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Demand management of electric vehicles (EVs) in shared residential parking lots
presents challenges for sustainable transportation systems. Especially, in shared
parking lots where multiple EVs share the same parking space, such as residential
apartments. This is challenging due to involvement of various factors such as
limited number of chargers, limited capacity of transformer, and diverse driving
behavior of EV owners. To address this issue, this study proposes an optimal
demand management framework that addresses limited chargers, transformer
capacity, and diverse driving behavior to promote sustainable EV integration. By
estimating driving behavior, energy consumption, and utilizing a linear
programming-based optimization model, power allocation to EVs is optimized
based on multiple factors. A satisfaction index is introduced to measure the
satisfaction level of the EV community, further emphasizing user-centric
sustainability. Performance analysis includes factors such as power usage,
charger utilization, and community satisfaction. The performance of the
proposed method is compared with a conventional method and the proposed
method increase the satisfaction index of the community by up to 10%. In
addition, sensitivity analysis is used to explore the impact of factors like
charger availability, EV penetration, and transformer capacity limits. Results
show that with 3% EV penetration, satisfaction levels exceed 75%, reaching
over 80% with five chargers and 6% EV penetration.
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1 Introduction

1.1 Motivation

Emissions in transportation represent a critical contributor to global environmental
challenges, accounting for a significant portion of greenhouse gas emissions worldwide. It
accounts for about a quarter of the total emissions (Vision, 2050), necessitating urgent
decarbonization efforts to align with international climate agreements. Electric vehicles
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(EVs) are considered a viable option to reduce emissions from the
transport sector, especially if they are charged with renewable power
(Hussain and Musilek, 2022a). Therefore, the penetration of EVs is
increasing day by day. For example, a total of 14% of all new cars
sold were electric in 2022, up from around 9% in 2021 and less than
5% in 2020. Over 2.3 million EVs were sold in the first quarter of
2023, about 25% more than in the same period last year. It is
expected that about 14 million EVs will be sold by the end of 2023,
representing a 35% year-on-year increase (IEA Global EV, 2023).
The International Energy Agency (IEA) has also increased the
expected share of EVs by 2030 to 35% from 25% in the previous
year’s outlook report (IEA Global EV, 2023). In addition different
issues related to power electronics and their monitoring and control
are discussed in (Liu, 2021; Wang et al., 2022). Similarly, the impacts
on weak grids is discussed in (Shao et al., 2023) and on low carbon
energy economy in (Luo et al., 2024).

However, the transition to EVs as a viable solution for reducing
greenhouse gas emissions in the transportation sector presents
several challenges for the power sector (Khan et al., 2022; Zhang
et al., 2022). For example, at the power system level, accommodating
the increased demand necessitates additional power plants to cater
to EVs’ energy needs and serve as reserves (Heuberger et al., 2020).
This heightened demand strains local infrastructure, causing
technical issues like voltage fluctuations, network congestion, and
phase imbalances, particularly at the distribution level (Hou et al.,
2017). Moreover, in residential circuits, the peak EV load coincides
with the peak residential load (weekday evenings) and can easily
overload the local equipment (Fachrizal et al., 2021; Zhang H. et al.,
2023). This is especially challenging for apartment complexes where
several EVs are parked and charged together (Hussain and Musilek,
2022b). In addition, the impact of EVs on the air quality in China is
assessed in (Lyu et al., 2024) for different cities throughout the
lifecycle of EVs. Different types of dispatch strategies are also
discussed in the literature such as distributed dispatch (Li et al.,
2022) and dynamic dispatch (Duan et al., 2023). Finally,
decentralized energy control is discussed in (Shirkhani et al.,
2023) and an adaptive lightweight defect detection model is
proposed in (Lei et al., 2023).

1.2 Literature review

To address these issues, related to equipment overloading in
distribution systems, several studies are conducted in literature.
These studies can be broadly divided into two categories. In the
first group of studies, system-level measures are suggested tomanage
the load of EVs. For example (Almutairi and Alyami, 2021),
proposes per-unit load estimation of EVs to model and analyze
various penetration levels of EVs in different locations (Tran et al.,
2019). suggests using home solar panels to charge EVs, aiming to
reduce power surges and enhance grid stability (Kong et al., 2022).
introduces an optimization model for managing EV charging loads
in distribution networks, employing a bi-level programming
approach to select charging stations and manage loads.
Additionally (Mazhar et al., 2023), evaluates machine learning-
based methods for managing EV load in smart cities. Several
studies also proposed dynamic pricing as a method to manage
EV loads. For instance (Limmer and Rodemann, 2019), proposes

dynamic pricing at EV charging stations to reduce peak demand
charges and increase operator profits. Similarly (Moghaddam et al.,
2019), suggests dynamic pricing to shift loads during evening peaks,
aiming to minimize overlaps with residential peak hours and reduce
network instability risks. Furthermore (Sayarshad et al., 2021),
introduces a dynamic pricing model for urban freight transport
involving electric and conventional vehicles, aiming to reduce costs
and delays. Different aspects of EVs models such variations in
electrical parameters and underlying voltage tracking control are
discussed in (Zhang et al., 2021; Zhang X. et al., 2023).

However, several studies report that system-level management
and pricing policies alone may not be suitable for effectively
managing the load of EVs (Hussain and Musilek, 2021; Geotab,
2023; Hussain and Musilek, 2021; Zhang et al., 2021; Zhang X. et al.,
2023; Sayarshad et al., 2021; Moghaddam et al., 2019; Limmer and
Rodemann, 2019; Mazhar et al., 2023; Kong et al., 2022; Tran et al.,
2019; Almutairi and Alyami, 2021; Lei et al., 2023; Shirkhani et al.,
2023; Shirkhani et al., 2023; Duan et al., 2023). This is primarily due
to local equipment, especially in distribution systems, often
experiencing overload from direct connections of EVs, resulting
in technical issues such as voltage fluctuations and network
congestion (Geotab, 2023). Moreover, implementing EV charging
infrastructure might not universally suit all communities, especially
in residential or commercial settings (Almutairi and Alrumayh,
2022). Consequently, a second group of studies has emerged
recently, focusing on local demand management of EVs to
mitigate local equipment overload, discussed below.

The growing adoption of EVs is discussed in (Tulabing et al.,
2018), where localized demand control is proposed to prevent
grid congestion. Simulations suggest that a 40% EV participation
rate ensures grid resilience despite 100% EV adoption.
Additionally (Chen and Chang, 2016), introduces a demand
response-based method for EVs, employing cloud-based
management to minimize costs. Meanwhile (Hussain et al.,
2023), presents a welfare-focused model for realizing Vehicle-
to-Vehicle (V2V) communication to manage EV charging
stations with multiple EVs (Ahmadi et al., 2023). discusses
various approaches for mitigating EV charging costs, including
strategies such as solar power connections and V2X approaches.
Furthermore, a comprehensive review conducted in (Zhang et al.,
2020) focuses on energy management strategies for EVs,
highlighting clustered EV demand management as a
significant challenge.

1.3 Research gap and contributions

From the literature review, it is evident that numerous studies
have explored managing EV load both at the system and local levels.
However, most of these studies have concentrated on single homes,
analyzing their collective impact on the system. In shared parking
stations like residential apartments and commercial centers, EVs can
readily overload local equipment, such as transformers.
Additionally, allocating power to EVs during system peak load
hours poses a complex challenge, involving factors such as
customer satisfaction levels, available equipment capacity, and the
number of chargers in each locality. The existing literature has not
comprehensively considered all these factors together. It is
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imperative to consider all these factors collectively to present various
options for policymakers aimed at maximizing EV owners’
satisfaction. These options may include installing more chargers
or upgrading local equipment by the utility. Furthermore, this multi-
factor analysis is essential for selecting the optimal number of
chargers for a given number/percentage of EVs in any shared
parking location.

To address the research gaps identified in the previous
paragraphs, a multi-factor EV load management framework is
proposed in this study. The aim of this framework is to offer
insights into determining the optimal number of chargers and
capacity constraints of local equipment (transformers). These
insights will assist policymakers and utilities in planning system
upgrades and installations suitable for accommodating a specific
level of EVs. The framework’s implementation involves several
steps. The major contributions of this study are as follows:

• EV driver behavior is estimated using the National Household
Travel Survey (NHTS) dataset. Subsequently, EV parameters
are utilized to determine the daily energy demand of EVs.

• An optimization model is then developed to allocate the
available power among EVs within the charging station of a
residential apartment complex. This consideration
encompasses a shared parking lot accommodating both
conventional vehicles and EVs.

• A satisfaction index is proposed to quantitatively measure EV
owners’ satisfaction levels by comparing the allocated energy
demand with the actual demand before their departure time.

• A sensitivity analysis is conducted to assess various
parameters, including the number of chargers, EV
penetration levels, and transformer capacity limits.

This analysis aims to further enhance the understanding of the
framework’s performance under different conditions.

The reminder of the paper is organized as follows. Introduction
section is followed by modeming of EV demand (Section 2), where
vehicle driving parameters and EV parameters are extracted. In
section 3, an optimization problem is formulated to allocate power
to EVs considering various factors such as number of chargers,
number of EVs, and capacity of the distribution equipment such as
transformers. The performance of the proposed method is evaluated
for a residential apartment complex in Section 4. A sensitivity
analysis of various factors, including the number of chargers, the
penetration level of EVs, and the limits of the transformer’s capacity
in conducted in Section 5. Finally, conclusions and future research
direction are discussed in Section 6.

2 Demand management of
electric vehicles

Managing the demand of EVs in shared parking lots, particularly
in residential apartment complexes poses significant challenges.
These challenges arise from the limited availability of charging
spots and the constraints imposed by local transformers.
Consequently, this section begins with the estimation of EV load,
followed by strategies for load management specifically focusing on
EVs (Section 3).

2.1 System configuration

While the adoption of EVs is increasing worldwide, their
penetration levels remain relatively low compared to
conventional vehicles. Consequently, most shared parking lots are
primarily designated for conventional vehicles, with only a limited
number of slots equipped with chargers for EVs. This study
considers this prevalent scenario where conventional vehicles
dominate the parking spaces. Figure 1 illustrates the system
configuration, comprising a residential apartment complex with a
shared parking lot. The designated EV spots within the parking lot
are equipped with chargers. Both the building and the charging
stations are connected to the utility grid via the same transformer.
Hence, effective management of the EV load in the charging station
becomes crucial since the peak load of residential buildings often
coincides with the peak load of EVs. This synchronization occurs
because many EV owners tend to park their vehicles and commence
charging upon arriving home in the evenings.

2.2 Demand modeling of electric vehicles

Estimating the load of EVs involves several sequential steps. Initially,
data pertaining to drivers’ travel behavior is required, followed by data
related to EVs (Yang et al., 2024). Due to the limited availability of large
datasets specifically for EV drivers, conventional vehicle data is
commonly utilized, as seen in other studies (NHTS, 2023). The
NHTS data is considered reliable and has been utilized by numerous
researchers for similar analyses. Therefore, in this study, NHTS data is
employed to estimate driver behavior. An overview of the various steps
involved is presented in Figure 2. The data is first pre-processed to rectify
any erroneous reporting, such as missing fields or unrealistic speeds.
Subsequently, vehicle trips are recorded, and daily mileages are
computed for each vehicle.

FIGURE 1
Overview of the system configuration.
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In this study, stochastic simulationmodels for PEV deployment are
implemented using a data-driven approach that integrates key
components such as driver behavior, PEV characteristics, charging
infrastructure, grid integration, and policy and market factors. The
models utilize historical data and statistical methods to simulate driver
behaviors, including trip lengths, frequencies, and charging preferences,
based on datasets like the NHTS. The models also consider the need for
charging infrastructure and assess the grid impact of PEV charging,
taking into account factors like charger placement and capacity. Policy
and regulatory analysis are incorporated to evaluate the impact of
government policies on EV adoption.

2.2.1 Daily mileage estimation
To estimate the daily mileage of vehicles, each vehicle is assigned

an ID and is tracked for each day. Then, the daily mileage is
computed based on the total number of trips and distance
covered during each trip. The extracted data is shown in
Figure 3. It can be observed that most of the vehicles travel
under 100 km daily. Details about the estimation process can be
found in (Fathy et al., 2023). In this study, home is considered as the
test case for EVs. However, it should be noted that the same process
can be used to track EVs to different locations such as workplace or
any specific location such as commercial centers. The problem
formulation remains the same, irrespective of the location.

2.2.2 Arrival and departure time estimation
The study records the origin and destination of each vehicle

to ascertain their respective arrival and departure times at
home. Notably, a vehicle might have multiple visits to the
home, but for this study, the last arrival time and the first
departure time are considered. The extracted arrival and
departure times of vehicles are depicted in Figure 4, revealing
that a majority of vehicles arrive home during the evening hours
between 15:00 and 19:00.

2.2.3 Energy demand modeling
Following the estimation of daily mileage for vehicles, the

study incorporates technical parameters specific to EVs. The data
pertaining to commercially available EVs can be found in (EV
Database, 2023). This dataset includes information on the
mileage efficiency and useable battery size of various EV
models. As per the database, the average energy efficiency
across all EVs stands at 195 Wh/km, while the average useable
battery size is recorded at 68.9 kWh (as of November 2023). This
data serves as the basis for computing the daily energy
consumption of EVs. Figure 5 illustrates the daily energy
consumption of EVs, revealing that the majority of EVs
consume under 25 kWh of energy on a daily basis. This
observation aligns reasonably well with the average vehicle
mileage of under 100 km per day and an average energy
efficiency of 195 Wh/km.

FIGURE 2
EV demand estimation and load management process.

FIGURE 3
Daily mileage of vehicles extracted from the data.

FIGURE 4
Daily arrival and departure times of vehicles.
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3 Problem formulation

In this section, an optimization problem is formulated to allocate
power to EVs considering various factors such as number of
chargers, number of EVs, and capacity of the distribution
equipment such as transformers. A linear programming-based
model is developed which is guaranteed to be convex and can
easily be solved by commercial optimization tools. Due to the
convexity of the problem, it can be easily solved in a very short
time using commercial software such as CPLEX, making it suitable
for real-time applications.

3.1 Objective function

The objective function is designed to minimize the energy
difference between the required energy demand (Edem

i ) and the
allocated energy (Eall

i ) for EV i. In this study, to emulate the real-life
behavior of EV consumers, a first-come-first-served approach is
implemented. Therefore, the energy gap is penalized based on the
difference between the maximum number of intervals (T) and the
arrival time of EV i (Tai). This penalization ensures that the EVs
arriving first will occupy the available chargers. It should be noted
that Eall

i is the decision variable in the objective function while all
other factors are parameters.

min∑
i∈I

Edem
i − Eall

i( ) · T − Tai( )( ) (1)

3.2 Constraints

Several constraints are necessary to ensure the equitable allocation
of available energy among EVs while adhering to physical constraints
such as the availability of chargers and the capacity of the transformer.
For instance, Eq. 2 ensures that the total allocated power to any EV
(Eall

i ) should not exceed the required power (Edem
i ) for that EV. It is

important to note that an EV may not be fully charged within a single
time interval ‘t’. Thus, the total allocated power to any EV becomes the
accumulation of power allocated to it across all intervals before its
departure, mathematically represented as Eq. 3 where Ea

i,t is the energy
allocated to EV i at time t. Moreover, within each interval ‘t’, the

maximum chargeable power for any EV is constrained by the charger’s
rating, as depicted in Eq. 4. Here,Rch denotes the charger’s rating in kW,
and Bch

i,t is a binary variable introduced to monitor the active chargers.
For instance, if a charger is in use during any time interval t for any EV i,
the value of Bch

i,t will be 1; otherwise, it will be zero. It should be noted
that Eall

i , Ea
i,t, and Bch

i,t are variables in these constraints while all other
factors are parameters.

Additional constraints are necessary to ensure that the capacity
limits of the transformer are not breached. Eq. 5 stipulates that the
total power drawn by all EVs during any time interval ‘t’ should be
less than or equal to the capacity of the transformer (Ctx

t ). It is
important to note that Ctx

t represents the remaining capacity of the
transformer after catering to the building’s load. Eq. 6 signifies that
the sum of chargers utilized by all EVs during any time interval ‘t’
should be less than or equal to the number of available chargers
(Nch). Furthermore, EVs are only allowed to charge when they are
available at the parking station. To enforce this constraint, (7) is
introduced. This equation implies that outside of parking intervals,
such as before the arrival time (Tai) and after the departure time
(Tdi), the amount of power allocated to EV i should be forced
to zero.

Eall
i ≤Edem

i (2)
Eall
i � ∑

t∈T
Ea
i,t (3)

Ea
i,t ≤R

ch · Bch
i,t (4)

∑
i∈I

Ea
i,t ≤C

tx
t (5)

∑
i∈I

Bch
i,t ≤Nch (6)

Ea
i,t � 0 ift≥Tdi

����t<Tai (7)

3.3 Satisfaction index

To evaluate the effectiveness of the proposed allocation scheme
and to offer insights to policymakers, this study introduces an index.
This index gauges the satisfaction level of EV owners by assessing the
allocated power to each EV and comparing it with the required
energy. It can be mathematically modeled as

SIi � 100 · 1 − Edem
i − Eall

i( )
Edem
i

( ) (8)

Where Edem
i represents the energy demand, and Eall

i signifies the
allocated energy to EV i. This index is designed to reach a value of
100 when the entire energy demand is met before the departure time.
Conversely, it will assume a value of zero when no energy demand is
fulfilled, and the departure time has arrived. Operating as a
continuous index, it spans values from zero to 100 inclusively,
contingent upon the amount of energy received by each EV.

4 Performance evaluation

This section evaluates the performance of the proposed method
using a residential apartment complex comprising 320 vehicles. For

FIGURE 5
Daily energy consumption of EVs.
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this case, the ratio of EVs is approximately 3% (10EVs). Subsequent
sections conduct an analysis across different percentage levels. The
developed linear programming model is implemented in Python,
integrating the optimization tool CPLEX (IBM CPLEX, 2023). This
study considers a scheduling horizon of 1 day (T = 24) with a sample
period of an hour (t = 1). It should be noted that the performance of
the proposed framework is tested for a scheduling horizon of 1 day.
However, the formulations are generalized and can be used for any
time horizon, such as a week, month, or year. Given the residential
nature of the building, most vehicles arrive home in the evening and
depart in the morning the following day. Hence, the scheduling
horizon spans from 10 a.m. and extends until 10 a.m. the subsequent
day. Additionally, most residential buildings utilize level 2 chargers
for community charging. Consequently, this study employs level
2 chargers rated at 7.6 kW power.

4.1 Input data

To facilitate visualization, this section focuses on 10 selected
EVs, constituting roughly 3% of the total vehicle fleet. Table 1
displays the parameters associated with these selected EVs. The
original load demand for each EV is randomly generated within the
range of (Liu, 2021; EV Database, 2023) kWh, aligning with the
survey data discussed in the previous section. Furthermore, the
arrival times of these EVs correspond to the survey data, reflecting
the trend of vehicles arriving home mostly during the afternoon and
evening hours. Similarly, the departure time of most vehicles is early
morning the following day. Therefore, the arrival and departure
times for each EV are randomly generated (separately) following a
normal distribution. The mean and standard deviation of EV arrival
and departure times are based on the NHTS survey data, discussed
in the previous section. EVs with both short and long parking
durations are selected for this analysis to consider different types of
drivers. The parking duration is determined based on the arrival and
departure times. In this section, two chargers are considered.
Additionally, the transformer’s capacity (remaining capacity after
serving the building load) is set at 35 kW. The profile of the

residential apartment complex on a selected day is shown
in Figure 6.

4.2 Performance evaluation

This section conducts an analysis of the proposed method’s
performance using a fleet of 10 EVs based on the parameters
outlined in the input data section. The evaluation assesses the
performance concerning energy allocation, charger utilization,
and driver satisfaction (utilizing the proposed satisfaction index).
The performance of the proposed method is compared with
conventional method (named as continuous), where once EVs
occupies the charger it remains connected until it is fully charged.

4.2.1 Energy allocation
An overview of the original demand for each EV and the total

allocated energy before their departure time is depicted in Figure 7.
Notably, it is evident that the energy demand of EV1, EV2, and
EV5 is entirely satisfied owing to their relatively lower energy
demands and medium to high parking durations (refer to
Table 1). Furthermore, for EV1 and EV2, the chargers were
available since they were the first two EVs to arrive home
(Table 1). Interestingly, despite being parked for 5 h, none of the

TABLE 1 Input data of EV fleet used in this section.

EV ID Load demand (kWh) Time (h)

Original Fulfilled (proposed)

Fulfilled (continuous)

Arrival Departure Parking duration

1 12 12 12 14 19 5

2 12 12 12 15 21 6

3 33 30.4 33 16 0 8

4 35 30.4 35 17 22 5

5 15 15 0 17 1 8

6 30 15.2 0 18 20 2

7 35 30.4 35 18 2 8

8 28 22.8 28 19 2 7

9 13 0 0 20 1 5

10 32 15.2 15.2 21 4 7

FIGURE 6
Daily energy consumption profile of the building.
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energy demands for EV9 are fulfilled. This occurred because both
chargers were occupied by other EVs, remaining unavailable before
EV9’s departure. This observation aligns with the data presented in
Table 2, detailing the hourly charging for each EV. For all other EVs,
their demand is only partially fulfilled due to various factors such as
lower parking durations, higher energy demands, and/or charger
unavailability. In the case of the conventional method, the energy
demand of EV5, EV6, and EV9 is not fulfilled because both chargers
were occupied by EVs that arrived earlier. Details about the charger
utilization can be found in Table 3.

4.2.2 Charger utilization
The developed framework ensures that, at any given time interval,

no more chargers are utilized than the available count. The binary
variable data, employed in the problem formulation to monitor charger
usage, has been extracted and visualized in Figure 8. The plot
demonstrates that at no point are more than two chargers employed
simultaneously. For improved clarity, distinct colors designate different

time intervals in the visualization. Moreover, verification from Table 2
reaffirms the usage of a maximum of two chargers throughout any time
interval. During intervals 14, 2, and 3, only one charger is in use,
attributed to the availability of only one uncharged EV during those
periods. Conversely, both chargers are efficiently utilized during the
remaining intervals. It is important to note that Table 2 exclusively
displays intervals with non-zero values of charging power, rather than
representing the entire scheduling horizon.

4.2.3 Driver satisfaction
The evaluation of the proposed satisfaction index for all 10 EVs

is illustrated in Figure 9. Notably, the majority of EVs exhibit a
satisfaction index exceeding 50%. However, EV9 and EV10 have
satisfaction indices below 50%. The average index for the entire
community stands at 75%. Contrarily, in case of the continuous
method, the satisfaction index of EVs 5, 6, and 9 is zero. In addition,
the overall satisfaction index of the community is 65% which is
lower than the proposed method.

Improving the index can be achieved through multiple
strategies. Firstly, augmenting the number of chargers could
notably enhance satisfaction, considering the current limitation of
only two chargers available in the building. Additionally,
incentivizing EVs to alter their charging and arrival behavior
could optimize the utilization of the available chargers,
subsequently augmenting the satisfaction index.

5 Discussion and analysis

This section conducts a sensitivity analysis of various factors,
including the number of chargers, the penetration level of EVs, and
the limits of the transformer’s capacity. Detailed discussions
regarding each parameter are presented in the subsequent section.

FIGURE 7
Allocate energy to EVs.

TABLE 2 Interval-wise power allocation to each EV under proposed method.

Interval EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

14 7.6 0 0 0 0 0 0 0 0 0

15 4.4 4.4 0 0 0 0 0 0 0 0

16 0 7.6 7.6 0 0 0 0 0 0 0

17 0 0 7.6 7.6 0 0 0 0 0 0

18 0 0 7.6 0 0 7.6 0 0 0 0

19 0 0 0 7.6 0 7.6 0 0 0 0

20 0 0 0 7.6 0 0 0 7.6 0 0

21 0 0 7.6 7.6 0 0 0 0 0 0

22 0 0 0 0 7.4 0 7.6 0 0 0

23 0 0 0 0 7.6 0 7.6 0 0 0

0 0 0 0 0 0 0 7.6 7.6 0 0

1 0 0 0 0 0 0 7.6 7.6 0 0

2 0 0 0 0 0 0 0 0 0 7.6

3 0 0 0 0 0 0 0 0 0 7.6
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5.1 Number of chargers

In this section, the variation of the number of chargers from 2 to
6 is simulated across five different cases. A fleet of 20 EVs is
considered, with a transformer limit set at 35 kW. For each case,
computations include the total power consumed by the chargers, the
utilization count of chargers in each interval, and the overall
satisfaction of the community. The respective results are
displayed in Figures 10–12, specifically showcasing intervals with
non-zero values of charging power.

Figure 10 demonstrates an anticipated increase in power
consumption with the rising number of chargers. Notably, the
total power consumption is constrained to 35 kW for specific
intervals in the C-5 and C-6 cases, aligning with the

TABLE 3 Interval-wise power allocation to each EV under continuous method.

Interval EV1 EV2 EV3 EV4 EV5 EV6 EV7 EV8 EV9 EV10

14 7.6 0 0 0 0 0 0 0 0 0

15 4.4 7.6 0 0 0 0 0 0 0 0

16 0 4.4 7.6 0 0 0 0 0 0 0

17 0 0 7.6 7.6 0 0 0 0 0 0

18 0 0 7.6 7.6 0 0 0 0 0 0

19 0 0 7.6 7.6 0 0 0 0 0 0

20 0 0 2.6 7.6 0 0 0 0 0 0

21 0 0 0 4.6 0 0 7.6 0 0 0

22 0 0 0 0 0 0 7.6 7.6 0 0

23 0 0 0 0 0 0 7.6 7.6 0 0

0 0 0 0 0 0 0 7.6 7.6 0 0

1 0 0 0 0 0 0 4.6 5.2 0 0

2 0 0 0 0 0 0 0 0 0 7.6

3 0 0 0 0 0 0 0 0 0 7.6

FIGURE 8
Charger usage indictor.

FIGURE 9
Satisfaction index of EV users.

FIGURE 10
Total power consumption of chargers under different number
of chargers.
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transformer’s available capacity. Figure 11 illustrates that the
maximum count of chargers is employed during the evening
hours due to the arrival of a higher number of EVs at home.
However, it is essential to note that, across each case, the
maximum available chargers are utilized.

Examining the satisfaction index in Figure 12 reveals a
significant increase in satisfaction levels for the initial three
cases, reaching a saturation point in the last two cases.
Notably, the satisfaction level for the last two cases remains
consistent. This outcome suggests that, considering the fixed
transformer capacity and driving behaviors of EV owners,
increasing the number of chargers beyond 5 does not notably
affect satisfaction. Such results hold vital importance for
policymakers to determine the minimum necessary number of
chargers for a given EV count.

5.2 Penetration level of EVs

In this section, the share of the EV fleet incrementally increased
up to 50% across five simulation cases. Starting from around 3% of
the total fleet (320 vehicles), the penetration rate is doubled in each
case until it reaches 50% (160 EVs). For consistency, the number of
chargers remains fixed at five, and the transformer capacity is set at
35 kW throughout these simulations.

The analysis primarily focuses on the total power
consumption of the chargers for each case. Additionally, a
charger utilization index is devised to estimate the chargers’
utilization under varying penetration rates. The community’s
satisfaction is also evaluated, and the outcomes are visualized in
Figures 13–15. Figure 12 illustrates a proportional increase in
charger power consumption with the growing number of EVs,
which is an expected outcome. However, the power consumption
becomes constrained by the remaining capacity of the
transformer (35 kW), notably evident in the last three cases.
Consequently, it can be inferred that the current configuration
of five chargers and a 35-kW transformer capacity cannot sustain
more than a 6% penetration of EVs.

Figure 14 shows the utilization level of chargers during the
scheduling horizon (24 h). The utilization is computed using

CU � ∑
t∈T

∑
i∈I

Bch
i,t

T ·Nch
(9)

Where Bch
i,t is the inary varibale indiciating the usage status of the

charger, T is the total number of intervals in the scheduling horizon
(24 in this case), and Nch is the number of chargers (5 in this case).
Figure 14 illustrates that as the EV penetration increases, there’s a
corresponding rise in charger utilization throughout the scheduling
horizon. However, it is evident that there’s still some potential to
further increase charger utilization in all cases. Nonetheless, this

FIGURE 11
Charger utilization under different number of chargers.

FIGURE 12
Community satisfaction under different number of chargers.

FIGURE 13
Total power consumption under different EV penetration levels.

FIGURE 14
Charger utilization under different EV penetration levels.

Frontiers in Energy Research frontiersin.org09

Almutairi et al. 10.3389/fenrg.2024.1396899

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1396899


potential expansion is curtailed by the transformer’s capacity
limitation, as depicted by the power consumption trends
in Figure 13.

Examining Figure 15 reveals a decrease in the satisfaction level of
the EV community with the escalating EV penetration rates. This
decline is directly linked to the transformer’s capacity limitations. As
the number of EVs increases, more capacity becomes necessary.
Consequently, these results suggest that an increasing number of
EVs are unable to fulfill their energy demands before their
departure times.

This analysis underscores that relying solely on charger
utilization as a measure is not sufficient to determine the optimal
number of chargers or the EV penetration level. It is imperative to
consider both charger utilization and customer satisfaction
collectively to determine the most suitable number of chargers
for any EV community.

5.3 Impact of transformer capacity

In this section, five simulations are conducted by varying the
capacity of the transformer. The analysis includes power
consumption, charger utilization, and EV user satisfaction,

displayed in Figures 16–18. For these simulations, the number of
chargers remains fixed at 5, with 20 EVs considered.

Figure 16 illustrates that the charging power is restricted by the
transformer’s capacity limits in the initial three cases. However, in
the last two cases, the power remains below the capacity limit for
most intervals. Additionally, Figure 17 demonstrates that due to
these capacity constraints, all chargers are not fully utilized in the
first three cases. Conversely, in the last two cases, all five chargers are
utilized to maximize consumer satisfaction.

The community satisfaction index in Figure 18 shows an
increase during the first three cases and remains stable in the last
two cases. This implies that, for this community comprising 20 EVs
and 5 chargers, a transformer capacity exceeding 30 kW proves
sufficient. Moreover, increasing the transformer capacity beyond
this threshold does not significantly impact consumer satisfaction
levels. Such insights are crucial for utilities in planning transformer
upgrades considering a certain level of EVs and chargers.

5.4 Potential policy implications

Based on the findings of this study, following policy implications
can be inferred. Firstly, the study demonstrates the effectiveness of

FIGURE 15
Community satisfaction index under different EV
penetration levels.

FIGURE 16
Total power consumption under different transformer
capacity limits.

FIGURE 17
Charger utilization under different transformer capacity limits.

FIGURE 18
Community satisfaction under different transformer
capacity limits.
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the proposed framework in efficiently allocating energy and utilizing
chargers. The results show that with proper scheduling, EV energy
demands can be met while ensuring charger availability and
avoiding overloading the transformer. This suggests that
policymakers should consider implementing similar optimization
strategies in residential areas to manage EV charging effectively.

Secondly, the study highlights the importance of infrastructure
planning. The analysis shows that increasing the number of chargers
beyond a certain point does not significantly improve user
satisfaction. This suggests that policymakers should focus on
installing an optimal number of chargers based on factors such
as transformer capacity and EV penetration rate. Additionally, the
study suggests that increasing transformer capacity can improve
user satisfaction up to a certain point, indicating that utilities should
consider upgrading transformers in areas with high EV penetration.

Lastly, the study emphasizes the need for incentives to
encourage EV owners to adjust their charging behavior. The
satisfaction index shows that some EVs are not able to fulfill
their energy demands due to charger unavailability. Incentives
such as time-of-use pricing or rewards for off-peak charging
could help distribute charging load more evenly and improve
overall system performance.

6 Conclusion

A framework has been proposed to effectively manage the load
of electric vehicles in shared parking lots, considering various critical
factors such as the number of chargers, EV penetration levels, and
the remaining capacity of the transformer. This framework utilizes a
linear programming-based model to simulate diverse scenarios and
introduces an index to quantitatively measure the satisfaction level
of vehicle owners based on the energy charged before their departure
time. Simulation outcomes have revealed that, for a given apartment
complex, a consumer satisfaction level exceeding 75% can be
achieved when 3% of the total vehicle fleet comprises EVs.
Moreover, sensitivity analysis has demonstrated that merely five
chargers can elevate the satisfaction level beyond 80% with an EV
penetration level of up to 6% (20 EVs). However, the transformer
capacity emerges as a pivotal factor in maximizing EV user
satisfaction, particularly with higher EV penetration. The findings
suggest that the transformer’s capacity can become a bottleneck as
EV penetration increases. Consequently, it is imperative for
policymakers and utilities to collaboratively determine the
optimal number of chargers concerning both the transformer’s
capacity and the expected EV penetration levels. Furthermore,
planning equipment upgrades becomes crucial, necessitating
considerations of imminent EV and charger penetration levels.
Solely increasing the number of chargers is not advantageous
under the constraints imposed by the transformer’s limited
capacity. Thus, a comprehensive approach integrating multiple
factors is vital for optimizing EV load management and ensuring
consumer satisfaction in shared parking lots.

In this study, the feasibility analysis of managing electric vehicle
loads is conducted at a higher level, focusing on overall load
management strategies without considering the detailed power

flow within the distribution system. The inclusion of power flow
analysis would significantly enhance the practicality of this method
by providing more detailed insights into how the proposed load
management strategies would impact the distribution system’s
operation and performance. Power flow analysis would allow for
a more accurate assessment of potential voltage fluctuations, line
losses, and overall system stability, enabling policymakers and
utilities to make more informed decisions regarding electric
vehicle integration and infrastructure planning.
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