
Research on the optimization of
belief rule bases using the Naive
Bayes theory

Hong Qian1, Yutong Pan1*, Xuehua Wang2 and Zhenpeng Li2

1College of Automation Engineering, Shanghai University of Electric Power, Shanghai, China, 2China
Nuclear Power Engineering Co., Ltd., Shenzhen, China

The belief rule base is crucial in expert systems for intelligent diagnosis of
equipment. However, in the belief rule base for fault diagnosis, multiple
antecedent attributes are often initially determined by domain experts.
Multiple fault symptoms related to multiple antecedent attributes are different
when an actual fault occurs. This leads to multiple antecedent attributes
matching with multiple fault symptoms non-simultaneously, thereby resulting
in a fault diagnosis lacking timeliness and accuracy. To address this issue, this
paper proposes a method for belief rule-based optimization based on Naive
Bayes theory. First, a fault sample is taken in a long enough window and divided
into several interval samples, making the analysis samples approximate the overall
samples. Second, using Gaussian mixture clustering and Naive Bayes
optimization, iteration is performed over the threshold and limit values of fault
symptoms in the belief rule base based on the requirements of the timeliness and
accuracy of fault diagnosis results. Finally, the belief rule base is optimized. Using
fault samples from high-pressure heaters and condensers, the validation results
show that there is a there is a significant improvement in the timeliness and
accuracy of fault diagnosis with the optimal belief rule base.
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1 Introduction

The belief rule-based expert system integrates rule parameters on the basis of traditional
IF-THEN rules, aiming to model the system using semi-quantitative information. Through
this approach, it has the convenience of expert knowledge expression in the knowledge base
without the need for a complete understanding of the structure. However, for a multi-rule
system and in the context of a dynamic system, there are time-scale differences among the
multiple variables’ symptoms. Therefore, the initial belief rule-based system established by
domain experts needs to be continuously improved by fault samples to enhance the
timeliness and accuracy of fault diagnosis.

There is a considerable amount of research both domestically and internationally on
expert systems using the belief rule base. Yang et al. (2006), building upon the
Dempster–Shafer (D-S) theory, fuzzy theory, and IF-THEN rule statements, developed
a belief rule-based reasoning method based on evidence reasoning. Zheng et al. (2018)
modeled the fault mechanisms to obtain a set of fault-related symptom parameters. Using
mathematical statistics combined with relevant field experience, the construction of an
expert rule base for diagnosing high-pressure heater pipe leakage faults is accomplished.
Ahmed et al. (2020) developed a belief rule-based expert system designed to forecast the
severity of four types of coronary artery diseases in advance, achieving a success rate of
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93.97%. Chen et al. (2018) constructed a fuzzy-weighted production
rule inference engine based on an intelligent soot-blowing expert
system. The weights of various feature parameters were determined
using an improved analytic hierarchy process (AHP). Through the
weighted fusion of multiple data points, the belief rule-based system
was further optimized. However, there are still issues with the
current use of belief rule-based expert systems for intelligent
equipment diagnosis: (1) multiple fault symptoms related to
multiple antecedent attributes are different when an actual fault
occurs, significantly impacting the timeliness and accuracy of fault
diagnosis. Consequently, this diminishes diagnostic efficiency. (2)
The key parameters of the belief rule-based system, specifically the
threshold and limit values, are fixed values dependent on expert
experience. The lack of self-learning capability imposes certain
limitations on the system.

Gaussian mixture clustering is a target function-based clustering
method initially introduced by Wolfe (1963). The Gaussian mixture
model (GMM) was further extended from field of density estimation
to the clustering domain by McLachlan and Basford (1988). The
application scope of Gaussian mixture clustering has since expanded
significantly, encompassing diverse areas such as speech recognition,
image classification, fault diagnosis (Xiao et al., 2011; Gao et al.,
2020), and motion target detection (Lv and Sun, 2019; Li et al.,
2020). Its wide-ranging applications validate the strong adaptability
of this method.

The essence of Bayesian theory lies in determining the
probability of the intrinsic attributes of a global incident based
on the probability of the occurrence of local incidents. In other
words, it infers the characteristics of the whole from the
characteristics of the sample. Bayesian classification is a
common statistical-based classification method. However,
when the dataset contains a large number of variables, the
model structure becomes extremely complex, and computation
time significantly increases, resulting in low classification
efficiency. To address this issue, the Naive Bayes classification
algorithm was introduced. In 1988, Bayesian belief networks
(BBNs) were introduced by Pearl (1988). This algorithm
applies probability and statistical theory to complex domains,
facilitating uncertainty reasoning and analysis. It characterizes
relationships between attributes, thereby enhancing the accuracy
of classification. Frank et al. (2002) proposed the local weighted
Naive Bayes, which selected the nearest neighbor samples for
each test sample and treated them as the testing set. By combining
this with the Naive Bayes classifier, the algorithm improves
classification accuracy. Zhang and Guo (2015), while retaining
the simplicity of the Naive Bayes classification algorithm,
assigned different weights to various attributes based on
association rules mined from text and their confidence,
effectively enhancing its performance.

This paper focuses on intelligent fault diagnosis using a belief
rule-based expert system, combining the Naive Bayes model and
Gaussian mixture clustering to optimize the belief rule-based
system. Fault data samples are divided into multiple windows.
Gaussian mixture clustering is used for each window to
determine the threshold and limit values for the window data.
These threshold and limit values for each window are treated as
labels, while the data for each window serve as samples. Together,
they are input into the Naive Bayes model for training; subsequently,

another window of fault data is taken and input into the trained
Naive Bayes model. The output of the corrected threshold and limit
values is obtained. These values are updated across the entire belief
rule-based system. Using fault timeliness as a criterion, if the
diagnostic time significantly advances, belief rule-based
optimization is completed; otherwise, iteration over threshold
and limit values is continued. By optimizing the belief rule-based
approach presented in this paper, the timeliness of fault diagnosis is
improved, leading to enhanced diagnostic efficiency. This method
breaks away from relying solely on fixed values based on expert
experience for threshold and limit values in the belief rule-based
system. Finally, through practical validation, it has been
demonstrated that this approach can improve the timeliness and
accuracy of fault diagnosis, particularly in cases where multiple fault
symptoms related to multiple antecedent attributes are different.

2 Establishment of the belief rule base
for fault diagnosis

The belief rule base is used to store domain expert-related
knowledge in a specific format. In the field of fault diagnosis, the
first step involves establishing a fault model through mechanism
analysis to identify the primary fault symptoms. This process is
complemented by incorporating experiential knowledge from
domain experts to acquire additional symptoms associated
with fault types. Thereby, a belief rule base for the fault
diagnosis expert system is constructed, establishing a one-to-
one mapping relationship between fault types and multiple
fault symptoms.

2.1 Using the belief rule base in the fault
diagnosis process

The specific description of the kth rule in the belief rule base for
fault diagnosis is provided in this article as follows:

Rk: IF x1 is A
k
1 ∧ x2 is A

k
2 ∧/∧ xMisA

k
M Then Dk, βk( ). (1)

In Eq. 1, k represents that this belief rule is the kth rule in the
belief rule base. Ak

ⅈ indicates the reference values for the antecedent
attributes; xi (i � 1, 2, . . . ,M) represents the ith input vector; andM
indicates the number of fault symptoms in the kth rule.
AK
1 , A

K
2 ,/AK

M{ } represent the set formed by the reference values
of antecedent attributes in the kth rule of the belief rule base.
(Dk, βk) indicate the output result after applying the reference
values of input in the kth rule, where Dk represents the output
fault type and βk denotes the confidence level of the conclusion for
the fault type.

Through the reference values of antecedent attributes
Ak
ⅈ (xⅈ , δⅈ , ci1, ci2) and the corresponding membership functions,

evidence confidence δ′i for input symptom xi can be calculated,
where δⅈ represents the preset confidence level of the antecedent
attribute (condition) and xi represents the actual value of feature xⅈ .
ci1 is the threshold value for the symptom, and ci2 is the limit value
for the symptom.

For input variable xi, the fuzzy membership function in this
article is a linear membership function, and combining the threshold
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ci1, limit ci2, and fuzzy membership function, the evidence
confidence δ′i corresponding to xi is calculated.

Once the evidence confidence δ′i for symptom xi is obtained, the
matching degree θk for the current rule k can be calculated in Eq. 2:

θk � max 0, δ1 − δ1
′{ } + max 0, δ1 − δ2

′{ } +/

+ max 0, δM−δ′M{ }< ε. (2)

In the above equation, θk represents the matching degree for
the current rule k, and ε denotes the matching index, which is set
based on expert experience; δi (i � 1, 2,/, M) represent the
preset confidence level for the antecedent attributes of the
rule. If θk is less than ε, it indicates that the matching degree
for the current rule is less than the specified matching threshold.
The matching result is true, and the confidence in matching for
the conclusion is then computed. Otherwise, the matching result
is false. The calculation for conclusion confidence is Eq. 3:

β � 1 − max 0, δ1 − δ1
′{ }[ ] × 1 − max 0, δ1 − δ2

′{ }[ ]
×/ 1 − max 0, δM−δ′M{ }[ ] ×~β. (3)

In the above equation, ~β represents the preset confidence level
for the fault conclusion.

The belief rule base formed based on the expert system has
certain limitations due to multiple fault symptoms related to
multiple antecedent attributes being different, resulting in slow
diagnostic times. This paper adopts Gaussian mixture
clustering, and Naive Bayes theory iteratively learns the
threshold ci1 and limit ci2 for fault symptoms in the belief rule
base. The inference calculation process of the belief rule base is
shown in Figure 1.

3 Belief rule-based optimization for
fault diagnosis

This paper will integrate the theory of Naive Bayes and iteratively
optimize the thresholds ci1 and limits ci2 in the belief rule base to enhance
the timeliness and accuracy of fault diagnosis results. The essence of
Bayesian theory lies in determining the probability of the intrinsic
attributes of a global incident based on the probability of the
occurrence of local incidents. When analyzing a sample that is
sufficiently large to approach the total sample size, the probability of
incidents in the analyzed sample approaches the probability of incidents
in the total sample. It is possible to infer the inherent attributes of the
analyzed sample by examining the correlation between the analyzed and
total samples. In this paper, the thresholds ci1 and limits ci2 for the
analyzed sample are derived by analyzing the correlation between the
analyzed and total samples.

A specific fault type is selected, and the historical operational
data of various fault symptoms associated with that fault type as
training sampleD are used. The sliding windowmethod is applied to
partition the data sampleD. It is divided into nwindows, each with a
width of L. D � W1,W2,/Wn{ }.

Gaussian mixture clustering is performed on the fault symptom data
Wi in each window to obtain the thresholds ci1 and limits ci2 for each
fault symptom under that fault type in each window.
Wi � x1, x2,/xm{ }. The fault data from each window are used as
training samples, inputting both the thresholds ci1 and limits ci2
corresponding to each window as labels into the Naive Bayes model.
Then, another window is taken from a set of fault samples and input into
the trained Bayesian model. The corrected thresholds ck1 and limits ck2
are calculated based on the correlation between this sample and the
overall sample. The original thresholds ci1 and limits ci2 are replaced in

FIGURE 1
Inference calculation process of the belief rule base.
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the rule base with the new thresholds ck1 and limits ck2, respectively,
iterating through all fault symptoms and sequentially completing the
threshold and limit adjustments for all fault symptoms under that fault
type. This process forms a completely new rule base. The third set of fault
data is used to compare the diagnostic times between the original rule
base and the new rule base. If the diagnostic time using the original rule
base is ahead of the diagnostic time using the new rule base, iteration is
continued. Otherwise, the optimization of the belief rule base is
considered complete.

3.1 Threshold and limit calculation based on
Gaussian mixture clustering

Gaussian mixture clustering uses a probabilistic model to
express clustering prototypes. The definition of a (multivariate)
Gaussian distribution is as follows: for a random vector x in the
n-dimensional sample space X, if x follows a Gaussian
distribution, then the probability density function of x is
given using the following equation:

Rk: IF x1 is A
k
1 ∧ x2 is A

k
2 ∧/∧ xMisA

k
M Then Dk, βk( ), (4)

where u is the n-dimensionalmean vector andΣ is the n × n covariance
matrix. From Eq. 4, it is evident that the Gaussian distribution is
established solely by the parameters of the mean vector μ and the
covariance matrix Σ. To facilitate the representation of the relationship
between the Gaussian distribution and its corresponding parameters,
the probability density function of x is denoted as p(x|μ,Σ).

Thus, the definition of a Gaussian mixture distribution is given
in Eq. 5

pM x( ) � ∑k
i�1
αi · p x | μi,Σi( ). (5)

This distribution entails a total of k mixture components, each
corresponding to a Gaussian distribution, where μi and Σⅈ are
the parameters of the ith Gaussian mixture component and ai > 0
is the “mixture coefficient” corresponding to that parameter.
Furthermore, there exists ∑k

i�1ai � 1.
Assuming the birth process of the samples is determined using a

Gaussian mixture distribution, first a Gaussian mixture component is
selected according to the distribution defined previously as a1, a2,/, ak,
where ai is the probability of selecting the ith mixture component; upon
selecting themixture component, samples are drawn from its probability
density function to generate the corresponding dataset.

Suppose the training setWi � x1, x2,/xm{ } is derived from the
above process. Let the random variable zjö ∈ {1, 2, . . . , k} represent
the Gaussian mixture component for the jth sample xj in the training
set, and its value is unknown to us. The prior probability P (zj = i) for
zj corresponds to ai, where i � 1, 2, . . . , k. According to Bayes’
theorem, the expression for the posterior distribution of zj should be

pM zj � i | xj( ) � P zj � i( ) · pM xj | zj � i( )
pM xj( )

� αi · p xj | μi,Σi( )
∑k

l�1αl · p xj | μl,Σl( ). (6)

In other words, it provides the posterior probability that sample
xj is generated by the ith Gaussian mixture component. For
simplicity, let us denote it as γji (i � 1, 2, . . . , k).

When the Gaussian mixture distribution in Eq. 6 is known,
Gaussian mixture clustering will partition the dataset (D) into k
clusters E = {E1,E2, . . . , Ek}, and the cluster label λj for each sample
xj is determined, as shown in Eq. 7:

λj � argmax γji, i ∈ 1, 2, ..., k{ }. (7)

Therefore, Gaussian mixture clustering describes prototypes
using a probabilistic model based on the Gaussian distribution,
and the cluster division is determined by the posterior probabilities
corresponding to the prototypes.

So, for Eq. 6, the method of solving the model parameters
{(αi, μi, ∑i)|1 ≤ i ≤ k}, setting the sample set D, can use maximum
likelihood estimation. In other words, maximizing the
(logarithm) likelihood, the calculation equation is as follows:

LL D( ) � ln ∏m
j�1

pM xj( )⎛⎝ ⎞⎠ � ∑m
j�1
ln ∑k

i�1
αi · p xj | μi,Σi( )⎛⎝ ⎞⎠. (8)

The expectation–maximization (EM) algorithm, a method
for estimating parameters with hidden variables, is often used by
the academic community for iterative optimization solutions.
For easier understanding, a more accessible derivation
is provided.

Assume that the parameters {(αi, μi, ∑i)|1 ≤ i ≤ k} maximize Eq.
8; then from ∂LL(D)

∂ui
, we obtain the Eq. 9:

∑m
j�1

αi · p xj | μi,∑i( )
∑k

l�1αl · p xj | μl,Σl( ) xj − μi( ) � 0. (9)

From Eq. 7 and γji � PM(zj � ⅈ |xj), we obtain the Eq. 10:

μi �
∑m

j�1γjixj∑m
j�1γji

, (10)

that is, the means of all Gaussian mixture components can be
estimated through an average calculated by assigning different
weights to each sample, where the weight of each data sample is
the posterior probability of that data sample belonging to the
corresponding Gaussian mixture component. Similar to the
above, we obtain the following equation:

∑
i

� ∑m
j�1γji xj − μi( ) xj − μi( )T∑m

j�1γji
. (11)

For the mixture coefficient αi, in addition to maximizing LL (D),

it is also necessary to satisfy the conditions αi ≥ 0 and ∑k

i�1αi − 1.

The Lagrange form of LL (D) is shown in Eq. 12:

LL D( ) + λ ∑k
i�1
αi − 1⎛⎝ ⎞⎠. (12)

In the equation, λ is the Lagrange multiplier. Calculating the
derivative of Eq. 12 with respect to αi and setting it to zero, we have

∑m
j�1

p xj | μi,∑i( )
∑k

l�1αl · p(xj | μl,∑l) + λ � 0. (13)
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Multiplying both sides by αi and summing over all samples, it
can be concluded that λ = –m. Therefore, we have

αi � 1
m
∑m
j�1
γji. (14)

The mixture coefficient αi for each Gaussian component is
established based on the average posterior probability of the data
samples assigned to that specific Gaussian component; it can be
inferred from the information provided above.

The aforementioned derivation leads to the EM algorithm for
Gaussian mixture models:

In each iteration of the process, the posterior probabilities γji are
calculated first for each numerical sample determined for each
component in the mixture based on the current parameter values
(this is the E-step in the EM algorithm). Then, the model parameter
values {(αi, μi, ∑i)|1 ≤ i ≤ k} are updated according to Eqs 11, 13, 14
(this is the M-step in the EM algorithm).

The pseudocode below provides a more intuitive representation of
the algorithmic steps for the Gaussian mixture clustering algorithm,
highlighting the calculation flow of the operations. From the pseudocode,
it is evident that the first line initializes the model parameters for the
Gaussian mixture distribution. Lines 2–12 of the code involve iterative
updates to the model parameters based on the EM algorithm. If the
termination conditions for the EM algorithm are met [for example,
reaching themaximumnumber of iterations or little to no increase in the
likelihood function LL(D)], the code in lines 14–17 determines the cluster
assignments based on the pattern of the Gaussian mixture distribution,
and finally, line 18 returns the clustering results.

The threshold ci1 caluculated from Eq. 15 for the ith window in
this article is obtained by partitioning the weighted mean of each
cluster. The limit ci2 calculated from Eq. 16 for window i is calculated
by partitioning the sum of the weighted covariance of each cluster
and the threshold:

Ci1 � ∑k
j�1
αjμj, (15)

Ci2 � Ci1 ± 1.96∑k
j�1
αjΣj. (16)

Input: Sample set W � x1, x2, . . . , xm{ };
Number of Gaussian mixture components k.
Procedure:

1: Initialize the model parameters for the Gaussian
mixture distribution {(αi, μi, ∑i)|1 ≤ i ≤ k}

2: repeat
3: for j � 1, 2, . . . , m do (F-step)
4: calculate the posterior probability that x _j is generated by

each mixture component, as follows: γji � PM(zj � i | xj)
5: end for
6: for i � 1, 2, . . . , k do (M-step)
7: calculate the new mean vector:

μ′
i �

∑m
j�1γjixj∑m
j�1γji

8: calculate the new covariance matrix:

∑′
i

� ∑m
j�1γji xj − μ′

i( ) xj − μ′
i( )T∑m

j�1γji
.

9: Calculate the new mixture coefficients:

α′
i �

1
m
∑m
j�1
γji.

10: end for
11: update the model parameters {(αi, μi, ∑i)|1 ≤ i ≤ k} to

{(α’
i, μ’i, ∑’

i)|1 ≤ i ≤ k}.
12: until the stopping condition is met (e.g., reaching the

maximum number of iterations).
13: Ei = ϕ (1 ≤ i ≤ k)
14: for j � 1, 2, . . . , m do
15: determine the cluster label λj for xj.
16: assign xj to the corresponding cluster.
17: end for

Output: cluster partition E � E1,E2, . . . , Ek{ }, mean set
μ � μ1, μ2, . . . , μk{ }, covariance set Σ � Σ1,Σ2,/,Σk,{ }, and
weight coefficient set α � α1, α2, . . . , αk{ }.

3.2 Optimize thresholds and limits in the
improved belief rule base

This paper focuses on improving the optimization of the best
threshold limits in the belief rule base. It primarily consists of the
following three parts: computing the optimal threshold and limit
values, using the newly calculated threshold for fault diagnosis with
the updated belief rule base, and iterating the belief rulebase.

3.2.1 Using the Naive Bayes model to compute the
optimal threshold

Based on the Bayesian formula and considering the correlation
between historical operating data with a window width of M and the
overall sample set D, the threshold Ck1 and limit Ck2 are computed
corresponding to the window. The specific steps are as follows:

Step 1: The historical operating data corresponding to the rules
(denoted as historical data 1 and 2) are taken and used as
the training dataset and validation dataset, respectively.

Step 2: The sliding window method is used, with a window width
set to M. Historical data 1 from step 1 are extracted, and
for each window, Gaussian mixture clustering is
performed on the data. This process yields the
threshold Ci1 and limit Ci2 for the fault symptom j in
each window, where j � 1, 2, . . . , H.

Step 3: The fault symptom data from each window are treated as a
data sample wi in the training dataset D. The
corresponding threshold Ci1 and limit Ci2 calculated in
Step 2 are used as the class labels Ci for each data sample in
D. Both are then input into the improved Naive Bayes
model for training.

The expressions for the Naive Bayes model are Eq. 17 and Eq. 18:
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X � A1, A2,/An{ }, (17)
Ai � {a 1( ), a 2( ),/, a n( )}. (18)

In Eq. 17 and Eq. 18, X represents the attribute feature set
corresponding to D. Ai is an attribute feature vector, where
i � 1, 2, . . . , n, and a(1), a(2), . . . , a(n) represent the n attributes
in each attribute feature vector.

Y � C1, C2, . . . , Cn{ }, (19)
Ci � Ci1, Ci2( ). (20)

In Eq. 19 and Eq. 20, Y represents the label set corresponding to
X. Ci is a label vector in the label set, where i � 1, 2, . . . , n.

In Eq. 21 through Eq. 24, prior probability P (Ci) and conditional
probability P (Ak | Ci) are determined during the model training
process. After the completion ofmodel training, for anywi, the feature
vector Ai is extracted, Ai is substituted into h*(·), and the label vector
Ci is obtained that maximizes P(Ci)∏N

k�1P(Ak|Ci).
By inputting the window vector of the fault symptom data

sample point into the model, the model can output the
corresponding new threshold and limit values.

For ease of calculating conditional probability P (Ak | Ci), if the
label vectorCi is discrete, it can be made continuous. The calculation
formula is as follows:

P Ci( ) � 1
n
, (21)

P Ak | Ci( ) � ∫ck1

−∞
1���
2π

√
σc1

e
− x−μc1( )2

2σ2c1 dx∫ck2

−∞
1���
2π

√
σc2

e
− y−μc2( )2

2σ2c2 dy,

(22)

μc1 �
1

n + 1
∑i
j�1
cj1, σ2c1 �

1
n + 1

∑i
j�1

cj1 − μc1( )2, (23)

μc2 �
1

n + 1
∑i
j�1
cj2, σ2c2 �

1
n + 1

∑i
j�1

cj2 − μc2( )2. (24)

In the equation, μc1 and σc2 are the mean and variance of the first
iwindow thresholds, respectively. Similarly, μc2 and σc2 are the mean
and variance of the first i window limits, respectively.

Step 4: After training the Naive Bayes model, a window width M
of fault symptom data i is extracted from another set of
fault data of the same fault type in Step 1 (historical data
2). These data are input into the trained Naive Bayes
model, and the final threshold Ck1 and limit Ck2 are
obtained, corresponding to the window.

3.2.2 Diagnosing faults with the revised belief
rule base

The computed threshold and limit values are taken as the
threshold and limit values for the new belief rule base. Fault
diagnosis is performed, the completion time of the diagnosis is
recorded as T2, and the completion time of the diagnosis for the
original rule base is recorded as T1. The specific steps are as follows:

Step 1: Take the computed threshold and limit values as the new
threshold and limit values for the original symptom j in
the new belief rule-based, awaiting validation. Iterate
through the H fault symptoms under this fault type,

completing the replacement of all threshold and limit
values for the fault symptoms under this fault type,
where j � 1, 2, . . . , H.

Step 2: Extract historical operating data for each fault symptom
under the fault type in Step 1 (including another set of
fault data). Input these data into both the original belief
rule base before updating the symptom threshold and
limit values and the new belief rule base after updating the
symptom threshold and limit values. Perform fault
diagnosis and compare the diagnosis completion times
T1 and T2 between the two.

3.2.3 Iterate the belief rule-based
The completion times T1 and T2 of the diagnosis are

compared. If the time difference between T2 and T1 is greater
than 10 min, then the iteration for threshold and limit is
concluded, completing the optimization of the belief rule base.
Otherwise, iteration of the belief rule base is continued until the
time difference between T2 and T1 is greater than 10 min. The
specific steps are as follows:

Step 1: If the time difference between T2 and T1 is greater than
10 min, assign the current best symptom threshold and
limit values from the new belief rule base to the original
belief rule base. Otherwise, increase the window width
by L in Step 2 and go back to Step 3 for retraining.
Repeat this process until the termination
condition is met.

Step 2: After training is complete, output the number of
training iterations and the calculated best symptom
threshold and limit values. Modify the parameters of
the symptom confidence function to create an improved
belief rule base.

Fault symptoms that reach the threshold value later also achieve
the corresponding confidence values later. However, when using the
improved belief rule base in this paper for fault diagnosis, the
confidence level of the symptom in the best confidence function
reaches the matching value for determining the occurrence of the
fault in the basic rule base faster and earlier. Therefore, it
significantly improves the diagnosis speed of the belief rule base.

It is important to note that the offline training and validation
process of the Naive Bayes model are specific to historical operating
data related to a particular fault type, including fault data. During the
model training process, the membership functions remain constant.
On the other hand, the online application process is tailored to a
determined fault type, selecting the model trained with historical
operating data of the same fault type for the optimization of
threshold and limit values. The flowchart of belief rule-based
iterative optimization is shown in Figure 2.

4 Case study

In the instance verification of this paper, all program codes were
executed in the same computing environment on a single computer.
The specific hardware and software environments are presented
in Table 1.
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First, using the established basic belief rule base for the heater, a
fault diagnosis was conducted on the high-pressure heater and
condenser of a 1000 MW nuclear power plant. All operational
data were sampled at 1-min intervals. The diagnostic results
showed the following results.

The condenser D experienced cooling water copper tube leakage
faults on 16 November 2016, at 11:53 a.m.; 18 October 2017, at 10:
35 a.m.; and 5November 2019, at 12:21 p.m. The rule-matching degrees
at these three time points were 0.3915, 0.3896, and 0.3976, respectively.
The confidence levels for the conclusion of cooling water copper tube
leakage faults were 0.8673, 0.8312, and 0.8532, respectively.

The condenser E experienced insufficient circulating water
faults on 28 October 2019, at 07:34 a.m.; 6 January 2020, at 06:
24 a.m.; and 31 May 2020, at 17:06 p.m. The rule-matching
degrees at these three time points were 0.3532, 0.3815, and
0.3369, respectively. The confidence levels for the conclusion
of insufficient circulating water faults were 0.7617, 0.8124, and
0.7993, respectively.

The high-pressure heater F experienced tubing leakage faults on
20 December 2016, at 09:56 a.m.; 10 September 2018, at 20:01 p.m.;
and 18 November 2019, at 15:16 p.m. The rule-matching degrees at
these three time points were 0.3677, 0.3922, and 0.3767, respectively.
The confidence levels for the conclusion of the tubing leakage faults
were 0.7916, 0.7896, and 0.8373, respectively.

The above diagnostic results are consistent with the provided
information from the nuclear power plant, and all diagnostic results
are correct. For ease of understanding, the faults diagnosed by the
basic belief rule base for the condenser and high-pressure heater at
different times are referred to as the first, second, and third faults.

Before training the model, the training dataset is first
subjected to data cleaning, removing outliers and blank data.
Subsequently, normalization is performed using Eq. 25. Data
normalization not only enhances the convergence speed of the
model but also improves the model’s accuracy to some extent.
After testing, the test results are subjected to inverse
normalization to output the actual data.

FIGURE 2
Flowchart of the belief rule-based iterative optimization.

TABLE 1 Program hardware and software operating environment table.

Hardware/software name Hardware/software model or version

Hardware environment Processing unit AMD Ryzen 5 5500 U with Radeon Graphics @ 2.60 GHz

Random access memory (RAM) 16 GB

Hard drive 500 GB

Display card (computer) AMD Ryzen Graphics Processor (0 × 164 C)

Software environment Operating system Windows 10 64-bit

Python 3.8.5

TensorFlow 2.3.0

Keras 2.1.0
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Xstd � X −Xmin

Xmax −Xmin
. (25)

Here, xstd represents the normalized training dataset, xmin is the
minimum value in the training dataset, and xmax is the maximum
value in the training dataset.

To demonstrate the effectiveness of the improved method for
calculating the optimal threshold and limit values in the belief rule
base, a case study was conducted following the dataset partition
shown in Table 2. The initial window width L was set to 60, and the
increment in width M for each iteration was set to 60.

TABLE 2 Division of the dataset for the optimal threshold limit calculation methods.

Dataset Data selection range

Training set Condenser D first copper tube leakage before failure

50 × L group data

Condenser E first cycle water insufficient before failure

50 × L group data

High-pressure heater F 50 × L set of data before first tube system leakage failure

Validation set Condenser D second copper tube leakage before failure

Group L data

Condenser E second circulation water insufficient before failure

Group L data

High-pressure heater F second tubing system leakage before failure group L data

Test set Condenser D third copper tube leakage before failure

400 min for 400 datasets

Condenser E third circulation water insufficient before failure

400 min for 400 datasets

400 sets of data for 400 min before the third leakage failure of the high-pressure heater F tube system

FIGURE 3
Evidence confidence of each fault symptom before condenser D third cooling water copper tube leakage failure. (A) Hot well water level; (B)
vacuum level; (C) temperature difference; (D) condensate sub-cooling; (E) condensate pump motor current; and (F) condensate pump outlet pressure.
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Analyzing the dataset for condenser D, the improved model
reached the constraint conditions after 11 training iterations. Using
the improved belief rule base for the fault diagnosis of condenser D,
a diagnosis of the third cooling water copper tube leakage fault for
condenser D was made at 12:03 p.m. on 5 November 2019. The rule-
matching degree and confidence level for the conclusion of a cooling
water copper tube leakage fault at this time point were 0.3967 and
0.7965, respectively. Compared to the basic belief rule base, the
diagnosis speed was improved by 18 min.

If diagnosing the third cooling water copper tube leakage fault
for condenser D using the basic belief rule base, the confidence states
of each fault symptom around that time point are illustrated in
Figure 3. The red vertical dotted line corresponds to the moment
when the improved belief rule base completes the diagnosis, and the
orange vertical dotted line corresponds to the moment when the
basic belief rule base completes the diagnosis. In the improved belief
rule base, each fault symptom reaches the corresponding value in the
confidence function defined by the optimal threshold and limit

values faster than in the basic rule base. Therefore, the improved rule
base has a faster diagnosis speed than the basic rule base.

To more intuitively illustrate the advantages of the improved
belief rule-based intelligent expert system, a comparative graph of
the diagnostic results for the third cooling water copper tube leakage
fault in condenser D of the nuclear power unit using both the basic
and improved belief rule base is shown in Figure 4. In the figure, the
red vertical dotted line corresponds to the moment when the
improved belief rule base completes the diagnosis, and the
orange vertical dotted line corresponds to the moment when the
basic belief rule base completes the diagnosis.

To test the universality of the improved belief rule base proposed in
this paper, the same experimental process was followed for the dataset
of condenser E. The improved model reached the constraint conditions
after nine training iterations. The results indicate that the improved
belief rule-based model can complete the diagnosis for the third
insufficient circulating water fault in condenser E at 16:51 on
31 May 2020. The comparative results with the basic belief rule base

FIGURE 4
Comparative graph of diagnostic results for the second fault in condenser D using basic and improved belief rule bases.

FIGURE 5
Comparative graph of diagnostic results for the third fault in condenser E using basic and improved belief rule bases.
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are shown in Figure 5. In the figure, the red vertical dotted line
corresponds to the moment when the improved belief rule base
completes the diagnosis, and the orange vertical dotted line
corresponds to the moment when the basic belief rule base
completes the diagnosis. For the second insufficient circulating water
fault in condenser E, the improved belief rule base has a diagnosis speed
improvement of 16 min compared to the basic belief rule base.

Subsequently, the same experimental procedure was applied to
analyze the dataset for high-pressure heater F. The improved model
reached the constraint conditions after eight training iterations. It
was found that the diagnosis of the third tube system leakage fault in
heater F was completed at 15:01 on 18 November 2019. Compared
to the basic belief rule base, the diagnosis speed was improved by
15 min. The comparative results of the two rule bases are shown in
Figure 6. In the figure, the red vertical dotted line corresponds to the
moment when the improved belief rule base completes the
diagnosis, and the orange vertical dotted line represents the
moment when the basic belief rule base completes the diagnosis.

5 Conclusion

In this paper, we conducted optimization research on belief rule
bases using the Naive Bayes theory. Using Gaussian mixture
clustering and Naive Bayes optimization, iteration is performed
over the threshold and limit values of fault symptoms in the belief
rule base, and we effectively addressed the timeliness and accuracy
issues of a class of fault diagnoses with multiple fault symptoms
related to multiple antecedent attribute differences. As historical
fault samples accumulate, continuous iterative learning enhances the
fit between the belief rule bases and real faults, promoting the speed
of fault diagnosis. Diagnosing the cooling water copper tube leakage
fault in condenser D using an improved belief rule-based approach
resulted in an 18-min improvement in diagnostic speed compared to
a basic belief rule-based approach. This approach has a certain
reference value for fault rule-based diagnosis in process industries.

This optimization of the belief rule-based approach is researched
based on the premise of certain membership functions. Further
research could consider optimizing the membership functions.
Additionally, fast convergence problems in fault diagnosis
processes require further research.
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