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The precise fault localization holds significant importance in reducing power
outage duration and frequency in power systems. The widespread application of
synchrophasor measurement technology (PMU) has laid the foundation for
achieving accurate fault localization in distribution networks. However, fault
localization methods based on PMU often suffer from a significant decrease in
accuracy due to topological reconstruction and inaccurate parameters. To
address these challenges, this paper proposes a fault location method for
distribution networks based on Multi-head Graph Attention Networks (GATs).
The proposed method begins by modeling the distribution network as a graph,
where nodes represent network components and edges represent the
connections between these components. GATs have been employed to learn
the underlying relationships between topological structure and electrical
characteristics of the distribution network. The results demonstrate that our
approach outperforms traditional fault location methods in terms of accuracy
and speed. The proposed method achieves high precision which reducing the
time required for fault location and enabling faster response times for network
maintenance personnel.
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1 Introduction

The reliable operation of distribution networks is of paramount importance for
ensuring uninterrupted power supply to consumers. However, faults in distribution
networks are inevitable and can lead to power outages and disruptions. Therefore,
efficient fault location methods are crucial for minimizing downtime and improving the
overall reliability of distribution networks. For highly urbanized distribution networks,
precise fault localization techniques can reduce the workload of fault restoration and
shorten the outage duration for end-users. On the other hand, the techniques can narrow
down the patrol range and improve patrol efficiency in rural and remote areas with harsh
deployment conditions. However, the current development of precise fault localization in
distribution networks faces several challenges, including: 1) Complex line structure. 2)
Widespread asymmetry in line parameters. 3) Incomplete measurement systems and lack of
clock synchronization mechanisms to support precise fault localization technology.
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In recent years, synchrophasor measurement units (PMUs)
(Dashtdar et al., 2023) have been successfully applied in
transmission systems (Swetapadma et al., 2022). The
development of distribution network synchrophasor
measurement units (D-PMUs) has achieved goals such as
miniaturization, cost reduction, easy installation, and
maintenance-free operation. The application and development of
D-PMUs provide more clock synchronization information for fault
localization in distribution networks. This advancement has led to
significant developments in both traditional methods and artificial
intelligence approaches.

Traditional fault location has relied on manual inspection and
laborious calculations based on measurements. These methods are
often time-consuming and prone to errors and they will result in
delays in identifying and repairing faults. Moreover, the
increasing complexity and scale of distribution networks pose
additional challenges for traditional fault location approaches.
Traditional fault location methods include impedance method
(Ishnathevar and Ngue, 2011), traveling wave method (Tang et al.,
2013) and matrix method (Wu et al., 2011; Majidi and Etezadi-
Amoli, 2018). All of the aforementioned techniques assess the
characteristics of distribution networks during fault occurrences,
encountering issues related to reliability due to challenges in
establishing thresholds and relying on single characteristics. In
Dai and Xu (2017), an enhancement to the impedance method is
introduced by integrating it with the phase analysis method. This
approach enables the analysis of power characteristics for various
fault types at the specific fault location. Zhu (2006) leverages
the direct proportionality between the reactance of the faulty
circuit and the fault’s distance to determine the line distance
from the measurement point to the fault location. Xing et al.
(2017) constructs a topological correlation matrix for each
network element, offering adaptability to changes in network
topology. However, it still struggles to handle complex network
configurations. The methods discussed above in the distribution
network domain frequently necessitate the establishment of fixed
thresholds through empirical or simulation-based means to create
fault diagnosis and localization criteria. This poses difficulties in
adapting to structural changes in intricate distribution networks.
And it presents challenges in maintaining applicability during
network reconfigurations and various scenarios.

With the recent advancements in multi-source data fusion and
artificial intelligence, there is a technical foundation for precise
fault localization techniques based on multiple sources of
information, including D-PMU data. This is expected to
revolutionize fault diagnosis and localization techniques
(Phadke et al., 1983). In Sapountzoglou et al. (2020), a fault
diagnosis model for low-voltage smart distribution networks is
developed using gradient boosting trees. It used a fixed number of
interpolations are employed to replace specific branch
measurements. While the aforementioned literature can to some
extent adapt to changes in network topology, it falls short of
accurately pinpointing fault segments.

The development of graph neural networks (GNN) has provided
a solution for fault localization based on D-PMUs. Leveraging
complex graph theory analysis and the feature extraction
capabilities of neural networks, it can address fault localization
problems in scenarios with complex topological changes. By

representing a distribution network as a graph, GNN becomes
possible to exploit the inherent structure and connectivity of the
network for fault location purposes. Currently, the most widely used
GNN include Graph Convolutional Networks (GCN) (Shervashidze
et al., 2009; Kipf and Welling, 2016) and Graph Attention Networks
(GAT) (Velickovic et al., 2022). Compared to GCN, GAT
incorporates attention mechanisms from computer vision,
allowing it to focus more on neighboring nodes, thereby better
meeting the requirements of inductive learning tasks. As a result,
GAT is more suitable for tasks with frequent topological changes.
GATs are designed to capture the relationships between different
nodes in a graph by assigning attention weights to neighboring
nodes, enabling the network to focus on the most relevant
information for a given task. Choi et al. (2017) suggests a novel
approach that merges Long Short-Term Memory (LSTM) with an
attention mechanism, employing it for the task of node
classification in graph data. Meanwhile a distinct technique is
introduced which effectively utilizes the graph attention
mechanism for node embedding purposes (Lee et al., 2018). All
of the mentioned articles have successfully applied GAT to a
variety of graph tasks. However, the application of GAT in the
field of fault localization in power systems is still in its nascent
stages (Chen et al., 2020).

Motivated by the potential of GATs for graph-based
applications, this paper proposes a fault location method based
on GAT. The method aims to leverage the advantages of GATs in
capturing the complex relationships between network components
and improve the accuracy and efficiency of fault location.
Moreover, this paper proposes the mechanism of multi-head
attention on top of GAT. By employing mutually independent
multi-head attention mechanisms, the allocation of attention
weights among nodes becomes more explicit. This enhances the
model’s learning capability while mitigating the risk of overfitting.
Finally, this paper demonstrates its effectiveness through
experimental evaluation. The historical fault data containing the
current, voltage and topology of distribution network is used to
train the GATmodel. Through the training process on this dataset,
the GAT model acquires the capability to discern various fault
types and locations.

The subsequent sections of this paper are structured as follows:
Section 2 elucidates the framework of the fault localization
technique for distribution networks, which is grounded in GAT.
Section 3 expounds upon the methodology which encompassing the
graphical representation of the distribution network and the design
of the GAT architecture. Section 4 outlines the experimental
configuration and provides an assessment of the obtained results.
Section 5 engages in a discussion of the outcomes and offers a
concise summary of the proposed approach.

2 The framework of fault localization
algorithm based on GATs using D-PMU

2.1 Acquisition of distribution network
measurement data

D-PMU can provide synchronized phasor and waveform data
with time stamps. It is a crucial source of information for fault
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localization in medium-voltage distribution networks. Additionally, it
can serve as an important pathway for synchronizing and transmitting
information from other new types of sensors. However, due to the
characteristics of medium-voltage distribution network structures and
economic considerations, it is not feasible to fully deploy D-PMUs
throughout the distribution network. Therefore, the deployment of
D-PMUs must ensure that the voltage and current at both ends of any
line within the localization area can be calculated based on D-PMU
data. In other words, the configuration of D-PMUs should meet the
calculation requirements for the voltage at any bus and the current in
any branch within the area. The installation positions of D-PMUs in a
distribution network are illustrated in Figure 1.

The measurement data obtained from D-PMU can provide
synchronized data for distribution networks through the
principle of double-end measurement fault localization. This
enables data-driven fault localization techniques to be fully
supported by comprehensive data.

2.2 Fault localization methods based on GAT

Traditional fault localization methods for distribution networks
primarily rely on fault characterization. These algorithms often face
challenges when dealing with intricate scenarios, such as fault
reconstruction in distribution networks. In our study, this paper
proposes a novel fault localization approach that integrates the
topology of the distribution network which offering solutions to the
aforementioned issues. Figure 2 showcases the deployment of the GAT
model for fault localization in distribution networks. The model’s
implementation proceeds through the following steps.

1) Step1: Acquisition of datasets. We begin by obtaining the real
topology of a distribution network. Subsequently, we combine
this topology with its operational data to create a
comprehensive simulation environment for the purpose of
fault localization in distribution networks. The distribution
network fault data and labels are gathered by introducing
various fault types into the network, allowing us to construct a
dataset that represents different fault scenarios.

2) Step2: The construction and training of GAT. We visually
represent the distribution network fault data as a graph,
enabling us to partition the fault dataset efficiently. With
this partitioned dataset, we proceed to build a GAT model
designed specifically for fault localization within
distribution networks. The training process employs end-
to-end supervised learning techniques to renew the model’s
parameters.

3) Step3: Applications and Testing. In the final step, we
evaluate the practicality and effectiveness of our GAT
model. To do so, we conduct extensive testing and
application scenarios, including situations where the
distribution network’s topology undergoes changes. Our
model takes as input various features such as three-phase
currents, voltages, and the topological information of
network nodes. The model’s output consists of the
identification of faulty lines and the classification of fault
types, making it a valuable tool for real-world fault
detection and localization in distribution networks.

3 Methodology

3.1 The graph representation of distribution
network fault

Apart from considering voltage and current values at nodes
in distribution network fault data, it is essential to acknowledge
that changes in network topology significantly influence fault
characteristics. Conventional fault localization methods solely
rely on fault characteristics for diagnosis. When the distribution
network’s topology shifts, these methods necessitate
recalculations and adjustments, leading to computational
complexity and limited applicability. Hence, it becomes
imperative to seamlessly incorporate both distribution
network topology and fault characteristics. By effectively
integrating these factors and transforming them into inputs
for AI algorithms, we enhance our ability to adapt to
alterations in distribution network topology. This integration
not only simplifies fault localization but also enhances its
performance, particularly in scenarios involving distribution
network reconfiguration.

Therefore, this paper integrates three-phase current and voltage
data with the topological information of the distribution network to
create a graphical representation. This combined dataset is then
inputted into the model in the form of a fault graph representing the
distribution network. The detailed process is elucidated in Figure 3.
Specifically, the three-phase currents and voltages of the network
nodes are represented as feature matrices of dimensions N*T, where
N signifies the number of nodes, and T denotes the feature
dimension. The network’s topology is conveyed through an N*N
adjacency matrix.

A precise topological model serves as the foundation for fault
localization, and the number of nodes and branches in the
distribution network may change under network
reconfiguration. Distribution network reconfiguration is
typically a means of altering the topological structure of the
grid to enhance system economic and security aspects.

FIGURE 1
The installation position of D-PMU.
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FIGURE 2
The process of fault localization based on graph attention networks.

FIGURE 3
The graph representation of distribution network fault.
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Economical reconfigurations maintain the same number of nodes
before and after without any faulty lines, whereas fault-driven
reconfigurations may involve the removal of certain lines and
nodes. Reconfiguration scenarios result in changes to the
adjacency matrix, as illustrated in Figure 4 for a simple
distribution network reconfiguration.

The distribution network depicted in the figure comprises 13
vertices and 12 edges. In the event of circumstances such as load
transfer, the connections between node one and node seven are
severed and linked to node six instead, resulting in a transformation
of its adjacency matrix from A to A’ as shown on Eq. 1.

A �

0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

0

A′ �

0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0[ ] 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0 1[ ] 0 0 0 0
0 0[ ] 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1[ ] 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Both GCN and GAT can handle topological changes in the
aforementioned scenarios, albeit in different manners. Subsequent
Sections 3.2, 3.3 will elaborate on this matter.

3.2 The model of GCN

GCN utilizes the convolutional kernel derivation operation
from convolutional neural networks, enabling convolutional
operations on data incorporating the connectivity of the
distribution network. Defining the Laplacian matrix of a graph
as L = D-A, where D is the degree matrix and A is the adjacency
matrix. Its normalized Laplacian matrix as △, the eigenvalue
decomposition is performed on it as shown in the following
Eqs 2, 3.

Δ � I − D−1
2AD−1

2 (2)

Δ � U−1
λ1 0... 0
0 ... 0
0 0... λn

⎛⎜⎝ ⎞⎟⎠U−1 (3)

Where I is the identity matrix. U � ( �u1, �u2, ..., �un) and λ �
diag(λ1, λ2, ..., λn) are the eigenvectors and eigenvalues after
eigenvalue decomposition, respectively.

Using U as the basis for the Fourier transform on the graph, the
Fourier transform on the spectral domain graph and its matrix form
can be obtained as shown on Eq. 4.

F λl( ) � ∑n
i�1
f i( )u*

l i( )
F x{ } � UTx

⎧⎪⎪⎨⎪⎪⎩ (4)

Where f(i) is the signal at the ith vertex of the graph. u*l(i)
represents the conjugate of the eigenvector u*l(i). F(x) denotes the
matrix form of the Fourier transform. Because convolution can be
expressed as the inverse transform of the product of the Fourier
transforms of the signal functions, the convolution formula on the
graph can be obtained as shown on Eq. 5.

g*f � U UTg · UTf( ) (5)

Where g is the convolutional kernel function. f represents the
signal vector on the graph.

By utilizing this, GCN achieves convolutional operations on
graphs. And it can enable feature extraction from data incorporating
the topological structure of the distribution network. However, due
to parameter sharing of GCN convolutional kernels within the same

FIGURE 4
A sample of distribution network reconfiguration.
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layer, each update requires access to the original connectivity
information of the distribution network. Consequently, GCN is
relatively limited in the scenarios of topology changing.

3.3 The model of GAT

GAT is a concept that leverages the attention mechanism within
GNN. It operates by dynamically adjusting the weights associated
with neighboring nodes based on their relative importance through
the connections in the graph. This adaptation facilitates the
aggregation of information from neighboring nodes in a highly
effective and context-aware manner. The core component of GAT is
the Graph Attention Layer (GAL). It represents the fusion of
attention mechanisms with GNN. GAL takes as input the feature

vectors of each node and these feature vectors are derived after GAL
has performed the aggregation of information from neighboring
nodes. The input and output feature vectors of GAL can be
mathematically expressed using the following Eq. 6:

h � �h1, �h2, ..., �hn{ }, �hi ∈ RF

h′ � �h1
′, �h2

′, ..., �h
′
n{ }, �h′i ∈ RF′

⎧⎪⎨⎪⎩ (6)

Where h and hʹ are the input and output feature vectors of the
GAL with different dimensions respectively. n is the number of
nodes. F and Fʹ are the input and output node features.

In Figure 5, the aggregated node is assumed to be Vi, which has
three first-order neighboring nodes. The correlation degree eij
between the nodes can be obtained through the calculation. In
order to better assign weights, the correlation degrees calculated for
all neighboring nodes are softmax normalized. The attention
coefficient aij is obtained as shown in the following Eq. 7:

aii � softmax eii( ) � exp L α Whi,Whj[ ]( )( )
∑

vk∈N vi( )
exp L α Whi,Whj[ ]( )( ) (7)

Where L denotes the activation function LeakyReLU. α denotes
the function that calculates the correlation between two nodes and
W corresponds to the weight parameter matrix used for the
transformation of node features from the input feature
dimension to the output feature dimension.

Following the formula (5) for obtaining the attention coefficients
and adhering to the weighted summation concept of the attention
mechanism, the output feature can be computed, denoted as hi’, for
the node Vi which is shown on Eq. 8:

h′i � σ ∑
vj∈N vi( )

aijWhj⎛⎝ ⎞⎠ (8)

Where σ represents the activation function which is typically
implemented using the eLU function.

To enhance the expressive capabilities of the GAL, it is common
practice to use the multi-head attention mechanism. This
mechanism involves the independent computation of attention
coefficients by M distinct groups. For example, with M = 2, the
multi-head attention mechanism is illustrated in Figure 6.

FIGURE 5
Graph attention layer.

FIGURE 6
Multi-head attention mechanism, M = 2.
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The aim is to amalgamate these independently computed
attention coefficients to capture a more comprehensive set of
features. In practical implementations, either a concatenation
(splicing) operation or an averaging operation is typically
employed to combine the outputs of multiple attention heads, as
illustrated by the following Eq. 9:

splicing: h′i � M
m�1σ ∑

vj∈N vi( )
amijW

mhj⎛⎝ ⎞⎠����������
averaging: h′i � σ

1
M

∑
vj∈N vi( )

amijW
mhj⎛⎝ ⎞⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

where || denotes the splicing operation. aij
m and Wm denote the

weight coefficients and learning parameters, which are associated
with the mth ensemble of attention mechanisms.

4 Case study

4.1 The construction of environment

The fault localization task is built based on nodes for GAT, with
all downstream nodes of the faulty line considered as fault nodes.
While GCN is built based on graphs, requiring the entire graph to be
updated for each calculation. Consequently, the GAT model faces
issues of data sample imbalance, whereas GCN does not encounter
such issues. The imbalance between fault and non-fault data may
lead the model to learn an excessive amount of non-fault sample
data. The accuracy of the model is more focused on the
discrimination results of fault data. This can result in the model’s
final performance not accurately representing its actual application
performance. To address this, random under sampling is employed,
where a subset of data is randomly selected from the class with a

FIGURE 7
The topology of 125 node Distribution network.

TABLE 1 The specific network structure of Multi-head GAT.

Input dimension Output dimension Multi-head

GAL 125*6 125*64 3

GAL 125*64 125*64 3

GAL 125*64 125*64 3

MLP 125*64*3 125*4 —

This paper adopts the F1-score metric to evaluate the fault localization model for distribution networks, with its calculation formula as follows.
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larger volume and combined with the class with a smaller volume.
Thus, this paper randomly removes a portion of non-fault data to
form a new dataset together with the fault data.

Additionally, to mitigate the adverse effects of outlier data, the
data is scaled proportionally using the method of min-max
normalization as shown in the following equation, constraining
the input features within the range of [0, 1] as shown on Eq. 10.

x′ � x − min x( )
max x( ) − min x( ) (10)

Where x represents the feature vector in the input samples. x′
represents the standardized feature vector. max(x) is the maximum
value in the samples. min(x) is the minimum value in the samples.

In order to verify the feasibility of the proposed method, this
paper applies the method in 125 nodes of the distribution network,
the specific topology is shown in Figure 7.

Among them, three-phase short circuits, inter-phase short
circuits and single-phase short circuits are set up to verify the
effectiveness of the method in this paper. In the above fault
samples, considering the reality that there are more normal
samples and fewer fault samples, as well as the fact that the
faults are dominated by single-phase ground faults, the ratio of

FIGURE 8
The specific network structure of Multi-head GAT.

FIGURE 9
Accuracy of fault localization and classification for different
models in training process.

FIGURE 10
Accuracy of fault localization and classification for different
models in testing process.

FIGURE 11
Accuracy of fault localization and classification for different fault
resistance.
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normal samples to fault samples is 1:1, where the fault samples are
single-phase faults: inter-phase faults: three-phase faults = 3:1:1. In
this paper, a total of 3,000 samples of three types of faults
are simulated.

For the above samples were input to the graph attention network
for training respectively. The graph convolutional neural network
(GCN) [ (ABU-EL-HAIJA et al., 2022; Shervashidze et al., 2009)]
and multilayer perceptron (MLP) were used for comparison. The
specific network structure is shown in Table 1 and Figure 8.

F1 � 2
pr

p + r

p � T1

T1 + T2

r � T1

T1 + T3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

T1 represents true positives, where actual positive samples are
correctly predicted as positive. T2 represents false positives, where
actual negative samples are wrongly predicted as positive. T3

represents false negatives, where actual positive samples are
incorrectly predicted as negative. The F1-score metric which is
shown on Eq. 11 is the harmonic mean of precision p and recall
r. A higher F1-score indicates better fault discrimination accuracy
and better model performance.

4.2 Case analysis

Utilizing the constructed fault feature graph, the GAT model
undergoes training. The dataset is partitioned into training and test
sets with a ratio of 8:2. Training proceeds through 200 rounds, with a
test conducted every 10 rounds. The specific training and testing
results are illustrated in the following figure.

From Figures 9, 10, it is evident that the fault localization
accuracy and classification accuracy of both GAT and GCN
improve with the increase of training rounds. Specifically, the
fault localization accuracy of GCN stabilizes at around 60%,
while MLP achieves approximately 45%. In contrast, GAT
maintains a stable fault localization accuracy of over 80%.
Additionally, the fault classification accuracy of GAT surpasses
that of GCN. These observations highlight GAT’s superior
capability in extracting key information from feature maps,
resulting in more accurate fault localization and precise sample
classification. This trend underscores GAT’s effectiveness as a graph
neural network model, particularly in extracting features from
complex graph data such as fault feature graphs.

During the testing process, the range of fault resistance is set
from 0.01 to 1,000 to examine its impact on fault localization
accuracy and fault classification accuracy, as illustrated in Figure 11.

Analysis of Figure 11 reveals that the localization and
classification accuracy of the method outlined in this paper
consistently exceeds 90%, indicating minimal impact from
variations in fault resistance. Simultaneously, to investigate the
effect of fault initial phase angle on the proposed method, the
initial phase angles are set at 0, 90, and 180°, as detailed in the
table below.

Examination of Table 2 reveals that variations in the fault initial
phase angle lead to a slight decrease in fault localization accuracy,
albeit with minimal overall change. This is because GAT is able to
effectively capture characteristic changes in the fault initial phase
angle and maintain stable learning. Due to the diverse and complex
topology patterns of distribution networks, it is challenging to
directly apply fault localization algorithms from one distribution
network to another. To explore the impact of topology changes on
fault localization accuracy and classification accuracy, we conducted
experiments and present the specific results in Table 3.

TABLE 2 Impact of fault resistance on fault localization models.

GAT GCN MLP

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

0 93.1% 90.8% 72.5% 69. 3% 63.2% 62.8%

90 91.24% 89.38% 66.2% 65.53% 61.8% 60.4%

180 90.65% 88.54% 67.36% 66.6% 58% 57.6%

TABLE 3 Impact of topology changes on fault localization models.

GAT GCN MLP

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Fault
accuracy

Classification
accuracy

Case1 90% 88% 66% 63% 55% 53%

Case2 86% 84.5% 53% 51% 49% 46%

Case3 85% 83.5% 56% 55% 48% 44.5%

Case4 83% 81.5% 52% 49.9% 41% 36%
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Where case1 represents a scenario with no change in topology,
case2 represents the reduction of a line (125, 122), case3 represents
the addition of a line (117, 118), and case4 represents the reduction
of a line (125, 122) with the addition of a line (117, 118).

Based on the data provided in the table, it is evident that fault
localization accuracy and classification accuracy decrease when there is
a change in the topology of the distribution network, regardless of
whether it is GCN, MLP, or GAT. However, it is noteworthy that GAT
demonstrates better adaptability to topology changes, showing a
relatively minor decrease in accuracy compared to GCN and MLP.
Both GCN and MLP exhibit a decreasing trend in fault localization
accuracy and classification accuracy when topology changes occur, with
MLP experiencing a particularly pronounced decrease in accuracy. This
suggests that GAT possesses stronger robustness and adaptability in
handling topology changes, allowing it to better maintain its model
performance. In contrast, GCN displays some sensitivity to topology
changes and may require more tuning and adaptation to maintain
stable performance levels. Overall, this underscores the superior
performance of GAT in addressing complex topology change scenarios.

5 Conclusion

The paper proposes a fault localization method based on GAT to
address the limitations of traditional distribution network fault
localization methods, particularly in scenarios involving fault
reconfiguration of the distribution network. Firstly, the proposed
method models the distribution network as a graph. And then
GATs have been employed to learn the underlying relationships
between topological structure and electrical characteristics of the
distribution network. The GAT learning process enables the accurate
extraction of potential fault features which facilitating precise fault
localization. The results demonstrate that the proposed method
achieves higher fault localization accuracy and classification accuracy
compared to traditional artificial intelligence methods. Furthermore,
even when the network topology changes, the proposed method
maintains a higher accuracy rate, enabling more precise fault
localization. This evidence underscores the greater potential of our
proposed method in the domain of fault localization and it offer robust
support for ensuring the reliable operation and maintenance of power
systems. We will involve integrating fault recovery mechanisms and
exploring the potential of accurate fault localization techniques based on
GAT in facilitating fault recovery processes in future research.
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Nomenclature

D The degree matrix

L The Laplacian matrix

A The adjacency matrix

I The identity matrix

U The eigenvectors

λ The eigenvalues

F The Fourier transform

g The convolutional kernel function

f The signal vector

h/hʹ The input/output feature vectors

F/Fʹ The input/output node features

α The function that calculates the correlation between two nodes

W The weight parameter matrix

M The number of multi-head
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