
Intelligent substation virtual
circuit verification method
combining knowledge graph and
deep learning

Haiou Cao1*, Yue Zhang2, Yaming Ge1, Jiaoxiao Shen3,
Changfeng Tang1, Xuchao Ren1 and Hengxiang Chen2

1State Grid Jiangsu Electrical Power Company, Nanjing, China, 2State Grid Nanjing Power Supply
Company, Nanjing, China, 3State Grid Suzhou Power Supply Company, Suzhou, China

The correctness of the intelligent electronic devices (IEDs) virtual circuit
connections in intelligent substations directly affects the stability of the
system operation. Existing verification methods suffer from low efficiency in
manual verification and lack uniformity in design specifications. Therefore, this
paper proposes a virtual circuit automatic verification method that combines
knowledge graphs with deep learning. Firstly, this method utilizes expert
knowledge and relevant standard specifications to construct a knowledge
graph of virtual circuits, integrating knowledge from historical intelligent
substation configuration files into the knowledge graph. Then, leveraging
multi-head attention mechanisms and Siamese neural networks, it achieves
matching between the textual descriptions of virtual terminals and standard
virtual terminal descriptions. Additionally, a verification process for the virtual
terminal port address string is incorporated. Finally, experimental validation
confirms the effectiveness of the proposed method and strategy, further
enhancing the accuracy of virtual circuit verification.
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1 Introduction

As intelligent substations advance rapidly, the IED within substations has exhibited a
notable surge in the variety of types, a marked increase in automation levels, and a
continuous strengthening of safety requirements (Song et al., 2016; Huang et al., 2017). The
use of optical fibers in smart substations replaces the signal transmission through cables in
traditional substations. The correct configuration of the virtual circuit formed by the logical
connection of virtual terminals in the configuration file is a prerequisite for the reliable and
stable operation of the substation. For a typical 220 kV substation, there can even be
thousands of virtual circuits, andmanual verification alone is difficult to ensure the accuracy
of virtual circuit configuration. In terms of automatic verification, it is affected by non-
standard design, resulting in low verification accuracy and poor universality. To illustrate
the need for validation and the validation process, consider a simplified example of a bus
protection device and a line protection device in an intelligent substation. These devices
need to communicate correctly through virtual circuits to ensure system stability. The bus
protection device may send a signal indicating a fault condition to the line protection device.
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If the virtual circuit connecting these devices is misconfigured, the
fault signal may not be received correctly, leading to potential system
failures. Validating this virtual circuit involves ensuring that the
virtual terminal descriptions and port address data match the
expected configurations. These characteristics present both
opportunities and challenges for the development of automatic
verification of virtual circuits for IED. IED enable
communication by adhering to the unified digital standard
protocol IEC 61850 (Selim Ustun and M. Suhail Hussain, 2020).
Similarly, the testing of IED’s virtual circuits is also based on parsing
IED files in accordance with the IEC 61850 protocol to perform
virtual circuit verification (Zhao et al., 2023).

Currently, in verifying IED in intelligent substations through
digital network communication, manual inspection is required to
assess the correctness of corresponding virtual circuit circuits,
including events, signals, and data, based on the descriptions of
secondary equipment virtual terminals (Cui et al., 2018). This
process is essential for validating the effectiveness of protection
and assessing the accuracy of device parameter settings (Fan et al.,
2020). However, due to the lack of a unified standard for virtual
terminal descriptions, the verification of virtual circuits often relies
on manual inspection. With a multitude of equipment in
substations, the manual verification of virtual circuits is
characterized by inefficiency, prolonged testing cycles, and
susceptibility to variations due to personnel experience and
working conditions. This approach is prone to omissions and
errors, necessitating substantial effort for error correction
following detection.

In addressing this issue, scholars have explored automated
verification methods for virtual circuit circuits. Hao et al. (2020)
instantiated the configuration of IED virtual circuits through sub-
template matching of substation configuration description (SCD)
files, offering a novel approach to virtual circuit verification.
However, the scalability and generalizability of this method need
improvement. Zhang et al. (2015) proposed an expert system based
on SCD files to match virtual terminals and perform intelligent
substation verification, but the classification is relatively simple, and
the process is time-consuming. Some scholars used deep learning and
other intelligent algorithms to solve the verification problem in
intelligent substations. Oliveira et al. (2021) proposed a deep
learning based intelligent substation schedule monitoring method.
Chen et al. (2021) proposed the implementation of IED self
configuration based on the use of natural language processing
technology. Ren et al. (2020) utilized DCNN for text classification of
intelligent recorder configuration files to achieve port address mapping.
While effective for longer texts, this method has limitations with short
texts and does not consider other port address data. Wang et al. (2018)
calculated the semantic similarity of virtual terminals using word
embedding techniques for virtual circuit matching, demonstrating
good matching results. However, their tokenization method for
word embedding does not consider the global semantic information
of the text, leaving room for improvement. Through the above
discussion, it is evident that automated verification schemes for IED
virtual circuits primarily rely on two approaches: one utilizing template-
based matching that has high accuracy but low generalizability, and the
other employing intelligent algorithms or deep learning to classify or
calculate similarity in configuration information, offering strong
adaptability but it is limited to single-device configurations.

Knowledge graph is essentially a semantic network that
includes various semantic connections between different
entities (Chen et al., 2020), exhibiting superior interpretability
and data storage structural performance (Wang et al., 2017). It
has been widely applied in various fields, such as data retrieval,
recommendation systems, and knowledge reasoning (Guan et al.,
2019). For the power system, knowledge graph can integrate
dispersed knowledge within the power system, effectively
excavating useful latent rules from massive textual
information within the power system (Liu et al., 2023). At the
same time, the graph data structure of knowledge graph also
provides great convenience for human understanding. Currently,
research on knowledge graph in the field of power is still in its
nascent stage, with relevant literature mainly focusing on
application exploration and macro framework design. Li and
Wang (2023) proposed a multi-level, multi-category knowledge
graph application framework for assisting decision-making in
power grid fault handling and preliminarily elaborated on the key
technologies and solution approaches within the framework;
Tian et al. (2022) utilized the graph structure of knowledge
graph to express textual information and their relationships,
extracting the information required to construct knowledge
graph from operation and maintenance reports, realizing the
automatic construction of knowledge graph, and proposing an
automatic retrieval method for equipment operation and
maintenance.

Therefore, this study proposes a secondary virtual circuit
automatic verification method combining knowledge graph with
deep learning. This method integrates the advantages of prior
knowledge matching and similarity calculation of virtual terminal
information, utilizes knowledge graph for virtual circuit information
querying and extraction, and employs an improved Siamese neural
network to calculate the similarity of virtual terminal information.
Thus, achieving accurate and efficient secondary virtual circuit
automatic verification.

To provide a comprehensive understanding of our proposed
method, this study is organized as follows. Section 2 introduces
the construction method of a secondary virtual circuits
knowledge graph. Section 3 provides a detailed explanation
of the automatic matching process of virtual terminal
information based on the improved Siamese neural network
model, along with the automated verification process of virtual
circuits. Section 4 presents the experimental results and
performance evaluation, demonstrating the effectiveness of
the proposed method. Finally, Section 5 discusses the
implications of our findings and suggests avenues for future
research in this domain.

2 Knowledge graph construction

2.1 Intelligent substation configuration
file structure

In the intelligent substation secondary system, a single optical
fiber can transmit multiple channels of data and the one-to-one
correspondence of data transmission is ensured by using virtual
terminals. Virtual terminals are not physical terminals; they are used
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to identify loop signals between IEDs and serve as signal connection
points during the transmission of generic object-oriented substation
event (GOOSE) and sampled value (SV) messages. From the
perspective of information transmission, there are two main
categories: input virtual terminals and output virtual terminals.
From the perspective of message types, there are two main
categories: SV virtual terminals and GOOSE virtual terminals.

Taking a certain bus protection device and line protection device
as an example, a schematic diagram of virtual terminal connections
is illustrated in Figure 1. The bus protection device and line
protection device are connected via an optical fiber (solid line
with arrow in the diagram), facilitating unidirectional
transmission of information in the form of datasets. The virtual
terminals are interconnected through virtual connections (dashed
line with arrow in the diagram), forming a virtual circuit and thereby
achieving a one-to-one correspondence of data.

IEC 61850 is a communication standard among IEDs in
intelligent substations that ensures interoperability between
different devices. The data modeling technique in IEC
61850 is object-oriented and characterized by a hierarchical
tree structure. The order from top to bottom is as follows:
physical device, logical device (LD), logical nodes (LNs), data
object (DO), and data attribute (DA). Each object in this data
structure has a unique data index within the model. The virtual
terminal data format specified by the IEC 61850 standard is
represented as LD/LN. DO (DA), corresponding to logical
device/logical node. data object (data attribute). For the SV
virtual terminal, the data attribute (DA) is generally left blank.
Therefore, under the IEC 61850 standard, it is ensured that
virtual terminals exhibit significant similarities in their
data formats.

Additionally, to facilitate interoperability among devices from
different manufacturers, designers often include a brief Chinese
description on virtual terminals during the equipment design
process. This practice aims to aid designers in better
understanding and distinguishing virtual terminals associated
with devices from various manufacturers.

2.2 Virtual circuit knowledge graph

In an intelligent substation, IEDs encompass a variety of
devices, including relay protection devices, merging units, smart
terminals, and intelligent recorders. The virtual circuits
corresponding to different IEDs are markedly distinct, and
virtual circuits of the same type of IED may exhibit certain
variations under different states. The verification of virtual
circuits involves three aspects:

(1) Precisely determining all the virtual terminals and IEDs
essential for configuring the virtual circuit verification.

(2) Clearly defining the hierarchical paths and descriptive
features corresponding to different types of IED data formats.

(3) Assessing the correctness of the mapping relationships of
virtual terminals based on their distinctive features.

The construction process of knowledge graph involves the
following steps:

Step 1: Collect SCD files and other relevant documentation from
various intelligent substations. This data provides the raw input
needed to build the knowledge graph.

Step 2: Use natural language processing techniques to parse the
SCD files and extract relevant information such as IED types, virtual
terminal descriptions, and port addresses.

Step 3: Map the extracted information to the ontology. This
involves identifying the appropriate entities and relationships in the
knowledge graph and ensuring that the extracted data fits into
this structure.

Step 4: Use a Siamese neural network with multi-head attention
to calculate the semantic similarity between extracted virtual
terminal descriptions and the standardized descriptions in
the ontology.

Step 5: Integrate the matched data into the knowledge graph,
creating links between historical data and standardized models.
Manual verification is performed for matches below a predefined
threshold to ensure accuracy.

FIGURE 1
Schematic diagram of virtual terminal connections.
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Step 6: Continuously update the knowledge graph with new data
and validation results to improve its accuracy and
comprehensiveness.

This study employed a top–down approach to construct a
knowledge graph for the association of virtual circuits.
Standardization of virtual terminals for relevant IEDs in
intelligent substations was achieved, establishing a
standardized model for virtual terminals. Expert knowledge in
the context of intelligent substations refers to the domain-specific
insights and rules provided by experienced engineers and
technicians. This knowledge encompasses the correct
configurations of virtual circuits, typical faults, and the
standard practices for designing and maintaining these
systems. By modeling virtual circuits based on expert
knowledge according to IED types and associating them with
the standardized virtual terminal data relationships established
according to relevant specifications, a knowledge graph ontology
was formed. The construction process of knowledge graph is
shown in Figure 2. The ontology includes:

(1) Entities: These are the core components such as IEDs, virtual
terminals, LNs, DO, and attributes.

(2) Relationships: These define how entities interact with each
other. For example, an IED may have multiple virtual
terminals, and each terminal can be linked to specific data
attributes.

(3) Attributes: These are the properties or characteristics of the
entities, such as the type of data transmitted, the logical node
identifiers, and port address configurations.

The ontology provides a standardized model that facilitates
consistent representation and querying of virtual circuit information.

Utilizing historical data from intelligent substations for
knowledge learning, this study parsed historical SCD files of
intelligent substations to acquire the associative relationships of
IED virtual circuits. Based on the standardized virtual circuit model
in the knowledge graph ontology, relationships between
standardized virtual circuits and actual virtual circuits within
IEDs are established. The constructed virtual circuit knowledge
graph is shown in Figure 3. Although there are significant format
differences between virtual terminal address configuration data and
textual description information, information logic among the same
type of IEDs shares strong correlations, and the naming and
expressions of identical entities are generally uniform.

FIGURE 2
Knowledge graph construction method.
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Using dictionary list data obtained from processing SCD files,
three categories of information were extracted: IED device type,
virtual terminal address configuration data, and textual description.
The entities are linked in triplets: {device type, virtual terminal
address configuration data, textual description}. The initial
extraction results contained a considerable amount of redundant
data. This study removed numerical information from virtual
terminal address configuration data, retaining only alphanumeric
string information. An index is then constructed by merging IED
type and textual description information. The number and types of
virtual terminal address configuration data in each index are tallied.
Based on the statistical results, the triplets are transformed, retaining
only one triplet for each identical virtual terminal address
configuration data within the same index.

Establishing a knowledge graph using virtual circuit
information from historical SCD files has limitations. Therefore,
in this study, based on the similarity calculation between the
virtual circuit and the standardized model of virtual circuit
data, IED virtual terminals are automatically matched to
standardized virtual terminals. Subsequent manual verification
is conducted to establish the relationship between IED virtual
terminals information and the standard virtual terminals
information, achieving knowledge fusion. Knowledge fusion
involves integrating information from various sources to create
a comprehensive and coherent knowledge graph. In our method,
knowledge fusion occurs in two main steps:

(1) Historical Data Integration: We parse historical SCD files
to extract virtual circuit configurations from previously
implemented substations. This data includes IED types,
virtual terminal descriptions, and port address
configurations.

(2) Standardization and Matching: The extracted data is
compared against the standardized models defined in the
ontology. Virtual terminals are matched to their standardized
counterparts based on semantic similarity calculations and
expert-defined rules. This step ensures that the knowledge
graph accurately reflects both historical configurations and
standardized practices.

3 Virtual terminal automatic matching

Due to the predominantly Chinese short-text nature of the
virtual terminal textual descriptions, a text-matching model is
proposed that integrates a multi-head attention mechanism and a
Siamese network. The model utilizes a mixed vector of characters
and words as input to enhance semantic information, employing a
bidirectional gated recurrent unit (Bi-GRU) instead of bidirectional
long short-term memory (Bi-LSTM) to reduce parameters and
expedite training speed. The multi-head attention mechanism is
introduced as a separate module, employing an autoencoding layer
to capture semantic features from different perspectives. A Siamese

FIGURE 3
Knowledge graph structure diagram.
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network is constructed to transform sentences of varying lengths
into sentences of equal length, placing them in the same semantic
space. Weight sharing is implemented to reduce half of the training
workload. In the interaction layer, the mixed vector of characters
and words for one sentence interacts with that of another sentence,
utilizing the multi-head attention mechanism to acquire interactive
semantic features.

3.1 Siamese neural network model

The schematic diagram of the Siamese neural network model is
shown in Figure 4.

The Siamese network model (Liang et al., 2018) is broadly
divided into three parts: preprocessing, shared neural network,
and information aggregation. The processing flow of the Siamese
network is as follows: firstly, preprocess the obtained sentences to
obtain word vector representations; then, encode the obtained
sentence representations using a Siamese network constructed
with Bi-LSTM and attention mechanisms; finally, aggregate
information from the sentence representations processed through
the Siamese network.

(1) Preprocessing: To begin, sentences containing contextual
information are obtained. Each word in the sentence is
then represented using word vectors. A sentence is
represented as �VS1 ∈ Rm×d , �VS2 ∈ Rn×d , where m and n
represent the lengths of sentences S1 and S2 , respectively,
and d is the dimensionality of the word vectors.

(2) Shared neural network: After obtaining the representation of
sentences, the word vectors pass through a Bi-LSTM
algorithm to encode information about the sentences. A
standard Bi-LSTM algorithm is employed, representes by
Eqs 1–3 as follow:

ht
→� f U1xt, U3ht−1

��→
, bt
→( ) (1)

ht
← � f U2xt, U4ht+1

←��
, bt
←( ) (2)

yt � concat ht
→
, ht
←�( ) (3)

where, ht
→
, ht
←
, xt and yt represent the forward propagation hidden

layer state, the backward propagation hidden layer state, the input
values of the neurons, and the output values of the hidden layer state
at time t, respectively; ht−1

���→
represents the forward propagation state

at time t-1 and ht+1
���→

represents the backward propagation state at
time t + 1; U1, U2, U3 and U4 denote the weight matrices
corresponding to different components, respectively; bt

→
and bt

←
represent bias vectors in the forward propagation hidden layer
and backward propagation hidden layer, respectively; concat
denotes concatenate operation.

Following the Bi-LSTM layer, an attention mechanism is
introduced. The shared-weight neural network consists of the
aforementioned Bi-LSTM layer and an attention mechanism layer.

(3) Information aggregation: The processed representations of
the two sentences need to undergo information fusion, and
common fusion methods include fully connected neural
networks, calculating the cosine similarity, and the
Manhattan distance between the two vectors.

3.2 Interactive text matching model
integratingmulti-head attentionmechanism
and siamese network

The Siamese network model does not fully leverage interactive
information between texts, nor does it adequately capture the
representation capabilities of the text. Therefore, this study
proposed an improved model, the Interactive Text Matching
Model, which integrates a multi-head attention mechanism with
a Siamese network, as shown in Figure 5.

Chinese writing is logographic, meaning that each character
represents a word or a meaningful part of a word. This differs from
alphabetic languages where words are composed of letters.
Therefore, the network uses character-based embeddings in
addition to word-based embeddings to capture the nuances of
Chinese text. This dual representation ensures that both
individual characters and their combinations are effectively
represented.

This model initially preprocesses two sentences at the input
layer, obtaining mixed vectors for both sentences. The resulting
mixed vectors undergo normalization through a regularization layer.
Subsequently, these processed vectors are separately fed into the
difference unit and interaction unit.

In the difference unit, the input texts are first encoded using a
bidirectional GRU, constructing a Siamese network. The Manhattan
distance is then employed to aggregate the encoded information.
Simultaneously, within the interaction unit, the auto-encoding layer
is utilized to encode the input sentences separately, forming another
Siamese network. Subsequently, the semantic features from the self-
encoding layer undergo interaction through the multi-head

FIGURE 4
Siamese neural network.
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attention mechanism’s interaction layer. Finally, the interactive
information, along with the information from the difference unit,
is output to the fully connected neural network in the output layer.
The classification result is obtained through a sigmoid function.

3.2.1 Difference unit
Firstly, the training set is tokenized into word and character level

representations using the Jieba segmentation tool. For input
sentences Si, after word and character level segmentation, two
representations are obtained: a word sequence and a character
sequence. By loading the pre-trained Word2vec model weights,
each word or character can be mapped to a vector, extracting the
corresponding word/character vectors, the formal description of
sentence Si is given by Eqs 4, 5:

Si � W1
i ,W

2
i , . . . ,W

lw
i{ } (4)

Si � C1
i , C

2
i , . . . , C

lc
i{ } (5)

where lw and lc represent the number of words and characters in
sentence Si, respectively.

The length of the word vectors is extended tomatch the length of
the character vectors. Subsequently, concatenating the two
representation vectors yields the final hybrid representation
vector VSi, which combines both character and word

embeddings. This hybrid word-character vector is then fed into
the normalization layer.

VSi � v1Si , v
2
Si
, . . . , vNi

Si{ } (6)

where Ni represent the length of vector VSi.
In this study, the Bi-GRU structure was employed to replace the

Bi-LSTM algorithm in the Siamese network for text information
encoding. A GRU (Cho et al., 2014) is a variant of LSTM with a
simplified architecture. It employs an update gate in place of the
forget and input gates in LSTM and introduces a new hidden unit.
The model structure is simpler than that of LSTM and is represented
by Eqs 7–10:

zt � σ Wzxt + Uzht−1( ) (7)
rt � σ Wrxt + Urht−1( ) (8)

h̃t � tanh rt · Uaht−1 +Waxt( ) (9)
ht � 1 − zt( ) · ht−1 + zt · h̃t (10)

where zt and rt represent the update gate and reset gate, respectively;
h̃t represents the aggregation of the input xt and the output of the
previous hidden layer ht−1; σ denotes the sigmoid function, and tanh
denotes the hyperbolic tangent function; Wz, Uz, Wr, Ur, Ua, and
Wa are the weight matrices used in training.

FIGURE 5
Interactive text matching model.
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The update gate indicates how much of the current hidden state
is inherited by the new hidden state, while the reset gate indicates
howmuch information from the past hidden state should be ignored
and reset using the current input. GRU has fewer parameters
compared to LSTM, making training faster and requiring less data.

3.2.2 Interaction unit
The Siamese network model introduces the attention

mechanism directly after the neural network to extract essential
word information from sentences. However, it does not adequately
extract the semantic features of sentence pairs and let them interact.
Therefore, this study treated the multi-head attention mechanism as
a separate unit for computation, extracting interaction features
between text pairs. The basic attention network is segmented into
different sub-networks, learning more semantic features from
various perspectives, with the aim of achieving a comprehensive
interaction between semantic features. The interaction unit
comprises the autoencoding layer, interaction layer, and pooling
layer, as illustrated in Figure 6.

(1) Autoencoding layer

In the autoencoding layer, the mixed-word vectors VS1 and VS2

are separately encoded. This layer consists of two parts, the encoder

and the decoder, forming a symmetrical structure. Both the encoder
and decoder typically comprise three-layer neural networks,
including input, hidden, and output layers, as illustrated in
Figure 7. Here, the output of the encoder serves as the input to
the decoder, and the outputs of the encoder and decoder are
represented by Formulas 11, 12, respectively:

Zi � f1 WeVSi + be( ) (11)
VSi

′ � f2 WhĤ + bh( ) (12)

where We and Wh represent weight matrices; be and bh are bias
vectors; f1 and f2 are activation functions; Ĥ represents the hidden
layer vector.

The autoencoder network extracts high-dimensional features
through the encoder, reducing the dimensionality to process the
output text features, denoted as Zi. The decoder, employing a
symmetric network structure, reconstructs the input VSi of the
encoder to obtain VSi

′ aiming to fit an identity function using neural
networks and enhance the feature extraction capability of the encoder.
The reconstruction process utilizes mean square error as the loss
function, and L2 regularization is employed to prevent model
overfitting, thereby improving the model’s performance on the test set.

(2) Interaction layer

FIGURE 6
Interaction unit structure diagram.

Frontiers in Energy Research frontiersin.org08

Cao et al. 10.3389/fenrg.2024.1395621

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1395621


In the encoding layer, each text is individually encoded,
obtaining diverse contextual semantic information to enhance the
representation of text features. However, due to the Siamese
network’s inclination to represent semantic feature vectors of
different lengths in the same semantic space, the interaction
information between texts is overlooked. Compared to typical
Chinese text, descriptions of virtual terminals consist of shorter
sentences, and there is no contextual semantic relationship between
sentences. Therefore, the interaction layer is introduced to
separately extract word and sentence interaction features between
text pairs. Each word can interact with words in the other text,
capturing syntactic and semantic dependencies between text pairs.

This layer is introduced to address the deficiency of the Siamese
network in semantic interactions.Multi-head attentionmechanisms are
employed to extract interaction information between the two texts. The
mixed-word vectors after autoencoding VS1

′ and VS2
′ are concatenated to

form Vtext, and then utilize multi-head attention based on scaled dot-
product attention (Vaswani et al., 2017) to capture interactions between
pairs of sentences and can be described by Eq. 13:

Attention Q,K,V( ) � softmax
QKT��
dk

√ V( ) (13)

where Q, K, and V represent the query vector, key vector, and value
vector respectively, with dk being the dimensionality of key vector.
In this study, self-attention is employed to extract features of Vtext,
thus Q, K, and V are all equal to Vtext.

The attention mechanism acts as semantic feature extraction
and encoding, providing each word with three vectors. Each
operation involves calculating the similarity between a word’s
query vector and all key vectors through dot-product, resulting
in weight coefficients representing the word’s relevance to other
words. These coefficients are then used to weigh all value vectors to
obtain semantic encoding. Multi-head attention allows different
attention weights to be assigned to different positions, acquiring

better semantic information and effectively preventing overfitting, as
describes in Eqs 14, 15 (Guo et al., 2019):

Multi − head Q,K,V( ) � concat head1, head2, . . . , headH( )WO

(14)
headi � Attention QWQ

i , KW
K
i , VW

K
i( ) (15)

where WO, WQ
i , W

K
i , W

V
i represent the weight matrix.

(3) Pooling layer

The pooling layer’s function is to extract global features from the
word vector sequences. This includes both max pooling and average
pooling. Each dimension of the word vector reflects different
information, and pooling operations help to extract comprehensive
information from the word vectors. Considering that max pooling
retains prominent information from the word vectors, while average
pooling retains information from all word vectors (Bieder et al., 2021),
we simultaneously use both max pooling and average pooling, and
then concatenate the results, as describes in Eqs 16–18:

Vtext,avg � ∑NVtext

i�1

Vi
text,att

NVtext

(16)

Vtext,max � max
i∈ 1,NVtext[ ]V

i
text,att (17)

Vtext,pool � concat Vtext,avg, Vtext,max( ) (18)

where Vtext,avg, Vtext,max, Vtext,pool represent average pooling result,
maximum pooling result, and pooling layer result. Vtext,att

represents the output result of multi-head attention in the
interaction layer; NVtext represents the length of vector Vtext,att.

For the output, the results Xitac and Xdiff from the interaction
unit and the difference unit are hybrid through a fully connected
neural network. The final classification result is obtained using the
sigmoid activation function, as describes in Eqs 19, 20:

R � sigmod FC Xitac, Xdiff( )( ) (19)
FC X( ) � relu Wx + b( ) (20)

where W represents the weight matrix; b represent bias vector. relu
represents the rectified linear unit

The model utilizes mean squared error as the loss function.
Additionally, the Adam optimization algorithm is applied to
enhance the convergence speed, as describes by Eq. 21 (Reyad
et al., 2023).

LossMSE � 1
N

∑N
1

Yi − Ŷi( ) (21)

whereN represents the number of samples; Yi and Ŷi represent the
true value and predicted value, respectively.

3.3 Verification method based on port
address data

Through experiments, it was observed that accurately
calculating the textual similarity values can reliably detect the
desired virtual terminals. However, in some cases, there may be

FIGURE 7
Autoencoder structure diagram.
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more than one matching result. This is attributed to incomplete or
the repetitive construction of certain virtual terminal description
texts. To distinguish virtual terminal ports in such cases, reliance on
port address data information becomes crucial, as each virtual
terminal’s port address is unique.

Therefore, this study introduced a verification process based on
port address configuration data to address situations where textual
descriptions alone cannot establish mapping for the data. Leveraging
port address configuration data helps discern matching relationships
due to the systematic naming patterns inherent in port address
configuration data, with most strings carrying practical significance.

The longest common substring (LCS) method proposed by
Amir et al. (2020) was employed to assess the similarity of
virtual terminal port addresses. The calculation of the virtual
terminal port address similarity involves evaluating the similarity
of four attributes constituting the virtual terminal port address:
logical device, logical node, data object, and data attribute. The
weighted average of these individual similarities is taken as the
overall similarity of the virtual terminal port address.

3.4 The automatic verification process for
virtual circuit

In intelligent substations, the virtual circuit information of
various IEDs is integrated into the station-wide configuration

SCD file. Before verification, the SCD file is parsed to obtain the
IEDs that need to be checked. The output interface addresses and
descriptions are extracted from the SCD file to form the output
interface information for the corresponding IED.

During the verification process, the knowledge graph provides
the reference model against which current virtual circuit
configurations are compared. This comparison helps in
identifying discrepancies and potential faults. The verification
process begins with the IEDs in the knowledge graph. The
matching is conducted along the path indicated by the arrows in
Figure 8. The device model information parsed from the SCD file is
used to search for the corresponding IED in the knowledge graph.
The virtual terminal information extracted from the SCD file for the
identified IED are then matched with the virtual terminal
information in the knowledge graph, specifically matching them
to standard virtual terminal information. This process enables the
detection of all virtual circuits for the specified IED, achieving
automatic verification of virtual circuits in intelligent substations.

If the corresponding IED cannot be matched in the knowledge
graph during verification, a search is conducted based on the device
type to find the standard output interface addresses corresponding
to that device type in the knowledge graph. Subsequently, the
similarity between the virtual terminal information of the IED
and the standard virtual terminal information is calculated. Any
matches below a predefined threshold undergo manual
confirmation to establish the association between the IED’s

FIGURE 8
Automatic verification path.
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virtual terminal addresses and the standard virtual terminal
addresses. This association is then stored in the knowledge graph
to facilitate knowledge updates.

4 Case study

4.1 Dataset

To validate the effectiveness of the proposed configuration method,
a sample set was selected comprising 10 SCD files from 220 kV
intelligent substations and 20 SCD files from 110 kV intelligent
substations. These samples encompassed 3,869 IEDs and
29,110 records of configured virtual circuits. To conduct
experimental analysis, the dataset was divided into training, testing,
and validation sets in a ratio of 7:2:1. Since virtual circuit configurations
vary significantly across intelligent substations with different voltage
levels, data sets were randomly extracted from SCD files of different
voltage levels to ensure the generalizability of the proposed method. A
subset of the data samples is presented in Table 1. It is evident that the
textual descriptions of virtual circuit endpoints share significant
similarities, yet there are distinct differences in the address data. In
the virtual terminal address data, most strings carry meaningful
information; for instance, “MU” signifies a merging unit, and
“UATATR” denotes voltage sampling. However, even for the same
voltage sampling virtual terminal, the configuration data for virtual
terminal addresses can be entirely different. This discrepancy arises due
to varying naming conventions among different manufacturers’ IEDs,
and certain strings such as “mag” and “AnIn” pose challenges in
determining their actual significance. Despite such differences in
address configuration, the textual descriptions exhibit a high degree
of similarity. This observation underscores the rationale behind the
main focus of this study on matching information points primarily
through text.

4.2 Implementation

Our model incorporated both word and character vectors,
utilizing pre-trained Word2Vec (Li et al., 2018) embeddings
trained from the Chinese Wikipedia and the electrical vocabulary

corpus extracted from the Sogou InputMethod, it was then fine-tuned
on our dataset for virtual terminal matching with a reduced learning
rate of 0.0001 to prevent overfitting on the smaller dataset. The fine-
tuning process lasted for 10 epochs. Each vector was set to a
dimensionality of 300. To mitigate overfitting and enhance
accuracy, Dropout probability was introduced during the
experimentation. Following the input layer, sentence vectors are
fed into a dual-layer bidirectional GRU with a hidden layer
dimension of 128 for each GRU. The attention mechanism
comprised eight units, and a rectified linear unit served as the
activation function. To achieve optimal experimental results, early
stopping was implemented as a training strategy.

In the experiments, the dimension of the word vectors used to
initialize embedding vectors was 100, and we fixed the word
embedding. The maximum length of the input sequence we
chose was 15, and characters that were not in the dictionary
were replaced with 0. The model was trained to minimize the
cross-entropy of error loss through backpropagation and the
Adam optimization algorithm was used with a 0.001 learning
rate. The dropout rate was 0.5.

The experimental evaluation drew inspiration from concepts in
machine learning, employing precision and recall. The comparative
results can be categorized into true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). The confusion matrix, as
illustrated in Table 2, served as the basis for the performance
evaluation using the accuracy and F1-score, as describe by Eqs 22–25:

recall rate � TP

FN + FP
(22)

precision rate � TP

FP + TP
(23)

accuracy � TN + FP

FN + TN + FP + TP
(24)

F1 − score � 2 p
precision rate p recall rate

precision rate + recall rate
(25)

4.3 Baseline methods

In the experiment dataset, eight baseline methods were
employed, including representation-based text classification

TABLE 1 Partial data samples.

Order Input virtual terminal Output virtual terminal

Description Address Description Address

1 A-phase voltage sampling value MU/UATVTR1. Vol1 Voltage A-phase measurement value SVLDO1/SVINUATVTR1. Vol2.
Inst mag. I

2 B-phase voltage sampling value MU/UBTVTR1. Vol1 Voltage B-phase measurement value SVLDO1/SVINUBTVTR1. Vol2.
Inst mag. I

3 C-phase voltage sampling value MU/UCTVTR1. Vol1 Voltage C-phase measurement value SVLDO1/SVINUCTVTR1.
Vol2.inst mag. I

4 Merge unit optical port transmission
optical power

PIGO/GOINGGIO17. AnIn10.
mag. f

Bus merging unit board 1 optical port
1 optical power

MUGO/SCLI9. LigIntes. mag. f

5 Intelligent terminal network port
1 abnormality

PIGO/GOINGGIO
1. SPCSO6. stVal

Bus intelligent terminal network port 1 is
abnormal

RPIT/GOAlmGGI
O1. Alm6. stVal
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models such as Bi-LSTM, CNN, TextCNN (Cao and Zhao, 2018);
interactive-based text classification models such as ESIM (Chen
et al., 2016), Siamese Bi-LSTM (Li et al., 2021), Attention-Bi-LSTM
(Xie et al., 2019); and pre-trained based text classification models
such as BERT.

In parameter settings, we strived to ensure consistency across
various models as much as possible; in cases where consistency
could not be guaranteed, efforts were made to maintain consistency
with the original literature. Specifically, for CNN and TextCNN, a
two-layer feedforward neural network was employed, with each
layer having 128 hidden units. For Bi-LSTM, ESIM, Siamese Bi-
LSTM, and Attention-Bi-LSTM, the hidden units for both the Bi-
LSTM and feedforward neural network were set to 256.
Additionally, consistent with both baseline methods and the
proposed approach, Dropout (uniformly set to 0.5) was utilized
to mitigate overfitting issues, while training was conducted using the
Adam optimizer with a learning rate of 0.001. Regarding BERT, we
first separated text pairs in the samples using the SEP token and then
inputted them into the BERT-Base model. The vector corresponding
to the [CLS] token at the head was extracted as the matching vector
for the two sentences, which was then fed into a feedforward neural
network to obtain the matching results for the two sentences. Due to
convergence issues with a high learning rate, the learning rate for the
BERT model was set to 0.0001.

4.4 Results and discussion

4.4.1 Comparative experiment
In order to substantiate the superiority of the proposed text

matching model, which integrates multi-head attention and Siamese
neural networks, experiments were conducted. The results of the
comparisons are presented in Table 3.

The experimental results showcased in Table 3 highlight the
effectiveness of our proposed text-matching model compared to
traditional text classification approaches. Our proposed text
matching model outperformed all baseline models, achieving an
impressive accuracy of 97.52% and an F1-score of 97.89%. The
integration of multi-head attention and Siamese neural networks
enables our model to effectively capture semantic similarities
between sentences. The substantial performance improvement of
our model over traditional approaches underscores the importance
of integrating multi-head attention and Siamese neural networks for
text-matching tasks. The superior accuracy and F1-score achieved
by our model signify its robustness and effectiveness in capturing
semantic relationships between sentences.

Table 3 displayed the training times for nine experimental
models on training and test dataset. Bi-LSTM, CNN,Attention-
Bi-LSTM and TextCNN demonstrated a clear advantage in

training time, while ESIM and Siamese Bi-LSTM required longer
training times. Our model integrated Siamese network, Bi-GRU, and
muti-head attention, resulting in a complex structure, hence its
training time was only surpassed by the structurally complex BERT.
In practical applications, since text matching model training
generally occurs offline, the model’s time complexity requirement
is not high, with more emphasis placed on the accuracy of similarity
judgment. Additionally, the training time of our model is essentially
the same as that of the baseline Siamese Bi-LSTM model. This
indicates that in the task of virtual terminal matching, the extraction
of interaction features from text pairs based on interaction units has
minimal impact on the model’s time complexity.

4.4.2 Ablation experiment
In order to comprehensively understand the contribution of

different aspects of our proposed model, we conducted an ablation
study. We explored various granularities, pooling strategies
(average, max), multi-head attention mechanisms, and the impact
of incorporating address string validation on experimental results.
The findings are summarized in Table 4.

The experimental results indicate that utilizing both character
and word embeddings as input can capture more textual
information. Employing both max-pooling and average-pooling
facilitates effective interaction with semantic information in
sentence pairs. The incorporation of attention mechanisms
enables the model to capture diverse semantic relationships,
thereby enhancing its performance. Additionally, integrating port
address validation improves the model’s accuracy and F1-score,
ensuring its robustness in text matching tasks.

4.4.3 Parameter sensitivity experiment
In the experiment, the variation in the number of heads in the

multi-head attention mechanism and the layers in the GRU has a
certain impact on the model. Therefore, this study employs
sensitivity analysis to investigate and analyze the parameters.
Sensitivity analysis primarily involves analyzing the effect of
changing a specified piece of information under the assumption
of a certain state, designating it as the independent variable, and
examining how this designated independent variable affects changes
in other variables. In this experiment, we set the independent
variables as the number of heads in the multi-head attention
mechanism and the layers in the GRU, exploring their effects on
the trend of virtual terminal matching results.

(1) Impact of the number of heads in multi-head attention

Multi-head attention enables the aggregation of information
from multiple dimensions, facilitating a better understanding of
semantic information from different spatial perspectives and
preventing overfitting. Leveraging this characteristic, this study
tests the number of heads in the multi-head attention mechanism
on the validation set, sequentially setting the number of heads as [2,
4, 6, 8, 10] for experimentation. The most suitable number of heads
is selected to configure parameters for the pseudo-anchor matching
model, as shown in Figure 9 with the experimental results.

According to the experimental results in Figure 9, it is evident
that on the validation set, when the number of heads in the multi-
head attention mechanism reaches 8, the F1-score and accuracy

TABLE 2 Confusion matrix.

Reality Matching result

Positive example Negative example

True TP FN

False FP TN
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attain their maximum values at 85.01. At this point, the model
demonstrates optimal performance. As the number of heads
gradually increases or decreases from 8, the F1-score and
accuracy of the model progressively decreases. When a single
attention head is applied to a sentence, although each word
embedding contains embeddings from other words, it is
predominantly influenced by the embedding of the word itself.

However, utilizing multiple heads enables attention to be
concentrated at different positions, aggregating multi-layered
information. The advantage of the multi-head attention
mechanism lies in its ability to balance the model, providing an
additional space for parameter adjustment. This indicates that
neither an excessive nor insufficient number of heads is optimal;
rather, a balance is required. Both an excess or a deficiency in the
number of heads will affect the virtual terminal matching results.
Through testing, it is observed that in this model, the optimal
performance in virtual terminal matching is achieved when the
number of heads is set to 8.

(2) Impact of GRU layers

GRU strengthens the connection between vocabulary and
context when processing information, enriching the semantic
information of features and alleviating the problem of differences
between sentences. The different layers of GRU affect the complexity
of the model and have a certain impact on data fusion. In this study,
GRU is utilized to process information. To investigate the influence
of GRU layers on the model, experiments are set up, selecting GRU

TABLE 3 Comparative experiment results.

Model Accuracy (%) F1-score (%) Training time (s)

Bi-LSTM 82.64 83.15 2,310

CNN 83.69 84.27 983

TextCNN 93.77 93.89 1280

ESIM 94.13 94.49 3379

Siamese Bi-LSTM 95.56 95.67 3529

Attention-Bi-LSTM 94.02 94.06 2,581

BERT 96.17 96.28 62,788

Our model 97.52 97.89 3752

TABLE 4 Ablation experiment results.

Model Accuracy (%) F1-score (%)

Only word 93.78 93.89

Only character 94.16 94.53

Average pooling 95.23 95.43

Max pooling 95.31 95.39

Without multi-head attention 95.87 96.18

Without port address validation 94.41 94.93

Our model 97.52 97.89

FIGURE 9
Accuracy and F1-score with different number of heads.
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FIGURE 10
Accuracy and F1-score with different number of GRU layers.

FIGURE 11
Verification results of virtual circuit verification system.

TABLE 5 Comparison of verification results.

Verification method Number of virtual circuits Accuracy (%) Time (min)

Manual verification 6000 92 160

Our model 6000 99 3
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layers as [1, 2, 3, 4, 5], and testing and analyzing them on the
validation set. The specific results are shown in Figure 10.

From Figure 10, it can be observed that when the number of
GRU layers is set to 2, the model performs better compared to
other values. This is primarily because when the number of GRU
layers is 1, the model can only learn information in one
direction, resulting in poor fitting to the dataset and inferior
performance in extracting information compared to multi-layer
GRU. However, when the number of layers increases to 2, GRU
can learn information in two directions, enabling better
learning of forward and backward contextual information.
This facilitates capturing deeper relationships among hidden
states, enriching the textual representation of vocabulary, and
obtaining better text representation. However, due to the
existence of GRU, both memory and time overheads increase.
Therefore, as the number of GRU layers continues to increase,
the time overhead increases with the increase in the number of
neurons in GRU, and memory overhead also becomes
significant. Moreover, the problem of vanishing gradients
between layers becomes more apparent, leading to issues
with data generalization and a higher likelihood of
overfitting. Hence, this study sets the number of GRU layers
to two to better learn information from various aspects and
achieve better virtual terminal matching results.

4.4.4 Engineering application
The SCD editing tool modifies the SCD file in the sample to be

verified. This process manually sets the error virtual circuits. A
virtual circuit verification system based on the established
knowledge graph and virtual circuit verification process, the
verification results are shown in Figure 11. When a virtual
circuit does not exist in the verification template based on the
SCD file that passed the verification, the program automatically
identifies the newly added virtual circuit and marks it as “!” as a
reminder. When a virtual circuit is missing, the program
automatically identifies the missing virtual circuit and marks it
“?” as a reminder. The standard terminal library and virtual circuit
verification template file based on the proposed method
automatically verify the virtual circuit of the SCD file. The
verification results were correct, showing the effectiveness of the
proposed method.

In order to demonstrate the feasibility of system application,
the efficiency and accuracy of intelligent verification and
verification designed in the article were compared with manual
verification by selecting the same number of intelligent substation
configuration file verification tasks. The comparison results are
shown in Table 5. It can be intuitively observed that compared with
manual verification, the application of automatic verification
technology for virtual circuit verification can help improve the
efficiency and accuracy of intelligent substation virtual circuit
verification.

5 Conclusion

In addressing the complexities associated with the
verification of virtual circuits in intelligent substations, this
study introduces a novel method that synergizes the strengths

of knowledge graphs and deep learning. Through this fusion, we
not only enhance the accuracy of virtual circuit verification but
also set a new benchmark that surpasses the capabilities of
traditional manual inspections and existing automated
solutions. Our approach, characterized by its innovative
integration of a Siamese neural network with a multi-head
attention mechanism, demonstrates robust performance in the
context of virtual terminal matching. Additionally, the inclusion
of virtual terminal address string verification further enhances
the accuracy of virtual circuit verification, presenting a new
method for the verification of virtual loops in intelligent
substations.

Future research will explore the method’s adaptability to real-
time configuration changes and potential integration with existing
substation management systems, aiming to provide a more
cohesive and efficient operational framework for intelligent
substations and the broader power system. In addition, as
intelligent substations continue to evolve, incorporating
advancements such as IoT devices and advanced
communication protocols, future research will focus on
adapting our verification method to these new technologies.
This includes exploring how to effectively process and integrate
real-time data from a variety of sources to continuously update and
refine the verification process.
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