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The temporal variation of wind power is primarily influenced by wind speed,
exhibiting high levels of randomness and fluctuation. The accuracy of short-
term wind power forecasts is greatly affected by the quality of Numerical
Weather Prediction (NWP) data. However, the prediction error of NWP is
common, and posing challenges to the precision of wind power prediction.
To address this issue, the paper proposes a NWP wind speed error correction
model based on Residual Network-Gated Recurrent Unit (ResNet-GRU). The
model corrects the forecasted wind speeds at different heights to provide
reliable data foundation for subsequent predictions. Furthermore, in order to
overcome the difficulty of selecting network parameters for the combined
prediction model, we integrate the Kepler Optimization Algorithm (KOA)
intelligent algorithm to achieve optimal parameter selection for the
model. We propose a Convolutional Neural Network-Long and Short-
Term Memory Network (CNN-LSTM) based on Attention Mechanism for
short-term wind power prediction. Finally, the proposed methods are
validated using data from a wind farm in northwest China, demonstrating
their effectiveness in improving prediction accuracy and their practical value
in engineering applications.
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1 Introduction

In the context of “dual carbon” goals, accelerating the transformation of the energy
structure towards a low-carbon, clean, and renewable energy system, with a focus on new
energy sources, is an important initiative to achieve the dual carbon targets (REN et al.,
2022). Currently, China’s wind power industry is experiencing rapid development, with a
continuously thriving market and increasing wind power grid integration (Hui et al., 2021).
However, the current power system scheduling and operation mechanisms in China are not
sound, and there is insufficient peak-shifting capacity to meet the requirements of large-
scale wind power grid integration, leading to significant curtailment of wind power in some
regions. To effectively address wind curtailment and improve the scheduling and operation
capabilities of the power system, precise wind power output forecasting is essential. The
accuracy of wind power forecasting directly affects the scheduling optimization of the power
grid (Yusheng et al., 2015; Weisheng et al., 2021).

OPEN ACCESS

EDITED BY

Yitong Shang,
Hong Kong University of Science and
Technology, China

REVIEWED BY

Yikui Liu,
Stevens Institute of Technology, United States
Can Wang,
China Three Gorges University, China

*CORRESPONDENCE

Guangzheng Yu,
powerygz@shiep.edu.cn

RECEIVED 26 February 2024
ACCEPTED 09 April 2024
PUBLISHED 06 May 2024

CITATION

Wang S, Liu H and Yu G (2024), Short-termwind
power combination forecasting method based
on wind speed correction of numerical
weather prediction.
Front. Energy Res. 12:1391692.
doi: 10.3389/fenrg.2024.1391692

COPYRIGHT

© 2024 Wang, Liu and Yu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 06 May 2024
DOI 10.3389/fenrg.2024.1391692

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1391692&domain=pdf&date_stamp=2024-05-06
mailto:powerygz@shiep.edu.cn
mailto:powerygz@shiep.edu.cn
https://doi.org/10.3389/fenrg.2024.1391692
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1391692


Currently, wind power forecasting techniques can be broadly
classified into two categories based on modeling mechanisms:
physical methods and statistical learning methods (Ahmed and
Khalid, 2019; Wang et al., 2021). Physical methods utilize fluid
dynamics and thermodynamics models to solve for wind speed,
wind direction, and other information based on the topography and
terrain of the wind farm. The wind power output is then calculated
using the wind power curve. Due to limitations in spatiotemporal
resolution, physical methods are generally more suitable for medium
to long-term forecasting. On the other hand, statistical learning
methods analyze historical data from wind farms to establish
nonlinear mappings between wind power characteristics and
forecast results. With the rapid development of artificial
intelligence in recent years, many researchers have introduced
deep learning algorithms to address the aforementioned issues
(Anbo et al., 2022). Deep learning methods, such as LSTM (Zhu
et al., 2017), backpropagation (Liu et al., 2020), Dropout (Niu et al.,
2018), Attention Mechanism (AM) (Zhou et al., 2021), and others,
have been widely applied in forecasting tasks, benefiting from the
increased availability and complexity of collected data.

In short-term wind power forecasting, utilizing NWP for wind
power prediction is more realistic and practical (DU, 2019).
However, the quality of NWP data significantly impacts the
accuracy of the forecasts, and it has been observed that there are
inherent errors between NWP data and actual measurements. To
mitigate these inherent errors, numerous researchers have focused
on correcting NWP wind speed. In reference (Ding et al., 2019), a
variational mode decomposition technique was used to decompose
NWP wind speed, followed by correction using the GRU. Reference
(Hu et al., 2021) considered the spatial correlation of wind speed and
employed Gaussian Process Regression (GPR) to improve the
correlation between forecasted and actual wind speeds. Reference
(Song et al., 2018) analyzed NWP data from multiple locations and
established a wind speed correction model using temporal
convolutional neural networks, which enhanced the accuracy of
wind speed correction. However, most of the mentioned correction
methods rely on a single neural network, and the exploration of the
relationship between NWP data and actual measurements is not
fully comprehensive. Additionally, these models are prone to issues
such as gradient explosion during the training process.

Due to the limited predictive capability of a single model, it often
results in low robustness and weak applicability. Therefore, the
combination prediction model has gradually demonstrated its
advantages. However, although the combination model integrates
the advantages of individual models, it can also increase the
complexity of the model. The complex network structure of the
combination model leads to increased uncertainty and difficulty in
selecting prediction model parameters. Hence, many scholars have
made improvements by combining a series of optimization
algorithms. In reference (Li et al., 2022), the Isolation Forest
Algorithm (IAO) was used to detect abnormal data, and the
improved Eagle Optimization Algorithm (EOA) was employed to
optimize the parameters of the LSTM model, thereby establishing
the IAO-LSTM model for wind power prediction. In reference
(Guangzheng et al., 2022a), the Improved Grey Wolf
Optimization (IGWO) algorithm was utilized to determine the
number of hidden layer nodes and the learning rate of the
model’s weight, proposing a LightGBM-GRU point prediction

model that achieved better predictive performance compared to
other algorithms. However, the aforementioned optimization
algorithms have complex structures, slow convergence speeds,
and are prone to getting trapped in local optimal solutions.
Therefore, it is necessary to select more suitable intelligent
algorithms, especially for cases with multiple hyperparameters to
be optimized.

To address the aforementioned limitations, this paper proposes
a NWP wind speed error correction model based on a combination
of ResNet and GRU models. It corrects the multi-height forecasted
wind speeds of NWP prediction points to accurately reflect the wind
speed at hub height, which characterizes the wind farm power
output more precisely. Finally, by combining the corrected NWP
wind speeds with real-time wind farm power output data, a KOA-
CNN-LSTM-Attention combination prediction model is
constructed, which incorporates the KOA intelligent optimization
algorithm. Experimental results demonstrate that the proposed
method significantly improves the prediction accuracy compared
to existing methods, providing new insights for enhancing the
accuracy of short-term wind power prediction.

2 NWP wind speed correction method

2.1 Wind speed error analysis

NWP is a method of predicting future weather conditions by
solving fluid mechanics and thermodynamics equations that
describe the process of weather evolution based on certain
boundary and initial conditions (Guangzheng et al., 2024).
However, the spatial and temporal resolution of NWP data,
geographic location, terrain, and other factors may result in
deviations between NWP data and the measured data at wind
farm sites. Short-term wind power prediction models are
established based on NWP data and measured operational
data at wind farms, but errors in NWP wind speed can greatly
affect the accuracy of short-term wind power predictions (Miao
et al., 2022).

The distribution and error curves of NWP wind speed and
measured wind speed are compared in Figure 1, which shows that
both NWP wind speed and actual wind speed follow a two-
parameter Weibull distribution mainly in the wind speed range
of 3–15 m/s. However, compared with measured wind speed, NWP
wind speed has fewer subdivisions in the main wind speed range,
indicating that measured wind speed fluctuates more frequently in
this wind speed range, while the overall fluctuation of predicted
wind speed is lower. The error between NWP wind speed and
measured wind speed can be divided into longitudinal error and
lateral error. The longitudinal error mainly manifests as amplitude
differences between NWP wind speed and measured wind speed, as
shown in Figure 1C. The lateral error mainly manifests as phase
delay between NWP wind speed and measured wind speed, as
shown in Figure 1D. Moreover, the error between NWP
forecasted wind speed and measured wind speed at wind farms
varies dynamically in different seasons, including different
directions and step sizes of delays, differences in amplitude, and
varying degrees of missed and false forecasting information for wind
energy fluctuations.

Frontiers in Energy Research frontiersin.org02

Wang et al. 10.3389/fenrg.2024.1391692

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1391692


2.2 Wind speed correction model of
ResNet-GRU

Due to the significant fluctuations in measured wind speeds,
this study aims to leverage the ResNet module’s powerful feature
extraction capabilities to uncover the periodicity and temporal
relationships within the historical wind speed sequences. The
ResNet module, known for its deep residual structure, effectively
addresses the issues of gradient vanishing and explosion in deep
neural networks, thereby enhancing feature extraction
capabilities (Yldz et al., 2021). Moreover, the ResNet module
mitigates information loss and facilitates smooth information
flow through the use of shortcut connections. To capture the
volatility of wind speed, the GRU model is employed as the
learning model. The GRU model, equipped with gate
mechanisms, effectively addresses the long-term dependency

problem while avoiding the issues of gradient vanishing and
explosion present in traditional Recurrent Neural Network
(RNN) models (Yu et al., 2023). Consequently, the GRU
model demonstrates excellent performance in time-series data
modeling tasks. Therefore, this study proposes the ResNet-GRU
wind speed correction model, which not only effectively learns
and utilizes the relationship between NWP model and measured
data but also predicts more accurate wind speeds. Additionally,
both the ResNet module and GRU model have been optimized
classic models, requiring fewer computational resources and less
time compared to other complex models during training and
prediction, thus demonstrating characteristics of computational
efficiency. The schematic diagram of the proposed model is
presented in Figure 2.

In this study, the fully connected layer following the time-
series modeling layer is utilized for wind speed correction. The

FIGURE 1
Error analysis of wind speed. (A,B) are the wind speed distribution map. (A): NWP wind speed distribution, (B): Measured wind velocity distribution.
(C,D) are the analysis of wind speed error. (C): Error analysis of NWP Wind Speed and Measured Wind Speed (winter), (D): Error analysis of NWP Wind
Speed and Measured Wind Speed (summer).

Frontiers in Energy Research frontiersin.org03

Wang et al. 10.3389/fenrg.2024.1391692

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1391692


known actual wind speed data and the output of the numerical
model are employed as supervisory signals to optimize the
model parameters by minimizing the error between the
predicted and actual values. The Mean Squared Error (MSE)
is adopted as the loss function for this purpose. The formula for
MSE is as follows:

J θ( ) � 1
2m

∑m

i�1 hθ xi( ) − yi( )2 (1)

where, hθ(xi) represents the model for the i th input sample
xi, yi represents the corresponding real output value, θ

represents the parameters to be learned in the model,m is
ample size。

3 KOA-CNN-LSTM-attention
combined prediction model

3.1 CNN-LSTM-attention prediction model

The CNN-LSTM hybrid model is designed to handle time-
series matrices composed of relatively independent feature
sequences. It effectively utilizes CNN to extract spatially local
correlated features from the data, while LSTM compensates for
CNN’s limitation in capturing long-term dependencies within
sequential data (Guangzheng et al., 2021). Since the features
used for wind power prediction (such as wind speed, wind
direction, temperature, precipitation, and air pressure) are
relatively independent time-series features, it becomes
challenging to describe the inherent relationships between
these features over time. Using either CNN or LSTM alone
fails to simultaneously extract the inter-sequence correlations
and long-term patterns in feature time-series. Traditional
CNN-LSTM networks simply concatenate the CNN and
LSTM components, which may disrupt the temporal
correlations between sequences. Therefore, improvements
upon the traditional CNN-LSTM model are necessary to
overcome these drawbacks. This paper proposes an enhanced
neural network algorithm that combines the Attention
mechanism with CNN-LSTM. The key advantage of this

algorithm lies in the inclusion of an Attention layer between
the CNN network and LSTM layer. By computing the relevance
scores between the input sequence’s hidden layer vectors and
the output, different attention weights are assigned to
meteorological factors, highlighting the critical influencing
features. Consequently, this approach addresses the challenge
of preserving crucial information when dealing with long
input sequences.

CNN input is wind power historical power data and multi-
impact characteristic data. The data is divided into d days, n data per
day, and m meteorological factors per data, to form an n×m×d
matrix as the input structure of CNN model. The output expression
of CNN convolution layer is shown in Eq. 2:

�Xi,j � fcov ∑k
n�0

∑k
m�0

wn,mXi+n,j+m + bn,m⎛⎝ ⎞⎠ (2)

where: fcov(·) is the activation function, k is the sliding window
size, wn,m is the weight of n rows and m columns of the
convolution kernel, Xi+n,j+m are the value of row n and
column m of the feature matrix of the input data, bn,m is the
convolution kernel deviation.

The CNN pooling layer uses 2 × 2 filters and a sliding window of
step 1 to sample, reduce the data feature size, reduce network
parameters, and then input the data to the LSTM layer via the
fully connected layer. First, the input vector calculates the
intermediate state of meteorological data through the hidden
layer of LSTM, and the attention mechanism uses the function
score([ht,i, ht]) to calculate the similarity between the feature vector
of the intermediate state ht,i and the hidden state ht. The expression
is shown in Eq. 3:

score ht,i, ht[ ]( ) � Wsh
T
t + bs (3)

where: Ws and bs are the weight matrix and bias vector of the fully
connected layer respectively.

Secondly, the attention weight αi of the hidden layer vector of
meteorological data is obtained by the softmax function, and the
weighted sum with ht,i is obtained to obtain the output h*t of the
attention layer., and the expression of αi, h

*
t are as follows:

FIGURE 2
Wind speed correction schematic diagram based on ResNet-GRU model.
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αi � exp score ht,i, ht( )[ ]
∑τ
j�1
exp score ht,i, ht( )[ ] (4)

h*t � ∑τ
i�1
αiht,i (5)

where: τ is the fully connected output node. Finally, h*t is input to
the fully connected layer to obtain the predicted value of wind
power yt′.

3.2 Kepler optimization algorithm (KOA)

Due to the numerous hyperparameters involved in the
training process of the CNN-LSTM-Attention hybrid model,
such as learning rate, kernel size, and number of LSTM units,
it is a challenging task to select and adjust these hyperparameters
appropriately. The selection of these parameters directly impacts
the quality of the prediction results in practical applications, thus
necessitating the integration of optimization algorithms for
parameter selection. The Kepler optimization algorithm
(KOA) is a heuristic optimization algorithm based on Kepler’s
law in the natural world. This algorithm simulates the motion of

planets in the Solar System and utilizes iterative search to find the
optimal solution (Abdel-Basset et al., 2023) In KOA, each planet
and its position represent a candidate solution, and the
optimization process is achieved by randomly updating based
on the best solution found so far (the Sun), enabling more
efficient exploration and utilization of the search space. Its
advantages lie in its fast convergence speed, high search
accuracy, and strong interpretability. The mathematical
expression of this algorithm is as follows:

�Xi t + 1( ) � �Xi t( ) × �U1 + 1 − �U1( )
×

�Xi t( ) + �XS + �Xa t( )
3.0

+ h ×
�Xi t( ) + �XS + �Xa t( )

3.0
− �Xb t( )( )( )

(6)

where: �Xi(t + 1) is the new position of object i at time t+1, �Xi(t)
represent object i at time t, �U1 represents the universal
gravitational constant, �XS is the best position of the Sun found
thus far, �Xa(t) represents solutions that are selected at random
from the population at time t, h is an adaptive factor for controlling
the distance between the Sun and the current planet at time t, as
defined below:

h � 1
eηr

(7)

where r is a number that is generated randomly on the basis of the
normal distribution, while η is a linearly decreasing factor from one
to −2, as defined below:

η � a2 − 1( ) × r4 + 1 (8)
Where: r4 is randomly generated numerical values at interval [0,

1], a2 is a cyclic controlling parameter that is decreasing gradually
from −1 to −2 for �T cycles within the whole optimization process as
defined below:

FIGURE 3
Comparison of NWP wind speed correction results in different seasons. (A): Comparison of NWP wind speed correction results (winter), (B):
Comparison of NWP wind speed correction results (summer).

TABLE 1 Comparison of prediction results of different algorithms.

Model MAE/% RMSE/% MAPE/%

LSTM 24.650 25.185 17.496

CNN-LSTM 10.834 11.538 14.903

CNN-LSTM-Attention 11.528 10.406 11.340

KOA-CNN-LSTM-Attention 5.293 4.125 3.720
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a2 � −1 − 1 ×
t%Tmax

�T
Tmax
�T

( ) (9)

In this paper, KOA algorithm is used to optimize the learning
rate, convolution kernel size, number of neurons and other
parameters in the CNN-LSTM-Attention model, taking the
minimum Mean Absolute Percentage Error (MAPE) as the
objective function. The formula is as follows:

MAPE � 1
n
∑1
n

yi − ~yi

∣∣∣∣ ∣∣∣∣
yi

(10)

where: yi is the true value, ~yi is the predicted value of the algorithm,
n is the number of samples.

4 Example verification

4.1 Description of experimental data

This paper conducts a case study using data from a wind farm in
northwest China. The installed capacity of the wind farm is
200 MW, and the experimental data and information includes
the output power of the wind farm and various meteorological

FIGURE 4
Comparison of prediction results of different algorithms. (A): Comparison of prediction curves of different algorithms; (B, C) is the comparison of
results with or without KOA optimization algorithm error, (B): the prediction error when the model does not use KOA optimization algorithm, (C): the
prediction error after the model uses KOA optimization algorithm.

Frontiers in Energy Research frontiersin.org06

Wang et al. 10.3389/fenrg.2024.1391692

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1391692


factors throughout 2018–2019. Specifically, data from January 25th
to 31st, 2019 was selected for validating the prediction results. The
data is divided into observed data and NWP data, both with a
resolution of 15 min. The observed data contains measured values of
wind turbine active power and hub-height wind speed, while the
NWP data contains wind speed forecast values at four heights: 10 m,
30 m, 50 m, and 70 m. The NWP data is updated once a day at 00:00,
so the wind power day-ahead forecast results are also updated on a
rolling basis at 00:00 each day.

4.2 Verification of wind speed
correction results

In this section, the proposed ResNet-GRU network is employed
to correct the NWP wind speed data of the wind farm. To validate
the applicability of the proposed correction model, meteorological
and wind power data from the winter and summer seasons of
2019 are selected for wind speed correction result verification.
During each correction, 80% of the data from the preceding time
period is used to train the correction model, while the remaining
20% is used to validate the effectiveness of the wind speed correction.
The comparison graph of forecasted wind speed before and after
correction against the measured wind speed is shown in Figure 3.

From the curve fitting results shown in the above figure, the
following observations can be made:

1) The NWP wind speed forecasts for this wind farm exhibit
relatively small errors during the summer season, while the
forecast errors are relatively larger during the winter season.

2) TheNWPwind speed curve appears relatively smooth, whereas the
measuredwind speed curve exhibitsmore pronounced fluctuations
and may experience sudden changes. These changes manifest as
local peaks or valleys, which are of short duration and difficult for
NWP to accurately predict, resulting in missed forecasts. This is
evident in the highlighted section of the graph.

3) During periods of significant wind speed fluctuations, the
NWP wind speed forecasts for this wind farm tend to
underestimate the measured wind speed to a considerable
extent. To address this issue, the error correction model
developed in this study learns from the differences between
NWP and measured wind speeds in historical samples and
effectively corrects the errors between NWP and measured
wind speeds during the application phase.

4.3 Prediction result verification

This study employs the Keras framework in Python to construct
a short-term wind power prediction model based on the CNN-
LSTM architecture. The model’s initialization parameters, including
the learning rate of the model’s network weights, the size of the
convolution kernel, and the number of neurons, are determined by
the KOA algorithm, while the sigmoid function is selected as the
model’s activation function. The original training data range for the
model comprises winter season data from 2018–2019, with a test set
consisting of 7 days after the cutoff range of this training set. To
validate the predictive performance of the proposed algorithm, the

LSTM(Guangzheng et al., 2022b), CNN-LSTM (ZHAO et al., 2019),
CNN-LSTM-Attention (Guangzheng et al., 2021), and KOA-CNN-
LSTM-Attention methods are applied to predict the wind power
output of the wind farm, with corresponding results presented in
Table 1. Deterministic prediction error can be manifested as
horizontal and vertical errors. In this paper, we selected vertical
error evaluation indicators including Mean Absolute Error (MAE),
MAPE, Root Mean Square Error (RMSE), and horizontal error
evaluation indicators such as correlation coefficient as the
performance evaluation indicators for prediction. A comparison
of the forecast curves and error metrics across different methods is
shown in Figure 4.

TheKOA-CNN-LSTM-Attention algorithmproposed in this paper
has the best overall prediction performance. Compared with the sub-
optimal CNN-LSTM-Attention algorithm, the error indicators MAE,
RMSE and MAPE are reduced by 6.235%, 6.281% and 7.620%,
respectively. It shows the superiority of KOA algorithm. Combined
with KOA algorithm, the parameters of themodel are better selected on
the basis of single CNN-LSTM algorithm, so the prediction accuracy is
further improved.

5 Conclusion and prospect

Improving the accuracy of NWP is crucial for enhancing the
precision of short-term wind power forecasting. However, current
NWP forecast data exhibits significant discrepancies compared to
the measured wind speeds, thereby limiting the accuracy of short-
term wind power prediction. In light of this issue, this study
proposes the following approaches:

1) An error correction model based on ResNet-GRU is established
to effectively rectify the discrepancies between NWP and
measured wind speeds during the application stage. By
learning from historical samples, this model captures the
differences between NWP and actual measurements.

2) A short-term wind power prediction model based on KOA-
CNN-LSTM-Attention is developed to optimize key parameters
such as learning rate, convolution kernel size, and number of
neurons in complex models. This optimization significantly
enhances the predictive performance of the model.

Furthermore, the measured wind power and wind speed data
exhibit greater randomness and volatility compared to NWP
forecast data. This indicates that smooth NWP data faces
challenges in accurately tracking and predicting wind energy
fluctuations at high spatiotemporal resolutions, leading to
increases in both missed detection rates and false alarm rates.
Therefore, our future research will focus on exploring how to
utilize real-time wind farm and anemometer data with higher
update frequencies to perform rolling corrections on NWP data,
thereby achieving more accurate wind power forecasts.
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