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The study of electric vehicles (EVs) aims to address the critical challenges of
promoting widespread adoption. These challenges include EVs’ high upfront
costs compared to conventional vehicles, the need for more sufficient charging
stations, limitations in battery technology and charging speeds, and concerns
about the distance EVs can travel on a single charge. This paper is dedicated to
designing an innovative strategy to handle EV charging station arrangement
issues in different cities. Our research will support the development of
sustainable transportation by intelligently replying to the challenges related to
short ranges and long recharging times through the distribution of fast and ultra-
fast charge terminals by allocating demand to charging stations while considering
the cost variable of traffic congestion. A hybrid combination of Dynamic Greylag
Goose Optimization (DGGO) algorithm, as well as a Long Short-Term Memory
(LSTM) model, is employed in this approach to determine, in a cost-sensitive way,
the location of the parking lots, factoring in the congestion for traffic as a variable.
This study examines in detail the experiments on the DGGO + LSTM model
performance for the purpose of finding an efficient charging station place. The
results show that the DGGO + LSTM model has achieved a stunning accuracy of
0.988,836, more than the other models. This approach shapes our finding’s
primary purpose of proposing solutions in terms of EV charging infrastructure
optimization that is fully justified to the EV’s wide diffusion and mitigating of the
environmental consequences.
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1 Introduction

Electric Vehicle (EV) charging stations are the key facilities on which the infrastructure
of the future that is necessary for the massive use of electric vehicles is built. These stations
are a vital service for recharging the batteries of EVs. Thus, they are able to increase their
range and work properly. The more electric cars are used, the more charging stations are
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needed. Thus, their availability and accessibility have become a vital
issue. There are numerous kinds of charging stations, such as slow,
fast, and ultra-fast chargers, each of which is distinguished by the
speed at which they can charge an EV (Grimaccia et al., 2023). The
strategic distribution of these stations, specifically in the cities, is the
key to dealing with the range anxiety, which is a usual worry of EV
users. Besides, the creation of a solid charging infrastructure can
greatly diminish the environmental influence of transportation by
promoting the use of clean energy vehicles. Hence, the proper
placement of EV charging stations is a crucial aspect in the
development of sustainable urban mobility and the decrease of
greenhouse gas emissions (Niccolai et al., 2023).

The problem of navigating through vast search spaces to locate
optimal solutions is a perpetual challenge in optimization,
necessitating continual refinement and innovation (Nasser AlEisa
et al., 2022). The quest to identify the best solutions without
resorting to brute-force methods underscores the essence of
optimization, where the deployment of exploration and
exploitation strategies is pivotal (Alhussan et al., 2023a). By
strategically balancing these tactics, optimization algorithms can
efficiently converge toward the desired goal within a reasonable
timeframe, yielding optimal solutions that meet predefined criteria.
Metaheuristic and evolutionary optimization algorithms play a
pivotal role in this pursuit, offering versatile frameworks capable
of traversing complex solution spaces without succumbing to local
optima (Abdel Samee et al., 2022). Their efficacy has been
demonstrated across diverse domains, spanning engineering
(Ahmadi et al., 2019) and economics (Lin, 2016), healthcare
(Gwon et al., 2021), transportation (Wang et al., 2018),
mechanics (Rao and Waghmare, 2017), and academia (Oppong,
2023), underscoring their versatility and applicability.

In recent years, the optimization landscape has witnessed a
proliferation of metaheuristic and evolutionary algorithms, each
tailored to address specific challenges and exploit unique
optimization landscapes. Among these innovative methodologies,
the Particle Swarm Optimization (PSO) algorithm (Kennedy and
Eberhart, 1995) has emerged as a prominent contender, drawing
inspiration from the collective behavior of birds and fish. Its
decentralized approach facilitates efficient exploration and
exploitation of solution spaces, making it particularly adept at
tackling complex optimization problems. Similarly, the Whale
Optimization Algorithm (WOA) (Khafaga et al., 2022a) has
garnered attention for its ability to emulate the social behavior of
whales, striking a balance between exploration and exploitation in
optimization tasks. The Grey Wolf Optimization (GWO) algorithm
(Mirjalili et al., 2014) leverages insights from the hierarchical
structure of wolf packs, enabling effective solution refinement
and adaptation to diverse problem types. Meanwhile, the Genetic
Algorithm (GA) (Holland, 1992), a stalwart in the field of
optimization, simulates natural selection processes to evolve
potential solutions iteratively, demonstrating remarkable
versatility and widespread applicability. The Gravitational Search
Algorithm (GSA) (Rashedi et al., 2009) introduces a unique
metaphor by modeling solutions as masses interacting through
gravitational forces, enabling effective global exploration and
local exploitation.

The Al-Biruni Earth Radius (BER) algorithm (El Sayed et al.,
2023) and the Waterwheel Plant Algorithm (WWPA) (Abdelhamid

et al., 2023a) represent novel additions to the optimization arsenal,
drawing inspiration from distinct natural phenomena to address
specific problem characteristics. In summary, the landscape of
metaheuristic and evolutionary optimization algorithms has
undergone significant expansion in recent years, with each
algorithm offering a distinct set of advantages for tackling diverse
problem types. The continual evolution of these methodologies
underscores researchers’ commitment to exploring innovative
approaches and pushing the boundaries of optimization
capabilities. As these algorithms mature and diversify, their
application across various domains is poised to catalyze
breakthroughs and unlock new frontiers in optimization research.

The research presented herein follows a systematic methodology
encompassing multiple phases. Initially, the data undergoes
preprocessing, incorporating techniques such as data
augmentation and feature extraction to enhance quality and
accuracy. Subsequently, the proposed dynamic optimization
algorithm, inspired by the collaborative behavior of geese in
nature, is introduced (El-Kenawy et al., 2024). This algorithm,
represented by the graylag goose optimization (GGO) algorithm,
mirrors geese’s teamwork and navigation strategies, which are
crucial for dynamically selecting optimal charging station
parameters to enhance performance. Finally, the study focuses on
predicting the optimal parameter set of LSTM models to improve
charging station performance further, leveraging advanced machine
learning classification models. The ongoing progress of this research
is illustrated in a plot below, showcasing preliminary results from the
parameter prediction phase. Furthermore, to elucidate factors
contributing to dataset variability, an analysis of variance
(ANOVA) is employed. Additionally, a Wilcoxon Signed Rank
Test compares theoretical and actual median accuracy values for
several methods, with results indicating significant improvements in
accuracy for DGGO + LSTM, GGO + LSTM, Grey Wolf
Optimization Algorithm (GWO)+LSTM, Particle Swarm
Optimization (PSO)+LSTM, and Genetic Algorithm (GA)+LSTM.
These techniques collectively contribute to a comprehensive
exploration of optimization strategies in the context of electric
vehicle charging station allocation.

To address the critical challenges to promoting EVs widespread
adoption, different studies are carried out. These challenges include
EVs’ high upfront costs compared to conventional vehicles, the lack
of sufficient charging stations, limitations in battery technology and
charging speeds, and concerns about the distance EVs can travel on a
single charge. This research introduces innovations in metaheuristic
optimization, named DGGO + LSTM, to enhance the efficiency of
classifying electric vehicle stations as follows:

1. First, the widespread adoption of electric vehicles plays a
pivotal role in mitigating greenhouse gas emissions and
addressing climate change. By optimizing the charging
infrastructure for electric vehicles, this research contributes
to facilitating the transition towards a low-carbon
transportation system, a crucial step in aligning with global
climate objectives.

2. Furthermore, the optimization of charging infrastructure
carries the potential to alleviate air pollution in urban areas.
Electric vehicles, known for their reduced emissions of harmful
pollutants like nitrogen oxides and particulate matter, can
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significantly enhance urban air quality and mitigate health
risks. Simplifying access to charging stations through this
research may encourage more individuals to embrace
electric vehicles, thereby contributing to improved public
health and air quality.

3. Additionally, the optimization of charging infrastructure can
lead to reduced energy consumption and lowered electricity
costs. Through strategic placement of charging stations and
demand management utilizing metaheuristic optimization,
this research aids in easing the strain on the electrical grid
during peak hours, potentially resulting in decreased electricity
prices for consumers. In summary, the optimization of electric
vehicle charging infrastructure holds substantial potential for
delivering significant social benefits, encompassing emissions
reduction, enhanced air quality and public health, as well as
decreased energy consumption and costs.

2 Materials and methods

2.1 Dataset

The Electric Vehicle Population Data, maintained by the
Washington State Department of Licensing (DOL), presents a
thorough overview of currently registered Battery Electric
Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs)
in the state (Data.wa.gov, 2024). Figure 1 shows the distribution of
BEVs and PHEVs in the state according to year and company in the
tested dataset. This dataset, publicly accessible and regularly
updated, serves as a valuable resource for scrutinizing the
evolving landscape of electric vehicles. It encompasses detailed
information about BEVs and PHEVs, empowering researchers
and analysts to explore diverse facets of sustainable
transportation. With its last update on 16 December 2023, this
dataset, covering the period from its creation on 10 November 2020,

provides a dynamic and evolving portrayal of the electric vehicle
population in Washington. Hosted on data.wa.gov and managed by
the Department of Licensing, it not only aids in evaluating the
current growth and adoption of electric vehicles but also furnishes
indispensable data for policymakers, urban planners, and industry
stakeholders committed to advancing sustainable mobility
initiatives in the region.

Table 1 illustrates the distribution of BEVs and PHEVs across
various counties. King County shows a significantly higher number
of electric vehicles than other counties, with Snohomish, Pierce, and
Clark counties following. The number of electric vehicles decreases
progressively in the other countries, as shown. Table 2 presents the
most common electric vehicles currently registered, grouped
by model.

2.2 Machine learning basic models

Within the scope of this investigation, various machine learning
classification techniques were utilized, and the following
components represent those algorithms. Long-short-term
memory, also known as LSTM, is a form of neural network that
was developed primarily to overcome the difficulties associated with
capturing long-term dependencies inside sequential data collections
(Alhussan et al., 2023b). LSTMs are adept at preserving and utilizing
knowledge over extended periods of time, which, in turn, makes
them useful for predicting patterns in time-series data. LSTMs are
widely used in tasks that include sequences, such as natural language
processing and speech recognition. LSTM is a type of recurrent
neural network (RNN) suitable for sequence-based tasks, effectively
capturing long-term dependencies in data. Each of these methods
has its strengths and weaknesses, making them suitable for specific
machine learning applications.

Random Forest is a classification system that is well-known for
its capacity to generate reliable predictions while simultaneously

FIGURE 1
Distribution of Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) in the state according to year and company in the
tested dataset.
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minimizing the danger of overfitting. It is composed of numerous
decision trees, each of which is trained on a random sample of the
data. Random Forest Classifier aggregates predictions from multiple
decision trees, providing robust performance and reducing
overfitting. This is one of the reasons why it is such a popular
choice for classification and regression problems because it can
utilize the collective intelligence of a wide variety of trees (Khafaga
et al., 2022b). The basic machine learning methods encompass a
diverse set of algorithms used in this study. The SGD Classifier,
based on Stochastic Gradient Descent, is particularly useful for
large-scale optimization problems, often employed in linear
classification tasks (El-Kenawy et al., 2022a). Decision Tree

Classifier constructs a tree structure to make decisions based on
input features, suitable for both classification and regression
problems (Hassan et al., 2022). K Neighbors Classifier, part of
the k-Nearest Neighbors algorithm, makes predictions by
considering the majority class of its nearest neighbors, making it
effective for both simple and complex datasets (El-Kenawy et al.,
2022b). SVC (Support Vector Classifier) is a powerful
classification algorithm that aims to find the optimal hyperplane
separating different classes (Khafaga et al., 2022c). NN Classifier
typically refers to a neural network-based classifier, offering the
flexibility to model complex relationships in data (Abdelhamid
et al., 2023b).

TABLE 1 Distribution of battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) in cities with more than 200 vehicles.

No. County Count of rows (Vehicle/Vehicles) No. County Count of rows (Vehicle/Vehicles)

1 King 94,460 16 San Juan 947

2 Snohomish 21,439 17 Cowlitz 935

3 Pierce 14,043 18 Mason 840

4 Clark 10,667 19 Lewis 767

5 Thurston 6,600 20 Grays Harbor 648

6 Kitsap 5,956 21 Kittitas 643

7 Spokane 4,671 22 Franklin 585

8 Whatcom 4,331 23 Grant 585

9 Benton 2,183 24 Walla 439

10 Skagit 1,968 25 Douglas 369

11 Island 1,921 26 Whitman 341

12 Clallam 1,079 27 Klickitat 294

13 Chelan 1,078 28 Okanogan 272

14 Yakima 1,034 29 Stevens 223

15 Jefferson 994 30 Pacific 209

TABLE 2 Most common electric vehicles currently registered, grouped by model.

No. Model Count of rows (Vehicle/Vehicles) Percent of total (%)

1 (Other) 64,329 36

2 MODEL Y 36,937 20

3 MODEL 3 30,065 17

4 LEAF 13,343 7

5 MODEL S 7,706 4

6 BOLT EV 6,926 4

7 MODEL X 5,871 3

8 VOLT 4,785 3

9 ID.4 4,083 2

10 WRANGLER 3,534 2

11 MUSTANG MACH-E 3,481 2
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3 Proposed Dynamic Greylag Goose
Optimization (DGGO) algorithm

This study presents a groundbreaking algorithm, the Dynamic
Greylag Goose Optimization (DGGO), which is a sequential process
outlined in Algorithm 1. The DGGO operates with a gaggle of
individuals and characters, Xi (i = 1,2,.,n), where n represents the
number of individuals in the gaggle. Each individual in this
population represents a potential solution to the problem at
hand. The effectiveness of these solutions is evaluated using an
objective function, Fn, applied to each individual inXi. Following the
evaluation of multiple sets of solutions, the DGGO algorithm
identifies the best solution, denoted as p, as the leader guiding
the optimization process. What distinguishes the proposed DGGO
from the original graylag goose optimization (GGO) algorithm,
presented in (El-Kenawy et al., 2024), is its dynamic grouping
behavior, where all individuals are categorized into two distinct
groups: the research and development (exploration) group and the
industrialization and commercialization (exploitation)
group. Initially, these groups are evenly divided, providing equal
numbers of individuals for exploration and exploitation purposes.

Nonetheless, in the later stages of optimization, these groups’
makeup is gradually changing. Homogeneous behavior can be seen
in the number of agents in the exploration group (n1), which
decreases, but the number of agents in the exploitation group
(n2) increases. Smart search space is exploited through the
combination of thinking globally and acting locally, thus
ensuring optimal and more intensified exploitation around the
converging regions. If the value of an objective function of the
agent that has the best solution is unchangeable for the last three
iterations, then to increase the number of agents in the exploration
group (n1) dynamically, the DGGO algorithm is used. This strategic
tactic is considered to discover other potential global optimal
solutions and may work toward jumping over some local optima,
thus rectifying the convergence property of the algorithm. The
DGGO algorithm mainly focuses on a dynamic group formation
strategy, which gives it a chance to achieve a delicate balance
between exploration and exploitation without fail. This, in turn,
facilitates better solution optimization in complex
problem domains.

1: Initialize DGGO population Xi (i = 1,2,n), size n,

iterations tmax, objective function Fn.

2: Initialize DGGO parameters

3: Calculate objective function Fn for each agents Xi

4: Set P = best agent position

5: Update Solutions in exploration group (n1) and

exploitation group (n2)

6: while t ≤ tmax do

7: if (Best Fn is same as previous two

iterations) then

8: Increase solutions of exploration group (n1)

9: Decrease solutions of exploitation group (n2)

10: end if

11: for (i = 1: i < n1 + 1) do

12: if (t%2 = = 0) then

13: if (r3 < 0.5) then

14: if (|A| < 1) then

15: Update position of current search agent

as X (t + 1) = Xp(t)− A.|C.Xp(t) − X(t)|

16: else

17: Select three random search agents XPaddle1,

XPaddle2, and XPaddle3
18: Update (z) by the exponential form

of z � 1 − ( t
tmax

)2
19: Update position of current search agent

as X (t + 1) = w1 pXPaddle1 +zpw2

p(XPaddle2 −XPaddle3)+(1− z) p w3 p

(X − XPaddle1)

20: end if

21: else

22: Update position of current search agent as

X (t+1) = w4 p|Xp(t)−X(t)|.ebl.cos

(2πl)+[2w1 (r4 +r5)]pXp(t)

23: end if

24: else

25: Update individual positions as X (t + 1) =

X(t) + D (1 + z) p w p (X − XFlock1)

26: end if

27: end for

28: for (i = 1: i < n2 + 1) do

29: if (t%2 = = 0) then

30: Calculate X1 = XSentry1−A1.|C1. XSentry1−X|,

X2 = XSentry2− A2.|C2. XSentry2 − X|, X3 =

XSentry3 − A3.|C3. XSentry3 − X|

31: Update individual positions as Xi|30
32: else

33: Update position of current search agent as X

(t + 1) = X(t) + D (1 + z) p w p (X − XFlock1)

34: end if

35: end for

36: Calculate Fn for each agents

37: Update parameters

38: end while

39: Return best agent P

Algorithm 1. Proposed Dynamic GGO Algorithm.

TABLE 3 LSTM model hyperparameter settings.

Hyperparameter Exact value

Number of layers 3 layers

Number of units per layer 100 units

Dropout rate 0.3

Learning rate 0.001

Batch Size 32

Epochs 100

Optimizer DGGO

Activation function ReLU (intermediate layers), Sigmoid (output layer)
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4 Experimental results

In this study, we optimized the LSTM classifier hyperparameters
using the DGGO algorithm. The performance metrics, such as
accuracy, pertain to the classification model’s performance. While
the primary contribution focuses on optimization, the results
presented in this section are for the model’s classification
accuracy after hyperparameter optimization. The hyperparameter
settings of the LSTM classifier, which are crucial for the model’s
performance, are shown in Table 3. Using 3 layers provides enough
depth for the LSTM network t`o capture complex patterns in the
data. It balances the model’s capacity to learn intricate temporal
relationships without being overly complex. Each layer has 100 units
(neurons), which allows the network to learn enough features from
the input data. This value helps in capturing detailed patterns while
maintaining computational efficiency. A dropout rate of 0.3 means
that 30% of the neurons will be randomly set to zero during each
training step. This helps prevent overfitting by ensuring that the
model does not rely too heavily on any particular set of neurons,
promoting generalization.

A learning rate of 0.001 is a common choice for LSTM
networks as it provides a good balance between convergence
speed and the stability of the training process. It allows the
optimizer to make minor, precise updates to the model
parameters. Using a batch size of 32 means that the model will
process 32 samples at a time before updating the model
parameters. This size is small enough to provide a smooth
gradient descent process, helping in stable and efficient training.
Training the model for 100 epochs allows it to make multiple
passes over the entire training dataset. This ensures that the model
has sufficient opportunity to learn the underlying patterns in the
data. Early stopping can halt training if the validation performance
stops improving. The DGGO optimizer is a novel optimization
algorithm inspired by the collaborative behavior of greylag geese. It
balances exploration and exploitation dynamically, making it well-
suited for complex optimization problems like training an LSTM
model. It has shown promising results in finding optimal solutions
efficiently. ReLU (Rectified Linear Unit) is used in the intermediate
layers because it can mitigate the vanishing gradient problem and
accelerate the training process. Sigmoid activation is used in the
output layer for binary classification tasks, providing output
probabilities between 0 and 1.

The electric vehicle population data that presents the currently
registered BEVs and PHEVs in the state is divided randomly into
80% for training the classifier and 20% for testing. After the
training stage, the accuracy and other performance metrics are
evaluated based on the correct selection from the 20% testing
samples. This evaluation, which is a crucial step in assessing the
quality of the LSTM classifier, reflects the impact of the
optimization based on the proposed DGGO algorithm. It
provides a clear picture of how the model performs in real-
world scenarios.

4.1 Performance metrics

The accuracy, sensitivity, and specificity of the classification
module are metrics used to evaluate its performance. Additional

performance metrics consist of Precision (PPV), F-score, and
Negative Predictive Value (NPV). The respective abbreviations
for the true-positive (TP), true-negative (TN), false-negative
(FN), and false-positive (FP) values are provided here. The
value of TP signifies a successful prediction that an instance is
a member of the positive class; FP signifies a false prediction that
the predicted instance is in the positive class; and TN signifies a
correct prediction that the instance is a member of the negative
class. These measurements delineate the characteristics of
each indicator.

• Accuracy: the model’s ability to recognize full cases, regardless
of positive or negative cases and is formed as shown in
Equation 1

Accuracy � TP + TN

TP + TN + FP + FN
(1)

• Sensitivity: referred to as the true positive rate (TPR),
represents the capability of positive cases and is
computed as shown in Equation 2

Sensitivity � TP

TP + FN
(2)

• Specificity: referred to the negative rate and gain the capacity
to locate cases in which there is no match. It can be formed as
shown in Equation 3

Specificity � TN

TN + FP
(3)

• Precision (PPV): controls the proportion of positives relative
to the total positive results. It can be formed as shown in
Equation 4

PPV � TP

TP + FP
(4)

• NPV: controls the proportion of negatives relative to other
negative values as shown in Equation 5.

NPV � TN

TN + FN
(5)

• F-score: calculates the harmonic value of the precision and
sensitivity as shown in Equation 6.

F − score � 2
PPV × TPR

PPV + TPR
(6)

The results presented in Table 4 showcase the performance
metrics of various classification models across different evaluation
criteria. The SGD Classifier demonstrates a commendable overall
accuracy of 79.53%, with a high True Positive Rate (TRP) of 90.09%
but a relatively low True Negative Rate (TNP) of 6.25%. The decision
tree classifier exhibits an improved accuracy of 82.89%, with a higher
TRP and TNP than the SGD classifier, resulting in a superior
F1 Score of 90.58%. K-Neighbors Classifier further enhances the
accuracy to 84.97%, with notable increases in TRP and TNP,
contributing to an enhanced F1 Score of 91.77%. The Support
Vector Classifier (SVC) exhibits a higher accuracy of 86.21%,
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with substantial improvements in TRP and TNP, leading to an
elevated F1 Score of 92.02%. The NN Classifier demonstrates
increased accuracy at 87.68%, with significant improvements in
TRP and Positive Predictive Value (PPV), resulting in an F1 Score

consistent with the SVC. The random forest classification achieves a
noteworthy accuracy of 90.70%, with a high TRP and TNP,
contributing to an impressive F1 score of 93.75%. The LSTM
model surpasses all others with an accuracy of 92.86%,

TABLE 4 Results from the basic classification models applied to the tested dataset.

Models Accuracy TRP TNP PPV NPV F1 score

SGDClassifier 0.795,276 0.900,900,901 0.0625 0.869,565,217 0.083,333,333 0.884,956

DecisionTreeClassifier 0.828,947 0.919,117,647 0.0625 0.892,857,143 0.083,333,333 0.905,797

KNeighborsClassifier 0.849,711 0.929,487,179 0.1,176,471 0.90625 0.153,846,154 0.917,722

SVC 0.862,069 0.931,677,019 0.4,545,455 0.909,090,909 0.531,914,894 0.920,245

NNClassifier 0.876,777 0.931,677,019 0.7 0.909,090,909 0.760,869,565 0.920,245

RandomForestClassifier 0.906,977 0.967,741,935 0.75 0.909,090,909 0.9 0.9375

LSTM 0.928,571 0.967,741,935 0.8,181,819 0.9375 0.9 0.952,381

FIGURE 2
The basic classification models’ results applied to the tested dataset.

TABLE 5 Assessment of the effectiveness of proposed and compared models to the tested dataset.

Model Accuracy TRP TNP PPV NPV F1 score

DGGO + LSTM 0.988,836 0.983,606,557 0.99,378,882 0.993,377,483 0.984,615,385 0.988,468

GGO + LSTM 0.966,608 0.974,025,974 0.957,854,406 0.964,630,225 0.968,992,248 0.969,305

PSO + LSTM 0.952,381 0.967,741,935 0.921,052,632 0.961,538,462 0.933,333,333 0.96463

GWO + LSTM 0.947,005 0.967,741,935 0.887,096,774 0.955,414,013 0.916,666,667 0.961,538

WOA + LSTM 0.943,794 0.967,741,935 0.88,034,188 0.955,414,013 0.911,504,425 0.961,538

GA + LSTM 0.930,716 0.967,741,935 0.837,398,374 0.9375 0.911,504,425 0.952,381
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showcasing the highest TRP, TNP, and F1 Score among the
presented models. These results provide a comprehensive
evaluation of the models’ classification performance, highlighting
strengths and weaknesses across various metrics. Figure 2 shows
visualization of the basic classification models’ results applied to the
tested dataset.

The presented results in Table 5 offer a detailed evaluation of
various hybrid models combining optimization algorithms with
Long Short-Term Memory (LSTM) networks, focusing on their
performance across multiple metrics. The DGGO + LSTM model
stands out with an exceptionally high accuracy of 98.88%. This
model exhibits a remarkable True Positive Rate (TRP) of 98.36% and
an impressive True Negative Rate (TNP) of 99.38%, resulting in a
robust Precision (PPV) of 99.34% and a high Negative Predictive
Value (NPV) of 98.46%. The F1 Score of 98.85% further underscores
the overall excellence of DGGO + LSTM in classification tasks. The
GGO + LSTM model also demonstrates strong performance,
achieving an accuracy of 96.66%. It maintains a balanced True
Positive Rate (TRP) of 97.40% and a high True Negative Rate (TNP)
of 95.79%, contributing to a solid Precision (PPV) of 96.46% and an
F1 Score of 96.93%.

The PSO + LSTM, GWO + LSTM, WOA + LSTM, and GA +
LSTM models exhibit slightly lower but still commendable
accuracies ranging from 95.24% to 93.07%. These models show
variations in their True Positive Rates, True Negative Rates, and
other metrics, reflecting nuanced differences in their abilities to
correctly classify positive and negative instances. These results
demonstrate the efficacy of the DGGO + LSTM model,
surpassing others in terms of accuracy and overall classification
performance. The GGO + LSTM model also performs well, and the
other hybrid models, while achieving slightly lower accuracies, still
showcase respectable performance across various evaluation
metrics. These findings suggest the potential of combining
optimization algorithms with LSTM networks to enhance the
predictive capabilities of classification models, with DGGO +

LSTM leading the pack in this set of experiments. Figure 3 shows
the effectiveness of proposed (DGGO + LSTM) and compared
optimization models to the tested dataset.

The presented statistics in Table 6 provide a comprehensive
overview of the performance measures for six different models, each
combining DGGO, GGO, PSO, GWO, WOA, or GA with LSTM. The
models are assessed based on various statistical measures, including
minimum and maximum values, percentiles, confidence intervals,
mean, standard deviation, coefficient of variation, and measures of
central tendency. The range of accuracy across the models is relatively
narrow, with coefficients of variation ranging from 0.2827% to 0.7615%.
DGGO + LSTM consistently exhibits the highest accuracy, with the
narrowest range and standard deviation, while GWO + LSTM shows a
slightly wider range and standard deviation. The confidence intervals at
different percentiles provide insights into the precision of the estimated
means, with DGGO + LSTM showing consistently narrow intervals.
The skewness values indicate the asymmetry of the data distribution,
and all models exhibit varying degrees of skewness. The kurtosis values
suggest the tail heaviness of the distributions, with DGGO + LSTM and
GA + LSTM showing higher kurtosis values. In terms of the geometric
mean, harmonic mean, and quadratic mean, all models demonstrate
similar patterns, reinforcing the stability and consistency of the results.
The sum of the values across all models remains close to 10, indicating a
relatively consistent overall performance. The statistical analysis
provides a detailed characterization of the performance distribution
for each model, offering valuable insights into the reliability and
variability of their accuracy measures. DGGO + LSTM consistently
emerges as a high-performing model with narrow confidence intervals
and stable statistical properties. These results facilitate a nuanced
understanding of the models’ performance and aid in making
informed comparisons between the different optimization algorithm-
LSTM combinations

Following the previous experiment, several different classifiers,
including DGGO + LSTM, GGO + LSTM, PSO + LSTM, GWO +
LSTM, and GA + LSTM, were examined by applying them to the

FIGURE 3
The effectiveness of proposed (DGGO + LSTM) and compared optimization models to the tested dataset.
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dataset that had been specifically described earlier. The primary purpose
was to evaluate and contrast the degree of accuracy exhibited by each
solution. Figure 4 illustrates that the findings indicate that the DGGO +
LSTM algorithm beats other solutions, demonstrating a much greater
accuracy rate than the other alternatives.

In the following experiment, we will investigate how hybrid
algorithms exhibit varying degrees of accuracy. Repeating the

experiment ten times and displaying the results of each iteration
in the form of a histogram is the method that is utilized to arrive at
an average. The numbers that were collected from each iteration of
the experiment are depicted in Figure 5, which provides a visual
depiction of the accuracy distribution over several repetitions.

The computation of residual values and heat is included in
the experiments, and the results are visually shown through a

TABLE 6 Thorough examination of the performance metrics for DGGO + LSTM, GGO + LSTM, PSO + LSTM, GWO + LSTM, WOA + LSTM, and GA + LSTM
models.

DGGO
+LSTM

GGO
+LSTM

PSO
+LSTM

GWO
+LSTM

WOA
+LSTM

GA
+LSTM

Number of values 10 10 10 10 10 10

Minimum 0.9878 0.9597 0.9412 0.9327 0.9238 0.9281

25% Percentile 0.9888 0.9651 0.9524 0.9453 0.9429 0.9307

Median 0.9888 0.9666 0.9524 0.947 0.9438 0.9307

75% Percentile 0.9891 0.9666 0.9538 0.947 0.9438 0.9323

Maximum 0.9988 0.9666 0.9612 0.9517 0.9524 0.9431

Range 0.011 0.006947 0.02 0.019 0.02859 0.015

10% Percentile 0.9879 0.9598 0.9424 0.9334 0.9255 0.9283

90% Percentile 0.9979 0.9666 0.9609 0.9512 0.9515 0.9425

95% CI of median

Actual confidence level 97.85% 97.85% 97.85% 97.85% 97.85% 97.85%

Lower confidence limit 0.9888 0.9607 0.9524 0.94 0.9404 0.9307

Upper confidence limit 0.9898 0.9666 0.9582 0.947 0.9438 0.9372

Mean 0.9898 0.9653 0.9527 0.9453 0.9423 0.9323

Std. Deviation 0.003197 0.002729 0.005117 0.00525 0.007175 0.004411

Std. Error of Mean 0.001011 0.000863 0.001618 0.00166 0.002269 0.001395

Lower 95% CI of mean 0.9875 0.9634 0.9491 0.9416 0.9372 0.9292

Upper 95% CI of mean 0.9921 0.9673 0.9564 0.9491 0.9474 0.9355

Coefficient of variation 0.3230% 0.2827% 0.5371% 0.5554% 0.7615% 0.4731%

Geometric mean 0.9898 0.9653 0.9527 0.9453 0.9423 0.9323

Geometric SD factor 1.003 1.003 1.005 1.006 1.008 1.005

Lower 95% CI of geo. mean 0.9876 0.9634 0.9491 0.9416 0.9371 0.9292

Upper 95% CI of geo. mean 0.9921 0.9673 0.9564 0.9491 0.9475 0.9355

Harmonic mean 0.9898 0.9653 0.9527 0.9453 0.9423 0.9323

Lower 95% CI of harm. mean 0.9876 0.9634 0.9491 0.9415 0.9371 0.9292

Upper 95% CI of harm. mean 0.9921 0.9673 0.9564 0.9491 0.9475 0.9355

Quadratic mean 0.9898 0.9653 0.9528 0.9454 0.9423 0.9323

Lower 95% CI of quad. mean 0.9875 0.9634 0.9491 0.9416 0.9372 0.9292

Upper 95% CI of quad. mean 0.9921 0.9673 0.9564 0.9491 0.9474 0.9355

Skewness 3.034 −1.812 −0.7679 −1.809 −1.997 2.015

Kurtosis 9.413 1.636 3.182 3.719 6.191 3.865

Sum 9.898 9.653 9.527 9.453 9.423 9.323
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variety of charts and comparisons. During the first computation,
the residual values are graphically displayed on a dispersed y-axis
that is grouped within columns. A representation of the
distribution of these residual values may be found in Figure 6.
To determine the degree of similarity between the anticipated
and actual residual values, a QQ plot is utilized. This plot
illustrates that the two sets of values are in tight alignment
with one another. To compare the variances of the various
groups, the homoscedasticity plot shown in Figure 6 is
utilized. This reveals the consistent variances that exist
between the groups. In addition, the heatmap shown in
Figure 6 is utilized to accurately assess the magnitude of the
individual values contained within the dataset. These studies,
when taken as a whole, provide a thorough insight into the
characteristics of residual values, their distribution, and the
variance among groups, which ultimately helps to improve the

interpretation of the results of the experiment. The ROC curve of
the proposed DGGO + LSTM versus the original GGO + LSTM is
shown in Figure 7.

As shown in Table 7, the results of the Analysis of Variance
(ANOVA) prove markedly distinguishable that there are notable
disparities among treatment groups within the datasets. Through the
application of the above-described statistical technique, different
patterns have been identified that reveal the effectiveness of the
applied treatments that lead to the variations. More specifically, the
sum of squares distributed along the lines of treatment groups turns
out to be 0.02092, which is in conjunction with 5 degrees of freedom
linked to treatment variables. Moreover, the SS residuals are
obtained, meaning the variability within each treatment group is
0.001281 degrees of freedom assigned to residuals. In order to
compare within and between group variances, this analysis uses
an F-statistic, presumed with 5 and 54 degrees of freedom, equal to
the F-ratio of 176.4. The result of this test is a very small p-value (p <
0.0001), which is high enough to reject the null equal-means
hypothesis across groups managed by different treatments being
used. Those results are the robust ground of statistically correlated
data, which showed that regarding the applied treatment, a clear
forerunner/champion between groups is observed. The ANOVA
results reveal the main influence of treatments used in creating the
dataset, which implies the superiority of intentionally applied
experimental interventions in setting a quite significant ground
for variation of the different treatment groups.

A modified Wilcoxon Signed Rank Test was used on six models
combining optimization algorithms with the LSTM network that were
formulated to examine the ability of each to outperform the theoretical
mid-point of 0, as given in Table 8. Based on actual media results, they
differ from theoretical ones, revealing their respective efficiencies. The
medians for DGGO+ LSTM, GGO+ LSTM(eps), PSO + LSTM, GWO
+ LSTM, WOA + LSTM, and GA + LSTM were obtained as 0.9888,
0.9666, 0.9524, 0.947, 0.9438, and 0.9. Strikingly, all themodels provided
similar results regarding the population of the signed-rank S = 55 and
no negative ranks, while positive ones were solely present. Here, the
uniformity, which serves as the cornerstone and the rock of the work,
makes the whole literature review series trustworthy and further helps
to secure the credibility of the coming conclusions. Secondly, these two-

FIGURE 4
Assessment of the accuracy of proposed and compared models.

FIGURE 5
Exploration of the histogram of accuracy for different classifiers.
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way p-values of 0.002 each, which noticeably deviate from the
theoretical mean, clearly demonstrate the statistically significant
divergence from the calculated mean. Indeed, the smoking gun
effect of the null hypothesis shows this, as well as the actual
medians, in comparison to the theoretical probability. These

simulations show that they do inherit the idea of medians from the
software, and their improvement over the baseline median is partly due
to that characteristic. This outstanding improvement clearly reveals the
capability of the mentioned techniques when it comes to analytical
models and data prescriptive tasks. Specifically, LSTM, together with
optimization approaches, proved to be useful.

5 Conclusion and future directions

In conclusion, this study addresses critical challenges in promoting
the widespread adoption of electric vehicles (EVs) by focusing on the
establishment of efficient urban charging infrastructure. The challenges
include EVs’ high upfront costs compared to conventional vehicles, the
lack of sufficient charging stations, limitations in battery technology and
charging speeds, and concerns about the distance EVs can travel on a
single charge. Recognizing the potential hindrances posed by limited
range and prolonged recharging times, the research emphasizes the
importance of strategically locating fast and ultra-fast charging terminals.
However, the energy requirements of these terminals present a
formidable challenge that could affect service quality. The research
employs a dynamic greylag goose optimization (DGGO) algorithm
and a Long Short-Term Memory (LSTM) model as decision-making
tools for the optimal classification of electric vehicle stations.

Future directions for this research include expanding the scope
of analysis to incorporate geographic traffic patterns derived from

FIGURE 6
Residual values and heatmap analysis for DGGO + LSTM and compared models.

FIGURE 7
The ROC curve of the proposed DGGO + LSTM versus the
original GGO + LSTM.
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detailed analyses of road networks, route specifics, junction density,
and economic zones. Leveraging OpenStreetMap for road network
topology analysis will enhance the precision of these evaluations.
Additionally, integrating emerging technologies and renewable
energy sources, such as solar and wind energy, could significantly
reduce the carbon footprint of EVs. Further research could explore
the potential of wireless charging technologies to enhance
convenience and reduce the need for physical charging stations.
Another promising direction is the development of real-time
adaptive systems that dynamically adjust charging station
locations based on real-time traffic and usage data. This would
ensure that the infrastructure remains responsive to changing
conditions and continues to meet the needs of EV users.
Collaboration with urban planners, energy providers, and
policymakers will be crucial in implementing these innovations
and achieving a sustainable and efficient EV charging network.
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TABLE 7 ANOVA findings for DGGO + LSTM and comparing algorithms.

SS Df MS F (DFn, DFd) p-value

Treatment (between columns) 0.02092 5 0.004185 F (5, 54) = 176.4 p < 0.0001

Residual (within columns) 0.001281 54 0.00002373 — —

Total 0.02221 59 — — —

TABLE 8 DGGO + LSTM and other algorithms’ wilcoxon signed rank test statistics.

DGGO
+LSTM

GGO
+LSTM

PSO
+LSTM

GWO
+LSTM

WOA
+LSTM

GA
+LSTM

Theoretical median 0 0 0 0 0 0

Actual median 0.9888 0.9666 0.9524 0.947 0.9438 0.9307

Number of values 10 10 10 10 10 10

Wilcoxon signed rank test

Sum of signed ranks (W) 55 55 55 55 55 55

Sum of positive ranks 55 55 55 55 55 55

Sum of negative ranks 0 0 0 0 0 0

p-value (two tailed) 0.002 0.002 0.002 0.002 0.002 0.002

Exact or estimate? Exact Exact Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes

How big is the discrepancy?

Discrepancy 0.9888 0.9666 0.9524 0.947 0.9438 0.9307
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