Tq ≤ tendM�2 − τq
{

(22)

In the formula: ACcal represents the computing resource demand
curve of non-cyclical tasks. PEd l

cal represents the total computing
resource demand curve in the segment after the adjustment of the
non-cyclical tasks dynamic balancing model. PEd(¬AC)

cal and PEl(¬AC)
cal

respectively represent the computing resource demand curves of the
unadjusted parts of the short response cyclical tasks and long response
cyclical tasks. ωd l

t represents the time proportion of each resource value

after adjustment of the non-cyclical tasks dynamic balancing model.
PEd l ave

cal represents the average computing resource demand after
adjustment of the non-cyclical tasks dynamic balancing model.
Constraint C1 indicates that the adjusted maximum total computing
resource demand must not exceed resource supply Ccal. Constraint C2

means that the backward movement time does not exceed the execution
time of the cyclical tasks. Constraint C3 means that cyclical tasks cannot
cross the current segment when avoiding non-cyclical tasks.

4 Simulation analysis

4.1 Typical scene construction

The technology for new energy sources to bewidely connected to the
distribution network and participate in power market regulation is
becoming increasingly mature, the power distribution and
consumption tasks exhibit both cyclical and non-cyclical
characteristics. Therefore, this paper takes the participation of

FIGURE 4
Schematic diagram of non-cyclical task dynamic balancing.

FIGURE 5
Typical scenarios of distributed photovoltaic and distributed wind power generation participation in two-way regulation of electricity market.
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distributed photovoltaics and distributed wind power generation in
response to the two-way adjustment of the power market as the
research scenario. The specific tasks included in the scenario are
shown in Figure 5.

It can be seen from Figure 5 that the distributed photovoltaics and
distributed wind power station area mainly undertakes millisecond-level
cyclical tasks. The power market side mainly undertakes second-level
cyclical tasks. This article defines computing resource capacity as 40MB.
The execution time, cycle and computing resource demand of each tasks
in Figure 5 are defined, as shown in Table 2 below:

4.2 Analysis of power distribution and
consumption tasks resource demand states
prediction results

Resource states prediction requires a large amount of data for
training. This section selects 0–300s as a sample of the improved

Markov prediction model for first-order difference and sequence
iterative update. And combine the tasks parameters in the typical
scenario construction in section 4.1 to predict the resource demand
states within the next 20 s. The predicted states results are shown
in Figure 6.

It can be seen from Figure 6 that the state prediction of the
improved Markov prediction model is basically consistent with the
actual resource demand imbalance state. Among them: the
prediction accuracy of the first 10 steps of short-term prediction
is nearly 100%; the state changes of long-term prediction are also
basically consistent with reality. At the same time, it can be seen
from Figure 6 that the traditional Markov prediction model
converges after the three-step transition, losing the effectiveness
and feasibility of prediction. The simulation results prove that the
improved Markov model based on first-order difference and
sequence iterative update proposed in this article has the short-
term accuracy of the traditional model and the long-term
traceability of data fluctuations.

TABLE 2 Cyclical task parameters.

Millisecond cyclical tasks name (PV) Execution time (ms) Execution cycle (ms) Computing resource demand (MB)

Load data collection 20 100 1

load control 20 800 2

Millisecond cyclical tasks name (Wind) Execution time (ms) Execution cycle (ms) Computing resource demand (MB)

Wind speed and direction data collection 50 500 1

Fan orientation adjustment 10 800 1

Blade angle adjustment 10 800 1

Fan control 10 1,000 1

monitoring of wind turbines 100 1,000 2

Millisecond cyclical tasks name (General) Execution time (ms) Execution cycle (ms) Computing resource demand (MB)

Electrical data acquisition 10 50 1

Switch data acquisition 10 50 1

Calculation of electrical parameters 50 200 3

Data filtering 50 200 3

Energy control 100 500 2

Off-grid control 20 600 2

Cutting machine load shedding control 20 500 2

Second cyclical tasks name Execution time(s) Execution cycle(s) Computing resource demand (MB)

Regional electricity consumption query 0.2 1 1

Regional load object awareness 0.2 1 1

Identification of remaining Internet access paths 0.2 1 1

Real-time electricity price monitoring 0.25 2 2

Regional participant quotation and volume monitoring 0.5 3 2

Forward market risk monitoring 1 5 3

Market clearing and settlement 1 5 2

Bilateral optimization of regional markets 2 5 4
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FIGURE 6
Comparison chart of resource imbalance predictions.

FIGURE 7
Comparison chart of cyclical task dynamic balancing. (A) Second cyclical tasks. (B) Millisecond cyclical tasks. (C) Comprehensive cyclical tasks.

TABLE 3 Load imbalance numerical table before and after dynamic balancing (cyclical category).

Load imbalance

Second cyclical tasks Millisecond cyclical tasks Comprehensive cyclical tasks

Pre-balancing 3.64 15.45 22.21

Post-balancing 0.24 2.55 2.85
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4.3 Analysis of results of cyclical tasks
dynamic balancing model

Analyze the tasks resource demand state prediction waveform in
section 4.2, and perform dynamic balancing of cyclical tasks based
on historical data for the increasing resource imbalance segment in

the prediction state. Here, the typical resource imbalance increasing
segment 315–316s is analyzed. The waveform analysis indicators
include the number of wave peaks, the highest peak difference and
the stationarity: (1) The resource peak is defined as a significant
protrusion in the waveform; (2) The highest peak difference is
defined as the maximum resource drop at the peak before and
after adjustment; (3) The stationarity is defined as the trend of
resource fluctuations. The simulation of the adjusted second-level
cyclical tasks, millisecond-level cyclical tasks and comprehensive
cyclical tasks are as follows, as shown in Figure 7 and Table 3.

It can be seen from Figure 7 that: the number of resource peaks
after adjustment for millisecond-level cyclical tasks and
comprehensive cyclical tasks dropped from 6 to 3; The highest
peak difference of the three types of demand curves has a significant
reduction effect, among which the highest peak difference of
comprehensive cyclical tasks is 16MB, which proves the
applicability of the dynamic balancing model; the stationarity of
the three types of demand curves after adjustment is more stable
than before adjustment, and the data falling points are more
concentrated near the demand mean. It can be seen from
Table 3 that the resource imbalance and load imbalance of
second-level cyclical tasks, millisecond-level cyclical tasks and
comprehensive cyclical tasks are all reduced by one order
of magnitude.

Therefore, it can be proved that the cyclical tasks dynamic
balancing model can fully balance the resource peaks and
troughs in the forecast state, and can effectively reduce the
imbalance of resource demand, thereby achieving a smooth curve.

4.4 Analysis of results of non-cyclical tasks
dynamic balancing model

This section is designed to add non-cyclical tasks station load
prediction in the typical resource imbalance increasing segment
315–316s in section 4.3 to verify the feasibility of the non-cyclical
tasks dynamic balancing model considering current data. The
parameter description of the station load forecasting task is
shown in Table 4.

In order to achieve partial avoidance of short response cyclical
tasks and complete avoidance of long response cyclical tasks, the
comprehensive constraint (22) analyzes the cyclical tasks that
require adjustment during the non-cyclical tasks cycle and their
back-shifting time, as shown in Table 5.

According to the adjustable cyclical tasks and the corresponding
back-shifting time in Table 5, a simulation analysis is conducted on
the dynamic balancing model including non-cyclical tasks cycle, as
shown in Figure 8 and Table 6.

It can be seen from Figure 8: During the non-cyclical tasks cycle
of 315.5–315.8s, the number of resource peaks before and after
adjustment is significantly reduced; the highest peak difference in
the segment was 5MB, which proves that leveling can completely
avoid the original peak point in burst scenarios. Although the leveled
curve after the segment has higher resource demand than before due
to the backward shift of cyclical tasks, the data fluctuation trend
ensures the data placement through the vertical increase and
decrease of resources inside and outside the segment. It is more
stable and meets the demand of minimizing the imbalance degree of

TABLE 4 Task parameters for load forecasting in the station area.

Station load forecasting

Arrive
time/s

Execution
time/s

End
time/s

Computing
resource

demand/MB

315.5 0.3 315.8 5

TABLE 5 Adjustable cyclical electric task setback timeframe during off-
cycle electric tasks cycle.

The adjustable cyclical tasks Back-shifting time/s

Electrical data acquisition 315.8–315.83

Switch data acquisition 315.8–315.83

Load data collection 315.8–315.86

Calculation of electrical parameters 315.8–315.85

Energy control 315.8–315.9

Cutting machine load shedding control 315.8–315.98

Regional electricity consumption query 315.8

FIGURE 8
Comparison chart of non-cyclical task dynamic balancing.

TABLE 6 Load imbalance numerical table before and after dynamic
balancing (non-cyclical category).

Load imbalance

Pre-balancing 6.85

Post-balancing 3.56
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the model. It can be seen from Table 6 that the resource demand
imbalance dropped from 6.850 to 3.560 after dynamic balancing of
non-cyclical tasks.

Therefore, it can be proved that the non-cyclical tasks, dynamic
balancing model can make full use of current data to cope with the
deviation of resource imbalance in emergency scenarios and achieve
a stable demand curve.

4.5 Adaptability analysis of dynamic
balancing model

4.5.1 Adaptability analysis between
different segments

In order to further verify the applicable scope and influencing
factors of the dynamic balance model, the adaptive analysis of the
application of the dynamic balancing model in the resource
imbalance decreasing segment is carried out. In order to facilitate
the adaptability analysis between different scenarios in the following,
this section only considers the role of photovoltaic scenarios, and
selects the resource imbalance decreasing segment 316–317s as the
research object, as shown in Figure 9 and Table 7.

It can be seen from Figure 9 that the number of peaks in this
decreasing segment has dropped significantly after being adjusted by

FIGURE 9
Comparison chart of low segment dynamic balancing.

FIGURE 10
Comparison chart of change amount and change rate of computing resource demand in the two segments.

TABLE 7 Load imbalance numerical table before and after dynamic
balancing (316–317s).

Load imbalance

Pre-balancing 18.83

Post-balancing 3.06
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the dynamic balancing model, with the highest peak difference
reaching 16MB, and the adjusted computing resource demand
data points are more concentrated near the average demand line.
It can be seen from Table 7 that the resource imbalance degree
dropped by nearly 6 times, which is 10 times smaller than the
previous increase in resource imbalance. Based on the above results,
it can be seen that the dynamic balancing model is universally
applicable to both the increasing and decreasing segments of
resource imbalance.

On the basis of the adjusted resource imbalance decreasing
segment, what factors will cause differences in dynamic balancing
effects and the pros and cons brought by these differences will
continue to be analyzed. Here, a simulation analysis is conducted on
the change amount and change rate of computing resource demand
in the two segments, as shown in Figure 10.

It can be seen from Figure 10: In terms of the change in
computing resource demand, the reduction in computing
resource demand in the two segments is basically synchronized.
However, in terms of the increase, whether it is the horizontal time
width or the vertical numerical scale, the segment where resource
imbalance decreases are significantly higher than the segment where
resource imbalance increases. At the same time, in terms of the
change rate of computing resource demand, the fluctuation in the
decreasing resource imbalance segment is more obvious than that in
the increasing resource imbalance segment. Similarly, the change
rate of increasing computing resources is significantly greater than
that in the increasing resource imbalance segment.

Based on the above results, the composition of power
distribution and consumption tasks in the two segments is
further analyzed. Since millisecond-level cyclical tasks have
similar distribution in the two segments, no analysis is performed
here. It can be seen from the enlarged display part of the figure that
the types of second-level cyclical tasks in the resource imbalance
increasing segment are significantly more than those in the resource

imbalance decreasing segment. The reason is that the execution
cycle of second-level cyclical tasks is large, and aggregation usually
occurs during its common cycle, and the segment where aggregation
occurs naturally forms a increasing segment. Therefore, in the
decreasing segment where there is no large accumulation of
second-level cyclical tasks, the baseline value of computing
resources is relatively low. Correspondingly, the possibility and
rate of change of computing resources under dynamic balancing
will also be relatively high.

To sum up, the execution cycle of large time-scale cyclical tasks
is the main factor affecting the dynamic balancing effect. Subsequent
adjustments are mainly targeted at the segments where resource
imbalance increases. At the same time, the analysis of the common
tasks cycle must be strengthened to achieve optimal
adjustment results.

4.5.2 Adaptability analysis between
different scenarios

In order to further verify the effectiveness of the dynamic
balancing model in different scenarios, this section considers
comparing the photovoltaic-only scenario and the wind power-
only scenario, and selects the resource imbalance increasing segment
315–316s as the research object, as shown in Figure 11.

As can be seen from Figure 11, whether it is a separate
photovoltaic scenario or a separate wind power scenario, the
adaptive changes in computing resource demand reflect the
universality of the dynamic balancing model in different
scenarios, and also prove that the good dynamic balancing effect
in the comprehensive energy scenarios in Sections 4.3 and 4.4 is not
due to the role of a particular energy scenario only. Similarly, it can
also be observed from Figure 11: the demand in the front stage of the
wind power scenario is greatly reduced, while the demand in the
back stage is increased; the overall photovoltaic scenario is relatively
balanced. The reason is that the wind power scenario has a large

FIGURE 11
Comparison chart of change amount and change rate of computing resource demand in the two scenarios.
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number of proprietary tasks and a long execution cycle. Before
adjustment, the demand in the front stage is large and the demand in
the back stage is slightly smaller. After adjustment, there will be
obvious changes in the two stages. In subsequent adjustments,
consider strengthening the coordination of scenario-specific tasks
features to achieve optimal adjustment results.

5 Conclusion

This paper proposes a method framework for power distribution
and consumption tasks computing resource demand prediction and
dynamic balancing based on state iteration. on this basis, the
traditional Markov prediction scheme is improved to form an
iterative prediction based on historical data and forecast data.
Concurrently, an analysis is conducted on the characteristics of
multi-time scale tasks based on the prediction results, leading to the
formation of dynamic balancing models for different types of tasks.

(1) The improved Markov model proposed in this article based
on first-order difference and sequence iterative update: on the
one hand, it can reflect data fluctuations and has good
tracking performance for long-sequence predictions; on the
other hand, it combines the advantages of traditional models
and has high accuracy for short-term predictions. This
solution provides basic load state prediction solutions for
industrialized intelligent terminals and is universal.

(2) The power distribution and consumption tasks load balancing
model proposed in this article considers differentiated
adjustments based on the characteristics of cyclical and non-
cyclical tasks on the basis of state prediction: on the one hand, it
fully balances the resource peaks and troughs in the predicted
state, effectively reducing resource demand degree of
imbalance; on the other hand, this model make full use of
the cyclical tasks time response characteristics to cope with the
deviation of resource imbalance in emergency scenarios, and
achieve a stable demand curve.。

The following is a discussion of the limitations of the research work
in this article and the directions for further research in the future: This
article uses the power distribution and consumption tasks as a
calculation example, but the demand prediction and dynamic
balancing methods in this article are still applicable to other tasks
with such characteristics. The resource demand prediction method in
this article is deterministic research. In the future, the resource states in
the power Internet of Things will be further complicated. How to
adaptively adjust the migration boundary through uncertainty
modeling of the states will be an important follow-up research direction.
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