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In this study, we performed a detailed simulation of the PIDRN controller
associated with a three-phase converter, taking into account different initial
battery charging conditions. After introducing the concept of PIDRN and
explaining the operation of the three-phase converter, we proceeded to
model the system, defining the necessary parameters. We then configured
several simulations, varying the initial charging conditions of the battery, and
analyzed the numerical results obtained. This comparative analysis revealed
variable system performance depending on the initial battery charge level,
highlighting advantages and disadvantages in each case. In particular, we
found that the PIDRN controller proves to be an optimal choice for this type
of converter, thanks to its ability to effectively regulate voltage and current under
varying battery charging conditions. We discussed the implications of these
findings. In conclusion, this study provides an in-depth overview of the
performance of the PIDRN controller in a three-phase converter context and
highlights the importance of taking into account the initial battery conditions in
the design and optimization of energy control.
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1 Introduction

Rising demand for clean energy has led to the use of renewable energy. Energy sources
(RES) are a possible approach to participating in energy generation. The elimination of
hazardous techniques for energy production is becoming a current necessity worldwide.
Traditional methods of energy production have resulted in significant global environmental
impacts, resulting in high and costly costs. Renewable energy sources (RES) have proven to
be a boon because of their cost-effectiveness and respect for the environment. Historically,
power plants were powered by crude oil (Zhang et al., 2023; Rasouli Heikalabad, 2024).
Recently, it has been found that the massive consumption of crude oil has finally led to the
scarcity of crude oil, and the researchers have developed hybrid energy production systems
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that can be used with natural gas and crude oil. However, there was a
decrease in power plant efficiency due to the hybrid use of fuel,
which eventually led to the scarcity of natural gas. However, there
was a decrease in power plant efficiency due to the hybrid use of fuel,
which ultimately contributed to the lack of natural gas. In addition,
the use of fossil fuels has had a significant impact on the
environment and has become an expensive method of generating
electricity. Thus, the emergence of the concept of renewable energy
sources is examined in depth and put into practice. Given their
abundance and absence of adverse environmental effects.

Converters play a crucial role in any hybrid renewable energy
system as they maintain voltage stability during fluctuation periods.
The stability of the power converter and its control technique play a
crucial role in the energy quality of renewable energy systems. Let’s
take the example of a thrust converter, which is widely used in
MPPT solar systems. A controlled closed-loop boost converter can
keep the DC link voltage stable by increasing the low input voltage of
the photovoltaic cells (Gao et al., 2022). However, the majority of
conventional converters and control methods have several
disadvantages that minimize their efficiency in HRES systems.
Thus, recently, researchers have begun to focus on the creation
of improved DC-DC converters and effective control techniques
(Grisales-Noreña et al., 2019). DC-DC electronic converters offer
greater efficiency than traditional power conversion methods.
Conventional methods using transformers and rectifiers often
have many disadvantages while being extremely expensive. In
contrast, power converters are small in size, have a limited
number of components, and are neutral to voltage fluctuations
and electromagnetic interference (EMI). In addition, it is easy to
filter the output of the power converter using a simple filter and
adjust or manipulate it using a control technique adapted to the
requirements of the system (Song et al., 2022a; Zhang et al.,
2021).Therefore, by enabling effective conversion and
management of the DC voltage generated by renewable energy
sources, integration of energy storage systems, and performance
optimization of energy systems, DC-DC converters play a crucial
role in renewable energy applications. Enhancing energy efficiency,
downsizing converters, and integrating renewable energy sources
more deeply into power systems are the main goals of this field’s
research and development (Song et al., 2022b). These two varieties of
DC-DC converters are Energy storage systems, industrial and
electrical applications, as well as renewable energy sources, can
all make use of these insulated and non-insulated varieties. The
particular needs of the application in terms of insulation, voltage
regulation, power, and other criteria will determine whether to use
an insulated or uninsulated converter (Fei et al., 2024).The
interlaced DC-DC converter, often referred to as the cross-
switched DC-DC converter, is one kind of uninsulated converter
that is used to change a DC voltage from one level to another. Its
primary function is to alter a DC power source’s voltage in order to
satisfy the demands of an electronic system. A switch, an inductor,
and a capacitor are often included in each of the two conversion
stages that make up an interlaced DC-DC converter. Efficient
voltage conversion is achieved by synchronizing and operating in
alternate phases. When compared to traditional DC-DC converters,
the primary benefit of an interlaced DC-DC converter is its capacity
to minimize energy losses. The energy held in the capacitors and
inductors can be shared by leveraging the link between the two

conversion stages, which improves energy efficiency. Combining
various renewable energy sources into a system: Interlaced DC-DC
converters work well for combining various renewable energy
sources (Deng et al., 2023; Zhu et al., 2024). They can effectively
handle various output voltages and transform them into a common
voltage or one that is tailored to the needs of the entire system (Li
et al., 2022). Improving voltage regulation: The output voltage is
more optimally regulated when using layered DC-DC converters.
They can maintain correct and steady voltage, which is necessary to
guarantee the dependable operation of associated devices and loads,
by employing sophisticated control techniques (Zhou et al., 2024;
Shen et al., 2023). Diminished dimensions and weight of the system:
Passive components like inductors and capacitors can have their
sizes and weights decreased by using interlaced DC-DC converters
that operate at high switching frequencies. This enables the creation
of lighter and more compact renewable energy systems, which is
especially helpful for installations with limited space or mobile
applications. The advancement of technology has led to a greater
dependence on electrical products for daily needs. Achieving
sustainable growth in society and the economy requires striking a
balance between energy use and environmental conservation more
than ever. For example, using fossil fuels or natural gas to generate
thermal power causes a great deal of environmental harm, as
Figure 1 illustrates.

In this work, we combined a short conversion duration with a
control technique created for the suggested topologies of the DC-DC
converter. The terminal voltages of renewable energy sources are
usually low and change with time. Therefore, in order to offer
reliable electrical energy, it is standard procedure to interface with
the DC bus using a bidirectional DC-DC converter with a high
conversion ratio. The converter must lower the load current in order
to ensure a smooth power transfer; however, this has the unforeseen
consequence of restricting the power capacity during conversion.
This article also assesses the energy conversion between operating
modes to offer a rapid energy conversion method (Fu et al., 2023).

This diagram illustrates the primary distinctions between a
neural network-based PID controller and a conventional PID
controller with regard to their structure, optimization technique,
performance, flexibility, computation time, resilience, and

FIGURE 1
Energy storage system in DC microgrid.
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implementation cost (Feng et al., 2024). When selecting the
controller that is most appropriate for a particular battery state
of charge management application, several distinctions must be
considered Figure 2.

The purpose of this work is to compare the effectiveness and
versatility of two control strategies the conventional PID controller
and the PID controller with neural networks—for managing battery
state of charge (SOC) in renewable energy systems.

The effectiveness of the two strategies is compared in a number
of studies under varied circumstances, including changes in system
load. The findings demonstrate that while the PID controller with
neural networks offers improved accuracy and increased flexibility
to changes in operating circumstances, its implementation may
necessitate more processing time and resources. This study’s
conclusion emphasizes how crucial it is to select the controller
that best meets the unique requirements of each application, taking
into account factors like cost, performance, adaptability, and
computation time.

2 Classification of dc converters

These days, several DC-DC converters are employed to change
the input voltage according to the requirements of the application.
DC-DC converters are generally classified into two basic types:
isolated and non-isolated. Because isolated converters use a
transformer to divide the input and output sides of the DC-DC
converter, they have galvanic isolation. The input has no effect on
the output side of the converter because it has a separate ground
(Chen et al., 2024). The converter’s output value may have a positive
or negative polarity, depending on how it was designed. It can
generate a consistent output while operating with a range of inputs.
Isolated converters are more costly than non-isolated converters and
have significant risks related to leakage inductance, core saturation,
thermal impact, high voltage spikes across the switches, and large
bulk. Changes made on the input side immediately affect the output

sides of the converters since there is no galvanic isolation between the
input and output sides in a non-isolated converter architecture. They
have fewer components than the isolated converter topology. They do,
however, also have a few minor issues that require attention, like as
excessive duty cycle ratio, insufficient voltage gain, and additional
circuitry for optimal operation. The advantages and disadvantages of
every class of converter topologies are different. The application’s
requirements serve as the basis for the decision. The power converter
family is shown in Figure 3, with the traditional converter topologies
in both groups highlighted.

Because of their superior performance, cost-effectiveness,
structural simplicity, and higher efficiency, non-isolated
interleaved DC-DC converters have nearly completely replaced
conventional converters in renewable energy applications. For
this reason, the configurational and performance analysis of these
converters is extremely important. The application of control
techniques, such as proportional integral (PI) modeling and
control of traditional non-isolated interleaved converter

FIGURE 2
Traditional PID and PID controller with neural networks performance and adaptability organization for battery charge state management.

FIGURE 3
Classification of DC converters.
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topologies, was also thoroughly covered in this paper. It did not,
however, provide any additional control methods for DC-DC
converter functioning beyond PI modeling.

3 Operating principle of proposed
bidirectional DC–DC interleaved
converte rof parallel connected
mosfet n phases

One of the converters used most frequently when charging or
discharging a battery is the elevating converter, which is well-liked
for its excellent conversion range and ease of usage (Xue et al., 2017;
Zhu et al., 2024). This kind of converter allows the battery voltage
levels to be adjusted to the DC bus voltage levels by maintaining a
steady voltage level and controlling the disruptions caused by
connecting and disconnecting loads and energy sources.
However, the battery receives the ripple in the switch’s current,
which leads to power losses and battery deterioration (Bai et al.,
2022; Syah et al., 2022).

Interleaved converters for high-power, high-current
applications, like energy storage systems, general-purpose motor
drives, and renewable energy conversion systems, have been the
subject of numerous publications in the literature (Wang
et al., 2023).

The output power can even approach tenths of a kilowatt
when N phases consisting of semiconductors and filter
components are employed. Because the operating frequency is
now an integer multiple of the switching frequency, this leads to
reduced filter element size. The drive signals of the active
switches must be phase-shifted by 360°/N, which is easily
accomplished by using low-cost microcontrollers instead of
complex analog circuitry. The common interleaved
bidirectional dc-dc converter is a simple solution for the
application addressed in this study, as was already mentioned
(Mayer et al., 2021; Duan et al., 2023). A two-phase structure is
shown in Figure 4, where V1 and V2 represent the DC link and
the SC, respectively (Zhang et al., 2023). Moreover, I1 and I2 are
the corresponding currents across the SC and the dc link, whereas
P1 � V1. I1 and P2 � V2. I2 are the equivalent powers. This
section will provide a qualitative and quantitative analysis of
the interleaved bidirectional DC-DC converter, which consists of
four switches per arm that are separated into lower group and
upper group switches.

4 Proposed order structure of
bidirectional DC–DC three-phase
interleaved converter

Table 1 depicts the interleaved bidirectional DC-DC converter tree
phase employing n parallel-connected Mosfets. Eight power switches
(S1–6 and S1’–6’) and three inductors make up the power circuit (L1, L2,
and L3). The parasitic resistances, such as the inductor resistances (RL1,
RL2, and RL3) and switch resistances, are taken into account in order to
derive the nonideal DC voltage gain (RS1).

Energy moves from the battery side to the DC bus side when the
proposed converter is operating in step-up mode (boost), where DH
is the duty cycle of the gate signals S1–S6. Energy is transferred from
the DC bus to the battery side in step-down mode (buck), where DL
is the duty cycle of the gate signals S1′–S6′.

4.1 Operating stages in the step-up direction
(boost mode)

Themainwaveforms for the duty cycle range that belongs to [0,0.25].
First stage [t0 - t1]: (S1, S4′, S3′, S6 are turned on; S1′, S2′, S5′, S6′,

S3, S4, S5 are turned off; Figure 5A).
Inductor L1 and L3 starts storing energy from the battery through

S1 and S6 at this point, and its current, iL1(t), L3(t), increases linearly
until t1. Since the voltages υbat and υbat − υDC are applied to L1, L2
andL3, respectively, current iL2(t) continues to fall linearly and the stored
energy in L2 is given to the load through S3′ and S4′. The total of iL1(t)
and iL2 (t) equals the battery current (Ib(t)). Eqs 1–3 can be used
to calculate the instantaneous currents and voltage, respectively.

iL1 � iL1 t0( ) + υL1 t( ) t − t0
L1

; υL1 t( ) � Ub − 1
3
Ib RL1 + RS1( )[ ] (1)

iL2 � iL2 t0( ) + υL2 t( ) t − t0
L2

; υL2 t( ) � UDC − Ub + Ib
1
3
RL2 + 1

6
RS4′( )[ ]

(2)
iL3 � iL3 t0( ) + υL3 t( ) t − t0

L3
; υL3 t( ) � Ub − 1

3
Ib RL3 + RS6( )[ ] (3)

Second stage [t1 − t2]: (S1, S2, S3, S4, S5, S6 are turned off; S1′, S2′,
S3′, S4′, S5′, S6′ are turned on; Figure 5B).

Through; S1′, S2′, S3′, S4′, S5′, S6′ both conductors now send
energy to the load. Then, both conductors receive the voltage
Ub − UDC. As a result, the instantaneous current and voltage
equations for inductor are displayed on Eq. 4, and the current
across all inductors falls linearly.

iLn � iLn t1( ) + υLn t( ) t − t0
L2

; υLn t( ) � Ub − UDC − Ib
1
3
RLn + 1

6
Rsm
′( )[ ]
(4)

With n = 1,2,3 and m = 2,3,6.

4.2Operating stages in the step-up direction
(buck mode)

Buck mode features eight steps in one switching time and two
operation regions, just like boost mode. The circuit is symmetric, so
just the fourth period is examined.

FIGURE 4
Interleaved bidirectional DC DC converter.
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Themainwaveforms for the duty cycle range that belongs to [0,0.25].
First stage [t0 − t1]: (S3, S4, S1′ , S5′ are turned on; S3′, S4′, S1, S2,

S2′, S6′, S5, S6 are turned off; Figure 6A).
As energy from the υDC is stored through the inductor L1stars, its

current iL1(t) grows linearly until t1. The voltage UDC- Ub and Ub is
delivered to L1, L2 and L3, respectively, and the current iL2(t) continues
to fall linearly. The stored energy in L2 is transferred to the load
through S3 and S4 as a result. Eqs 5–7, correspondingly, can be used to
calculate the instantaneous currents and voltages of L1, L2 and L3.

iL1 t( ) � iL1 t0( ) + υL1 t( ) t − t0
L1

; υL1 t( ) � UDC − Ub − IDC RL1 + RS1′( )
(5)

iL2 t( ) � iL2 t0( ) − υL2 t( ) t − t0
L2

; υL2 t( ) � −Ub − Ib − IDC( ) RL2 + 1
2
RS4( )

(6)
iL3 t( ) � iL3 t0( ) + υL3 t( ) t − t0

L3
; υL3 t( ) � UDC − Ub − IDC RL3 + RS5′( )

(7)
Second stage [t1 − t2]: (S3, S4, S1, S2, S5, S6 are turned on;

S3prime, S4prime, S2prime, S1prime, S5prime, S6prime are turned off; Figure 6B.
Through S3, S1, S2 and S4, both conductors now deliver energy

to the load. Then, both conductors receive the voltage −υbat.
As a result, the instantaneous current/voltage equations for

inductor is illustrated in Eq. 8, respectively, and the current
through all inductors falls linearly.

TABLE 1 Switches signal commands three phases converter.

Switches T [0 − π
4] [π4 − π

2] [π2 − 3π
4 ] [3π4 − π] [π − 5π

4 ] [5π4 − 3π
2 ] [3π2 − 7π

4 ] [7π4 − 2π]
S1, S6 1 0 0 0 0 0 0 0

S2 0 0 0 0 1 0 0 0

S3 0 0 1 0 0 0 0 0

S4 0 0 0 0 0 0 1 0

S5 0 0 0 0 0 1 0 0

S1′, S2′ 0 1 1 1 0 1 1 1

S3′, S4′ 1 1 0 1 1 1 0 1

S5′, S6′ 0 1 1 1 1 0 1 1

FIGURE 5
Equivalent circuits of boost mode using interleaved converter three phases. (A): first stage, (B): second stage.
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iLn t( ) � iLn t1( ) + υLn t( ) t − t1
Ln

; υLn t( ) � −Ub − 1
3
Ib RLn + 1

2
RSm( )

(8)
With n = 1,2,3 and m = 2,3,5.
The DC for three-phase converter voltage gain can be

calculated in boost and buck mode using the following
expressions Eq. 9, Eq. 10:

υL1 � 2
Ts

∫Δt1

0
υL1boost t( )dt + ∫Δt1

0
υL2boost t( )dt + ∫Δt1

0
υL3boost t( )dt[ ]D< 0.25

(9)

υL1 � 2
Ts

∫Δt1

0
υL1buck t( )dt + ∫Δt1

0
υL2buck t( )dt + ∫Δt1

0
υL3buck t( )dt[ ]D< 0.25

(10)

4.3 Technique and control strategy

Because of their ability to approximate nonlinear functions,
artificial neural networks (ANN) have found widespread use in the
estimation and control of nonlinear systems. Moreover, adaptive
controllers can be created using the properties of changing the ANN
weights. Numerous applications have explored the use of ANN and
control together (Sun et al., 2024).

Only the functions of the variables that need to be controlled are
employed in the 12 system transfer functions that may be obtained

from this state space (Guo and Hu, 2023). The control structure
shown in Figure 7 is employed, where it is evident that measuring
the three system status variables is required to manage the bus
voltage and lower the current ripple in the battery. For a very long
time, PID control schemes, which are based on classical control
theory, have been extensively utilized for a variety of process control
systems. Nevertheless, because these systems have nonlinear
characteristics, it is challenging to identify appropriate PID
parameter sets. This section covers a new neural network-based
system identification scheme and a PID control scheme based on the
estimations. The recently presented approach does not require any
information on the system Jacobian, making it applicable
to nonlinear systems with unknown time-delays (Song et al.,
2022). An activation function must be provided to map the
neural signal to the output in order to input the neural signal
from the neurons in the input layer to the hidden layer for
neurotransmission.

Network Neural Artificial neural networks are used in PID
control to learn from and modify control based on historical data
and experiences. A type of machine learning is involved. As they
gain knowledge from data, they can automatically modify their
parameters. They may therefore gradually adjust to changes in
the system. And are frequently more implicit as a result of the
neural network’s ability to modify internal weights and biases in
order to attain ideal control. Compared to traditional PID, this
may make the control process less cross-parent (Sun et al.,
2024).The primary distinction is in the control strategy

FIGURE 6
Equivalent circuits of buck mode using interleaved converter three phases. (A): first stage, (B): second stage.
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employed. Neural network control is based on machine learning
and altering the weights of the neural network to accomplish the
desired control, whereas PID is based on mathematical equations
and predetermined parameters (Luo et al., 2023;
Mohammadzadeh et al., 2024).

The specifics of the application and the properties of the
system to be managed will determine which of these two
approaches is best, as illustrated by the artificial neural
networks Figures 7, 8A.

Two PI controllers are used to regulate the charging and
draining of batteries: One is for the generation of reference
current, which varies according to the mode of operation
(charging or discharging). The other is for battery
current control.

The case study that is being given has two modes of operation:

Charging mode: automatic when the DC bus is connected
and, as shown in Figure 8B, the control objective set
point (of the first PI closed loop) reaches the full voltage of
the battery.
Discharging mode: this mode is automatically initiated when the
DC bus is disconnected and the first PI closed loop’s control
target is changed to load voltage in order to maintain a steady
load voltage during discharging.

5 Experimental results

Measurements were conducted utilizing aDC source connected to a
battery in order to verify the PWM functioning and the comparison
between the two topologies examined in the preceding sections.

FIGURE 7
Redes neuronales artificiales.

FIGURE 8
Control system. (A): PID neural network, (B): classic PID.
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Table 2 displays the configuration of simulation parameter
values with fixed DC bus voltage UDC = 48 V, battery voltage
Ub = 24 V, and fs = 5 kHz.

PID and PID with neural network are the two battery voltage
controllers that are compared using a simulation of an interleaved
DC converter with a three-phase parallel MOSFET during discharge
and charge. In order to mimic the converter in boost mode
(discharge mode) on the 24 V, 50 Ah50 ah low-voltage battery,
which is thought to be supplied by the 48-V DC bus voltage, a 4.4 oh
resistive load is added. Similarly, a 24-V, 50 AH battery that is
charged during operation is linked to the remaining DC bus
replacement load. The battery voltage regulation simulation
results for the two control topologies for this kind of interleaved
converter are displayed in Figure 10.

As demonstrated in Figure 9 this control indicates that the error
at the conclusion of the simulation is equal to 0.1 and that the
control with the PID is equal to 0.2. Additionally, the RN PID is
faster than the standard PID: Quick adaptation: Neural networks
have the capacity to pick up on changes in the system and change

accordingly. This implies that RN-based controllers, as opposed to
traditional PID controllers with set parameters, can respond to
changing situations more quickly. Better prediction: By using
RNs to forecast future system changes, deviations can be
identified and fixed before they happen. This helps to get more
precise and quick control. Disruptionmanagement: Because RNs are
skilled at modeling non-linear systems, they are better equipped to
handle unforeseen disruptions.

When using PID control with neural networks for the three-
phase converter in the initial scenario of 40% battery SOC and input
voltage, as seen in Figure 10, 11, the battery power output then
displays a power of 1,650 w.

However, it should be mentioned that individual system needs
and design limitations determine which three-phase interleaved
converter is best. The complexity and cost of the system may rise
due to the three-phase converter’s potential need for additional
components and control. Therefore, prior to selecting the
appropriate type of converter, it is crucial to evaluate system
requirements, performance standards, and budgetary restrictions.
It is crucial to examine a number of factors in order to compare the
outcomes and functionality of the parallel MOSFET and the three-
phase interleaved DC-DC converter. The number of phases used is
where the primary distinction is found. On the other hand, the
three-phase converter employs three phases for switching. The
phase distribution between the parallel MOSFETs can be affected
by the number of phases. This load distribution might affect
conduction losses and system efficiency in the case of the three-
phase converter, where it is split among three transistors.
Additionally, the number of phases can affect battery status
control. A system’s dynamics, stability, and accuracy of control
can all be affected differently by initial battery SoC values. There are
certain simulations and studies that are needed in order to better

FIGURE 9
Battery voltage regulation.

TABLE 2 Parameters of the experimental system.

Parameter Spefication

DC Bus voltage UDC = 48 V

Battery voltage Ub = 24 V

Switching Frequency fs1 = 10 kHz

Inductor L1 = L2 = L3 = 57.6 10−3H

Capacitor Cb = 50 Aℎ

Capacitor C = 1000 μF
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comprehend the distinctions between these two scenarios. It will be
feasible to ascertain the benefits and drawbacks of each strategy by
analyzing the dynamic performance, efficiency, stability, and
regulation of the SoC for various configurations and starting SoC
levels using two distinct battery voltage management approaches.
This will allow you to select the configuration that best suits the

unique needs of the battery control system and energy conversion.
It’s crucial to remember that particular outcomes could vary
depending on the simulation settings, battery properties, and
converter parameters.

In Figure 12A and in Figure 12B, the initial value of the state
of charge (SoC) of 20% is first taken. It can be observed that

FIGURE 10
DC voltage.

FIGURE 11
Zoom of Battery power.
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when the three-phase converter is operated with PID control
using neural networks, the SoC value increases beyond 20.02;
however, when the battery is charged or discharged, the
SoC value decreases and reaches 20.01. The values for SoC
35% are equal. In addition, the three-phase converter
increases to more than 35.01% for PID control using neural
networks, whereas the other control’s SoC value decreases to
less than 35.01%.

In the alternative scenario, we propose PID control for closed-
loop battery voltage regulation using neural networks. With a
three-phase DC converter, a battery with an initial value of 40%
SoCmay require more charging and discharging to reach the target
value of more than 40.01% when charging and 39.96% when
discharging. As for PID, we note that the value reaches more
than 40% when charging the battery and 35.95% when charging
the battery.

The simulation results guarantee the same interpretation when
the initial value of the SoC is large, i.e., 60% and more. In this
scenario, the three-phase converter with PID control using neural
networks increased to more than 60.005% when under load and
59.95% when under discharge than PID. Additionally, it is noted
that for PID neural networks and PID control. , the maximum value
in the case of 75% load becomes 75.001% in the case of charge and
less than 74.95% in the case of discharge. Specifically, the SoC value
reaches 85.0002% with PID control network neurons in the case of
charge and less than 84.95% in the case of discharge. Concluded that
the suggested three-phase converter for battery charging with PID
control neural networks can change based on the different starting
values of the SoC battery with a big configuration when using PID
control neural networks compared to the other. The three-phase
converter with PID regulation and neural network is more efficient
and has a better SoC due to its decreased energy loss. In fact, the

FIGURE 12
State of Charge level of Li-ion battery during charging and discharging mode for different % soc initiative with three phases converters: (A) PID with
neuronal network controller; (B) Traditional PID controller.
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three-phase converter may store a lot more energy in the battery for
the same amount of energy provided by the power source, leading to
a greater SoC. It’s crucial to remember that RN regulation can be
trickier to set up and learn than traditional PID controller
regulation. Large data sets and a learning phase might be
necessary, which could be a drawback in some situations. Hence,
the decision between these two approaches will be based on the
particular needs of your system, the accessibility of learning data,
and the intricacy of the intended regulation. Overall, the
effectiveness of RN regulation in your simulation shows its
benefits for modeling complex systems and adaptability, which
makes it a good option for battery regulation applications.

Tables 3, 4 illustrate the SOC gains for a PID control technique
using neural networks during battery charging and discharging.
Taking the first case of SoC value, we observe that the SOC gain, with
an initial state-of-charge value of 20%, is 0.01% in the case of charge,
and 0.03% in the event of discharge. In conclusion, for all other
circumstances, we discovered a rapid gain using the neural network
PID. In this regard, for alternative beginning states other than the
charge value, and because our research focuses on energy
management, it is necessary to include both battery charge
and discharge.

Three sets of MOSFET in parallel enable a more effective
distribution of current between phases in a three-phase
interleaved DC-DC converter. The system’s voltage dips and
conduction losses are decreased by this balanced current
distribution. The three-phase converter can supply a larger
current with a more consistent output voltage when charging the
battery. Higher voltage at the battery terminal is produced by this
capacity to supply more current, which enables quicker and more
effective charging. In a similar vein, the three-phase converter can
sustain a higher output voltage during battery drain while still
supplying the required current for charging. As a result, the
battery can hold onto more energy while still producing an
output voltage that is steady. The two-phase converter, on the
other hand, might have a less effective current distribution,
which could result in higher conduction losses and a larger
voltage drop. As a result, the battery voltage is marginally lower
than with the three-phase converter. It is significant to remember
that there are additional elements, including component design,
switching losses, conversion losses, etc., that can also affect the
output voltage. Therefore, it is crucial to consider these parameters
while comparing two battery voltage control topologies in the three-

phase converter structure and analyzing the results. Figure 13
presents the outcomes of the simulation. As seen in Figures
13A–C, PID control in conjunction with neural networks to
control battery voltage offers an inventive method that delivers a
high voltage that gives emphasis to initial low SoC values in the
application of interlaced converters. As seen in Figures 13D–F, the
voltage levels are nearly comparable for the other SoC value
scenarios. Traditionally, the PID controller has been utilized to
modify the converter outputs to maintain the ideal battery voltage.
Nevertheless, the system can learn and adapt to intricate models of
battery and charge changes by integrating neural networks,
increasing control precision and efficiency. With the ability to
adjust to changes in the interlaced converter’s working
environment and dynamic load variations, this hybrid approach
provides a more resilient and flexible solution. This method
advances battery voltage management in interleaved converter
applications significantly by fusing the advantages of classical
PID control with the learning capacity of neural networks.

6 Conclusion

An efficient option for applications needing a large output
capacity and stability is the interlaced converter. Systems for
transmitting energy and industrial applications are typical
examples. This study suggests a unique modulation applied to a
DC-converter topology in order to achieve improved efficiency and
an outstanding distribution of the current between the switches.
Two-way interlaced DC with two parallel switches in each phase and
a battery acting as an energy storage component. The converter’s
analytical explanation is finished. The converter’s analytical
explanation is finished. When connecting a battery to a DC bus,
the converter works wonderfully. It is clear that the particular
application requirements and operating conditions influence the
selection of a three-phase parallel MOSFET converter. When there is
a large variation in the SoC boot value, there are a few critical
considerations to take into account. With fewer parts and a more
compact design, the converter including MOSFET in parallel
provides a more straightforward and cost-effective solution.
When SoC variations stay within a reasonably small range, it
may be recommended. However, under severe load and discharge
conditions, it might have limitations on output current and energy
efficiency. On the other hand, in situations when there are notable

TABLE 3 Specifications of the gain SoC value for phase charge with PID
neuronal network.

Charge (from 0 sec to 1.5 sec)

Initial value Final value Gain (%)

CASE 1 20 20.01 0.01

CASE 2 35 35.01 0.01

CASE 3 40 40.01 0.01

CASE 4 60 60.005 0.005

CASE 5 75 75.001

CASE 6 85 85.0002 0.0002

TABLE 4 Specifications of the gain SoC value for phase discharge with PID
neuronal network.

Discharge (from 1.5 sec to 3 sec)

Initial value Final value Gain (%)

CASE 1 20.01 19.970 0.03

CASE 2 35.01 34.964 0.02

CASE 3 40.01 39.960 0.04

CASE 4 60.005 59.951 0.05

CASE 5 75.001 74.947 0.05

CASE 6 85.0002 84.946 0.05
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changes in SoC, the converter utilizing a three-phase parallel
MOSFET offers notable benefits. It provides improved output
current stability, less switching losses, and improved power
distribution. For energy storage systems that need to be highly

reliable and efficient under a range of load and discharge situations,
this makes it a better alternative.

In conclusion, because of its simplicity and lower cost, the
parallel MOSFET converter might be a suitable choice for SoC

FIGURE 13
Battery voltage for three phases converters: (A) battery voltage for SoC 20%; (B) battery voltage for SoC 35%; (C) battery voltage for SoC 40%; (D)
battery voltage for SoC 60%; (E) battery voltage for SoC 75% and (F) 85%.
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boot values that vary more narrowly. On the other hand, the three-
phase parallel MOSFET converter performs better in terms of
output current stability, energy efficiency, and power distribution
when SoC changes are substantial. A careful examination of the
unique application requirements and operational limitations must
form the basis of the ultimate decision. By employing synchronous
MOSFET switching, a three-phase DC-DC converter with parallel
MOSFETs transforms an input DC voltage into an output DC
voltage. Better load distribution, increased efficiency, and more
accurate output voltage regulation are made possible by this
arrangement. According to this study, voltage regulation loops
(PID with neural networks) can be installed on three-phase DC-
DC converters to keep the output voltage constant in the face of
changes in the load and input voltage.

Because of their affordability and ease of use, they may be a
suitable choice. On the other hand, the three-phase converter
performs better in terms of power distribution, energy efficiency,
and output current stability in scenarios where SoC changes are
substantial. A careful examination of the unique application
requirements and operational limitations must form the basis of
the ultimate decision. For a number of reasons, the combination of
PID control with neural network in interlaced converters is crucial.
Firstly, PID control provides a tried-and-true, effective way to
control dynamic systems like voltage converters. Its
straightforward design and movable settings provide accurate
real-time battery voltage regulation, which is necessary to
guarantee peak performance and extended battery life.

However, the incorporation of neural networks gives the control
system an additional layer of flexibility and intelligence. The
behavior of the battery and converter can be represented by
complicated, non-linear models using neural networks, which
enables control to be optimized in erratic and changing
circumstances. By doing this, the system becomes more resilient
to changes in load, the environment, and battery deterioration over
time. PID control with neural networks, which combines these two
methods, provides a comprehensive solution that combines the
accuracy and adaptability of neural networks with the
dependability and simplicity of PID. This makes interleaved
converters more capable, more energy-efficient, and capable of
intelligently managing battery voltage. It is essential for a variety
of applications, including renewable energy storage systems and
electric cars.

7 Future works

In the future, numerous lines of research can be pursued to
improve and widen the conclusions reached. First, the PID with
neural network controller should be tested with various battery
kinds and three-phase converter technologies to ensure its durability
and flexibility. Second, the use of machine learning techniques could
allow for the dynamic optimization of PID with neural network
settings in real time, based on load fluctuations and operational
conditions. Third, it would be useful to investigate the effect of
external disturbances such as temperature changes and

electromagnetic interference on system performance. Finally, the
development of a physical prototype and the execution of actual tests
in real-world situations would provide a practical validation of the
simulation results, allowing us to quantify the PID with neural
network’s performance in a concrete context and identify any
necessary improvements. These research views will help to
improve the reliability and efficiency of PID with neural network
-based control systems in a variety of industrial applications.
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