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The development of anti-rhythmic carbonate reservoirs in the Middle East often
encounters challenges such as water hold-up and reverse coning during the
water injection process, leading to premature water breakthrough and various
water-out issues. The unclear understanding of these phenomena, attributed to
strong reservoir heterogeneity, results in a relatively low recovery degree in water
injection development. This paper investigates the mechanisms behind water
hold-up and reverse coning phenomena, offering detailed solutions. Numerical
models of the oil reservoirs were developed, and an extensive study of influencing
factors, including reservoir types, Kv/Kh, water injection pressure differential,
wettability, and perforation position, was conducted to unveil the underlying
mechanisms. Key findings indicate that the water hold-up phenomenon is
influenced by capillary force barriers due to wettability and high-perm streaks,
while the reverse coning phenomenon depends on the combined forces of
gravity, capillary force and downward production differential among which
downward production differential is the dominant factor compared to
capillary force and gravity. The study also proposes a differential perforation
principle tailored to different water-out types to enhance vertical sweep
efficiency. The differential perforation principle is as follows: the optimal
perforation position is at top layer and the optimal perforation length
approximately accounts for 1/4 of the total oil layer thickness for water-out in
bottom; the avoidance perforation height in top accounts for 1/6 of the total oil
layer thickness and the optimal perforation length approximately accounts for
1/2 of the total oil layer thickness for water-out in top; the avoidance perforation
height in top and bottom accounts for 1/5 and 2/5 of the total oil layer thickness
respectively for water-out in both top and bottom.
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1 Introduction

With the global population explosion and the increasing demand for energy, it is crucial
to enhance oil production from existing reservoirs (IEA, 2022). Carbonate reservoirs
contribute significantly to daily oil production, with over 60% of the world’s remaining
conventional oil reserves located in these formations (Ya Yao et al., 2018; Anas M. Hassan
et al., 2023). Water injection is a vital method for improving oil recovery in carbonate
reservoirs in the Middle East (Bisweswar G et al., 2020; Barros E GD et al., 2023; Ghalib H B
et al., 2023; Farnetano R P et al., 2023; Wu Y and Hu D et al., 2023). However, challenges
such as premature water breakthrough pose significant obstacles to achieving optimal oil
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recovery (Li Y et al., 2020; AL-Otaibi B et al., 2021; Dewever B et al.,
2021; Yang C and Yang S et al., 2022; Wei C et al., 2022).

The reasons behind premature water breakthrough and poor
vertical sweep have been extensively discussed, with high-
permeability streaks identified as a primary cause (Ghedan,
S.,2010; Feng, Q. et al., 2011; Zhang, Q et al., 2016; Liu, L. et al.,
2016; Feng D. et al., 2022a). These streaks, often resulting from
dissolution processes, can exhibit permeability one or two orders of
magnitude higher than the rest of the formation (Balaky S M et al.,
2023; Mogensen K et al., 2020; Dewever B et al., 2021; Jun, W et al.,
2016; Liu, H et al., 2021). Although the volume of high permeability
streak is usually a few percent or less of the total formation, they
contribute the majority portion of the fluid flow in the reservoir and
may lead to pre-matured water breakthrough of injected water.

In the subject reservoir, characterized by large thickness and
with high-permeability streaks developed inside, water
breakthrough along the top streak has been observed in several
wells. Interestingly, in a certain area, the injected water stably exists

in the top high permeability streak and does not migrate downwards
under the gravity differentiation effect, which can be so called water
hold up phenomenon. In other areas, the injected water migrates
along the top high permeability streak initially and then downwards,
forming the so-called reverse coning phenomenon (Figure 1). The
phenomena of water hold-up and reverse coning have been widely
reported and studied in giant carbonate reservoirs in the Middle
East, necessitating a comprehensive understanding of their
mechanisms (Pamungkas S et al., 2020; Singh M et al., 2020;
Thomas T et al., 2020; Fabbri C et al., 2023; Barragan E et al.,
2023; Jie C et al., 2023).

Despite the extensive literature on intra-dense intervals and
Kv/Kh for explaining these phenomena, the effect of capillary
forces is often underestimated, particularly in numerical
simulations where reliable experimental data is lacking (Feng D
et al., 2018; Pamungkas S et al., 2020; Pandey V K et al., 2023;
Fabbri C et al., 2021). Given that most carbonate reservoirs are of
mixed or oil-wet nature, detailed research on the impact of

FIGURE 1
Schematic demonstrating water-out mechanism in Reservoir B (1. water over ride; 2. water hold up phenomenon; 3. reverse coning phenomenon).

FIGURE 2
Three main reservoir types in Reservoir B.
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negative capillary forces is crucial (Arif M et al., 2020; Nowrouzi I
et al., 2020; Faramarzi-Palangar M et al., 2021; Feng D et al., 2021;
Ekechukwu G K et al., 2021; Siyal A et al., 2021; Esfandyari H et al.,
2021; AlZaabi A et al., 2023; Boampong L O et al., 2023; Siyal A
et al., 2023; Samani M K et al., 2023). Current methods to improve
water sweep efficiency involve wettability alteration through low

salinity water flooding and optimizing perforation intervals
(Vermolen, E et al., 2014; He, E et al., 2015; Xinmin, S et al.,
2018; Lee, Y et al., 2019; Snosy M F et al., 2022; Feng D et al., 2022b;
Khurshid, I et al., 2022; Tackie-Otoo, B N et al., 2022a; Souayeh, M
et al., 2022; Nascimento, F P et al., 2023). However, the
implementation of low salinity water flooding is challenging in
the Middle East due to water resource limitations, making the
optimization of perforation intervals the most effective strategy.
Yet, the lack of differentiated perforation principles corresponding
to different water-out modes greatly hinder the development effect
of water injection.

This paper includes an introduction to the subject reservoir, a
conceptual model based on reservoir characteristics, an investigation
into the role of capillary forces in the water hold-up phenomenon,
an exploration of the mechanism behind the reverse coning
phenomenon, and the proposal of a differential perforation
principle for various water-out types. The paper is concluded
with a summary of principal findings.

2 Reservoir description

The carbonate reservoir under investigation is a component of
Field B located in onshore Iraq. The structural orientation of Field B
forms a gentle NW-SE long-axis anticline without any faults. The
field spans approximately 21.5 km long and 5.4 km wide, featuring a
closure area of around 172 km2 at the reservoir’s top. The primary
pay zone of Field B is the reservoir B, which comprises eight small
layers. The average thickness of the reservoir and Net-to-Gross
(NTG) ratio are 80 m and 0.98, respectively. Notably, interlayers are
only observed in local areas, indicating the reservoir’s stability and
continuity.

Reservoir B is a typical anti-rhythmic reservoir, and a detailed
reservoir description highlights significant heterogeneity

FIGURE 3
Water-out intervals of wells in Reservoir B.

TABLE 1 Model basic parameters.

Model parameters Value Unit

Grid 29*29*168 —

X-direction grid block size (Dx) 50 m

Y-direction grid block size (Dy) 50 m

Z-direction grid block size (Dz) 0.5 m

Number of model grids 141,288 —

Original formation pressure of oil reservoir 6,300 psi

Original oil saturation 0.75 (average) —

Porosity of upper zone 18.5 %

Porosity of top high-perm streak zone 20.5 %

Porosity of lower zone 17.5 %

Porosity of bottom high-perm streak zone 20.5 %

Permeability of upper zone 80 mD

Permeability of top high-perm streak zone 1,000 mD

Permeability of lower zone 15 mD

Permeability of bottom high-perm streak zone 400 mD

Kv/Kh 0.79 —

In-situ oil viscosity, mPa.s 1.36–1.83 —
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between layers, with the development of high-permeability
streaks within the reservoir. Three main reservoir types are
identified: those with no high-perm streaks, those with a high-
perm streak at the top layer, and those with high-perm streaks at
both the top and bottom layers (Figure 2). The top high-perm
streak is primarily located in the lower part of Layer I, while the
bottom high-perm streak is predominantly in Layer VII. For
reservoirs with no high-perm streaks, they are categorized into

two zones: Upper zone (I+III) and lower zone (III~Ⅷ). For
reservoirs with top high-perm streaks, they are categorized into
three zones: Upper zone (Ⅰ+Ⅱ), top high-perm streak zone in
upper zone and lower zone (Ⅲ~Ⅷ). When both top and bottom
high-perm streaks are present, the reservoir is divided into four
zones: Upper zone (I+II), top high-perm streak zone in upper
zone, lower zone (III~VIII), and bottom high-perm streak zone
in lower zone.

FIGURE 4
Three conceptual numerical models.

FIGURE 5
Simulation results under different Kv/Kh.
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The permeability of high-perm zone is 5~15 times higher than
the upper zone and the permeability of upper zone is 5~10 times
higher than the lower zone. Considering the reservoir
characteristics, producers are predominantly perforated in the
upper zone, while injectors are mainly perforated in the bottom
(VII+VIII) to maximize oil productivity and mitigate water
breakthrough, leveraging the law of oil-water gravity
differentiation. However, recent well logging data reveals three
types of water-out: water-out in the top, water-out in the bottom,
and water-out in both the top and bottom (Figure 3). Notably,
incidents of water breakthrough in the top thief zone and water
hold-up over the past 2 years pose significant challenges to new well
perforation and the balanced development of the oilfield. Therefore,
it is imperative to investigate the mechanisms behind the water hold-
up phenomenon and explore differentiated perforation principles
for the three types of water-out.

3 Conceptual model building

To capture the characteristics of the reservoir B, three
conceptual numerical models corresponding to three reservoir
types were established (Figure 4). To finely describe the
reservoir’s features, a rectangular reservoir with dimensions of
I × J × K, specifically 50 m × 50 m × 0.5 m, is selected as the
research area. The total grid number for this model is 141,288 (29 ×

29 × 168). Each model is designed to represent a reservoir type and
includes specific vertical zones. Model 1 incorporates three vertical
zones, consisting of the upper zone, lower zone, and a top high-
permeability streak. Model 2 features four vertical zones,
encompassing the upper zone, top high-permeability streak,
lower zone, and a bottom high-permeability streak. In Model 3,
two vertical zones were defined: the upper zone and the lower zone.
Porosity and permeability values for each zone were derived from
core experiments, with these parameters being constant within
each zone. A detailed summary of geological parameters is
provided in the table (Table 1). Additionally, the research area
adopted a reverse nine-point well pattern, where producers are
perforated in the top layers and injectors are perforated in the
bottom layers. Initial fluid distributions within the numerical
model were established based on drainage capillary pressure
curves, with imbibition capillary pressure utilized during the
water flooding period.

4 Results and discussions

4.1 Investigation of water hold up
phenomenon

Numerous studies in the literature have identified dense layers,
Kv/Kh, water injection pressure differential, and wettability as

FIGURE 6
Simulation results under different injection pressure differential.

Frontiers in Energy Research frontiersin.org05

Junshuai et al. 10.3389/fenrg.2024.1394282

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1394282


potential factors contributing to the water hold-up phenomenon.
However, pressure measurement data for reservoir B indicates good
connectivity both horizontally and vertically, suggesting the absence
of dense layers. Therefore, the investigation focuses on sensitivity
analysis of Kv/Kh, water injection pressure differential, and
wettability, with a particular emphasis on the top high-
permeability streak associated with the water hold-up
phenomenon. Conceptual numerical Model 1 is selected for
subsequent research.

4.1.1 Sensitivity on Kv/Kh

The measured range of Kv/Kh from core experiments is
concentrated in the range of 0.1~1.0. To assess the impact of Kv/
Kh on the water hold-up phenomenon, three simulated cases were
conducted with Kv/Kh values of 0.1, 0.4, and 0.8. In each run, all the
other parameters, whether static or dynamic, in the model were
assumed to be identical. Figure 5 illustrates the water saturation
profile of the three runs in the x-direction.

The results indicate that there is no discernible difference in
water flooding morphology among the three cases. In comparison to
the bottom layer, the distance of injected water migration in the
upper zone and the top high-permeability streak zone is significantly
longer. As Kv/Kh increases, the distance of injected water migration
in the top high-permeability streak zone decreases. However, it is
noteworthy that none of the three cases exhibited the water hold-up
phenomenon, suggesting that Kv/Kh is not the primary controlling
factor for this phenomenon.

4.1.2 Sensitivity on water injection pressure
differential

The water injection pressure differential in reservoir B is within
the range of 1,000~2,000 Psi. To assess the impact of water injection
pressure differential on the water hold-up phenomenon, three
simulated cases were conducted with pressure differential of
1,000 Psi, 1,500 Psi, and 2,000 Psi. In each run, all the other
parameters, whether static or dynamic, in the model were
assumed to be identical. Figure 6 illustrates the water saturation
profile of the three runs in the x-direction.

The results reveal that there is no noticeable difference in water
flooding morphology among the three cases. As the water injection
pressure differential increases, the distance of injected water
migration in the upper zone and the top high-permeability streak
zone also increases accordingly. However, none of the three cases
exhibited the water hold-up phenomenon, suggesting that water
injection pressure differential is not the primary controlling factor
for this phenomenon.

4.1.3 Sensitivity on wettability
Wettability plays a crucial role in determining the imbibition

capillary pressure (Pc) curves, with water-wet corresponding to
positive imbibition Pc curves, neutral-wet corresponding to zero
imbibition Pc curves, and oil-wet corresponding to negative
imbibition Pc curves. In the studied reservoir, the water
saturation range corresponding to the isotonic point in the
relative permeability curve is 0.25~0.73, indicating the presence

FIGURE 7
Simulation results under different wettability.
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of three types of wettability. To investigate the impact of wettability
on the water hold-up phenomenon, three cases were simulated using
positive, zero, and negative imbibition Pc curves. All the other
parameters in the model were assumed identical, and the same
drainage Pc curves were used to initialize the model. Figure 7
illustrates the water saturation profile of the three cases in the
x-direction.

In the water-wet case, a well-swept volume was achieved in all
three zones, with the distance of injected water migration being
roughly the same. In the neutral-wet case, the distance of injected
water migration in the upper and top high-permeability zones was
significantly longer than in the lower zone. However, in the oil-wet
case, the injected water mainly migrated in the top high-
permeability zone, resulting in poor swept volume in both the
upper and lower zones. This scenario aligns with the observed

water hold-up phenomenon in the studied reservoir. The
research results strongly suggest that top high-perm streak and
wettability are the main controlling factors for the water hold-up
phenomenon.

Moreover, it is crucial to delve deeper into understanding how
wettability controls the water hold-up phenomenon. The differences
in pore structure between high-permeability and low-permeability
layers lead to variations in the absolute value of capillary force, with
the capillary force in low-permeability layers consistently greater than
that in high-permeability layers. Take the water at the interface
between the high and low permeability layers as an example, when
the reservoir is water-wet, both high and low permeability layers
attract water under capillary force. Due to the greater capillary force in
the low-permeability layer, water would flow towards the low-
permeability layer (Figure 8A). Conversely, in an oil-wet reservoir,

FIGURE 8
(A) Typical capillary curve of water-wet reservoir. (B) Typical capillary curve of oil-wet reservoir.
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both high and low permeability layers repel water under capillary
force. Due to the greater capillary force in the low-permeability layer,
water would flow towards the high-permeability layer (Figure 8B).

In the studied reservoir, when a top high-permeability streak is
present, the capillary force acts in the opposite direction to gravity.

As the difference of capillary pressure between the upper zone and
the top high-permeability streak zone exceeds the gravitational
force, the capillary forces function as an effective barrier. This
barrier prevents water that initially entered the top high-
permeability streak zone from spreading into the bottom low-

FIGURE 9
(A) Diagram of capillary force barrier level 1. (B) Diagram of capillary force barrier level 2. (C) Diagram of capillary force barrier level 3.
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permeability layer, thereby forming the water hold-up phenomenon.
In this paper, this barrier is defined as the capillary force barrier.

4.2 Analysis for the causes of reverse coning

Surveillance results have confirmed the occurrence of the
reverse coning phenomenon, where injected water in the top
high-permeability streak migrates downwards under specific
conditions. However, the underlying reasons for this
phenomenon remain unclear. Through analysis, three key
factors—capillary force barrier, gravity, and downward
production pressure differential—are possible contributors to
the reverse coning phenomenon. Given that gravity remains
constant for the same reservoir, the impact of the downward
production pressure differential depends primarily on the
perforation position of production wells. Only when the
perforation position is below the top high-permeability streaks
will the downward production pressure differential cause the rapid
downward migration of injected water in the top high-
permeability streak.

The strength of the capillary force barrier is contingent upon
the physical property differences between the high-permeability
layer and the low-permeability layer. Greater physical property
differences result in a more substantial capillary force barrier.
According to these physical property differences, capillary force
barrier can be categorized into three levels (Figure 9). In Figure 9,
layer 1 represents high permeability layer; layer 2 represents low
permeability layer; sw1 represents water saturation of layer 1; swf1

represents water saturation at the water flooding front of layer 1;
sw2 represents water saturation of layer 2; swc2 represents critical
water saturation of layer 2; sor1 represents residual oil saturation
of layer 1.

The three levels of capillary force barrier are defined as follows:

Level 1: there are little differences between layer 1 and layer 2, and
sw2 equilibrating to swf1 is larger than swc2.
Level 2: As the differences between layer 1 and layer 2 increases to
a certain extent, sw2 equilibrating to swf1 is smaller than swc2, but
sw2 equilibrating to sw1 is larger than swc2.
Level 3: sw2 equilibrating to sw1 is always smaller than swc2.

Since gravity is constant, in order to understand the impact of
downward production differential and capillary force barrier, four
comparison schemes in which all the other parameters are the same
have been set up:

Case 1: when capillary force barrier is level 1 and downward
production differential is zero when there are no perforation
intervals under top high-perm streak.

Case 2: when capillary force barrier is level 2 and downward
production differential is zero when there are no perforation
intervals under top high-perm streak.

Case 3: when capillary force barrier is level 3 and downward
production differential is zero when there are no perforation
intervals under top high-perm streak.

FIGURE 10
Simulation results of four cases.
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Case 4: when capillary force barrier is level 3 and downward
production differential exists when there are perforation intervals
under top high-perm streak.

In Case 1, all the water in Layer 1 can slump into Layer 2. In
Case 2, the water at the front of Layer 1 cannot slump into Layer 1.
In the high water saturation zone of Layer 1, where sw2

FIGURE 11
(A) Optimization of perforation position for Top water-out mode. (B) Optimization of perforation length for top water-out mode.
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equilibrating to sw1 is larger than swc2, water can slump into Layer
2. However, in Case 3, water cannot slump into Layer 2 under any
condition. The research results indicate that the capillary force
barrier is the key factor determining whether the reverse coning

phenomenon occurs or not when there is no downward
production differential. By comparing Case 3 and Case 4, it can
be observed that when there is a downward production pressure,
the reverse coning phenomenon will always occur regardless of the

FIGURE 12
(A) Optimization of avoidance perforation height in bottom for both top and bottom water-out mode. (B) Optimization of avoidance perforation
height in top for both top and bottom water-out mode.
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level of the capillary force barrier. This implies that the downward
production differential is the dominant factor compared to the
capillary force barrier in influencing the occurrence of the reverse
coning phenomenon (Figure 10).

4.3 Differentiated perforation principle

As highlighted earlier in the article, the studied reservoir exhibits
three distinct water-out modes, necessitating the formulation of

FIGURE 13
(A) Optimization of perforation position for bottom water-out mode. (B) Optimization of perforation length for bottom water-out mode.
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corresponding perforation principles to effectively delay water
breakthrough and enhance overall oilfield development effect.

In situations where a top high-permeability streak is present,
leading to water-out at the top layer, a series of studies have been
conducted for the establishment of an optimal perforation strategy by
using model1. Initially, with a perforation length set at 10 m, the
optimal perforation position was investigated. Avoidance perforation
heights were considered for 0 m, 5 m, 10 m, 15 m, 20 m, and 25 m,
respectively. Research findings indicate that perforating the top water-
out zone should be avoided. Under the same liquid rate, the optimal
avoidance perforation height was determined to be 10 m, accounting
for 1/6 of the total oil layer thickness. At this height, the initial and
cumulative production of a single well was the highest, and the water
cut vs. cumulative oil production curve exhibited the most favorable
characteristics (Figure 11A). Subsequently, additional six cases were
conducted to optimize the perforation length, ranging from 10 m to
35 m. Under the same production pressure differential, the optimal
perforation length was identified to be 30 m, representing
approximately 1/2 of the total oil layer thickness. This
comprehensive approach ensures an effective perforation strategy
for reservoirs characterized by a top high-permeability streak,
enhancing overall oilfield development (Figure 11B).

In scenarios where high-permeability streaks develop in both the
top and bottom, resulting in water breakthrough in both zones, an
optimized perforation principle is crucial for effective reservoir
development. To formulate this principle, the avoidance
perforation height in both the top and bottom needs to be
carefully determined by using model 2. Firstly, by setting the
avoidance perforation height in the top to 0, the optimal
avoidance perforation height in the bottom was studied.
Avoidance perforation heights in the bottom were considered to
be 0 m, 5 m, 10 m, 15 m, 20 m, and 25 m, respectively. Research
results indicate that under the same production pressure differential,

the optimal avoidance perforation height in the bottom is 20 m,
accounting for 2/5 of the total oil layer thickness (Figure 12A).
Subsequently, with the avoidance perforation height in the bottom
set at 20 m, the optimal avoidance perforation height in the top was
studied. Avoidance perforation heights in the top were tested at 0 m,
5 m, 10 m, 15 m, 20 m, and 25 m, respectively. The research results
demonstrated that under the same production pressure differential,
the optimal avoidance perforation height in the top is 10 m,
representing approximately 1/5 of the total thickness of the oil
reservoir. Therefore, to achieve the best development effect for this
water-out type, it is recommended to set the avoidance perforation
height in the top and bottom to be approximately 1/5 and 2/5 of the
total thickness of the oil reservoir, respectively. This optimized
perforation strategy enhances the overall efficiency of reservoir
development in the presence of high-permeability streaks in both
zones (Figure 12B).

For reservoirs without high-permeability streaks in the vertical
section, water breakthrough is prone to occur at the bottom. To
establish the perforation principle, both the perforation position
and perforation length need optimization by using model 3.
Initially, set the perforation length to be 10 m, which is the
average length of all vertical wells in the studied oilfield, then
the optimal perforation position was investigated. Six cases were
configured for perforation intervals I+II, II+III, III, III-V, IV-VI,
and V+VI, respectively. Research results revealed that, under the
same liquid rate, perforation in I+II yielded the highest initial and
cumulative production for a single well (Figure 13A). Additionally,
the water cut vs. cumulative oil production curve was most
favorable. This suggests that the optimal perforation position
for this type of water-out should be at the top layer. Based on
this, another six cases were conducted to optimize perforation
length, ranging from 10 m to 35 m. Under the same production
pressure differential, the optimal perforation length was found to

FIGURE 14
Dynamic performance of B-116 after implementing differentiated perforation.
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be 25 m, approximately 1/4 of the total oil layer
thickness (Figure 13B).

5 Field application

Over the past 2 years, the differentiated perforation principle has
been successfully implemented in reservoir B. A notable example is
the B-36Wwell group, where B-6 serves as an older producer, and B-
116 as a new producer. After 9 months of water injection of B-36W,
the water cut of B-6 began to increase rapidly. Well logging
interpretation revealed relatively poor reservoir properties in the
lower section of well B-36W, coupled with a high permeability layer
at the top. This indicates that the top layer of the B-36W well group
was susceptible to water breakthrough.

In response, a new production well, B-116, was drilled, and
logging interpretation confirmed that the top layer was indeed
water flooded. To mitigate water breakthrough, the differentiated
perforation principle was applied to B-116. The avoidance perforation
height and perforation length were set at approximately 1/6 and 1/2 of
the total oil layer thickness, respectively. After about 3 years of
production, the water cut of well B-116 consistently remained
below 20%. Moreover, the water cut of the adjacent well, B-6,
transitioned from a rapidly increasing trend to a stable state due to
a more balanced water flooding streamline in this region (Figure 14).

This practical example serves as a compelling demonstration of
the effectiveness and applicability of the differentiated perforation
principle in optimizing oilfield performance and delaying water
breakthrough challenges in reservoir B.

6 Conclusion

(1) Water hold up phenomenon in giant carbonate is one of the
main causes of pre-matured water breakthrough. Reservoir
capillary force barrier caused by wettability and high-perm
streak is the key factor triggering thewater hold up phenomenon.

(2) The reverse coning phenomenon mainly depends on the
combined forces of gravity, capillary force, and downward
production differential, among which the downward
production differential is the dominant factor.

(3) Differentiated perforation principle in thick carbonate reservoir
concludes as: the optimal perforation position is at top layer and
the optimal perforation length approximately account for 1/4 of

the total oil layer thickness for water-out in bottom; the
avoidance perforation height in top accounts for 1/6 of the
total oil layer thickness and the optimal perforation length
approximately accounts for 1/2 of the total oil layer thickness
for water-out in top; the avoidance perforation height in top and
bottom accounts for 1/5 and 2/5 of the total oil layer thickness
respectively for water-out in both top and bottom, respectively.
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