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Cascaded H-bridge 5-level inverters (CHB-5LIs) have gained significant traction
in high-power applications owing to their capacity to produce high-quality
output voltage with minimal harmonic distortion. However, their intricate
architecture presents notable challenges for fault diagnosis, particularly
concerning open switch faults. In this study, we propose a deep learning-
based approach for diagnosing open switch faults in CHB-5LIs. We present
a simulation model of the CHB-5LI with open switch faults and generate a
dataset comprising voltage waveforms for various fault scenarios. Leveraging
this dataset, we train a Convolutional-1D Neural Network (CNN-1D) featuring a
multi-layer architecture comprising convolutional and fully connected layers,
culminating in the Softmax function for classification. Our method achieves
an impressive classification accuracy exceeding 98 percent on previously
unseen fault scenarios, underscoring the efficacy of our approach for CHB-
5LI fault diagnosis. Additionally, we conducted a thorough analysis of CNN-1D
performance and compared it with traditional and other deep learning models
for fault diagnosis techniques. The accuracy of other deep learning models on
the generated dataset is as follows: RNN is 88.9 percent, 1D-ResNet is 88.8
percent, and Time Inception model is 89.4 percent. Simulation results showcase
that our proposed CNN-1D based approach surpasses other methods in terms
of accuracy and robustness, elucidating the potential of deep learning for fault
diagnosis in intricate power electronics systems. The fault diagnosis time for the
proposed method as a fault diagnosis tool for the simulation case is 0.060 ms,
compared to 0.062 ms for RNN and 0.065 ms for ResNet.

KEYWORDS

open switch fault diagnosis, cascaded H-bridge 5-level inverter, deep learning,
convolutional neural network (CNN), fault detection

1 Introduction

Cascaded H-Bridge 5-Level Inverters (CHB-5Lıs) have been widely used in high-power
applications due to their ability to generate high-quality output voltage with low harmonic
distortion. However, fault diagnosis of CHB-5LIs remains a challenging task due to the
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complexity of their structure and the variety of fault types that can
occur. Among the various types of faults that can occur in CHB-5LIs
are classified into two categories of i) open switch faults and ii) short
circuit faults.

Open switch faults (Anand et al., 2018) occur when one or more
switches in the inverter fail to conduct properly, leading to an
interruption in the current path. Short circuit faults occur when two
or more switches in the inverter conduct simultaneously, creating a
direct current path between the DC source and ground. Both types
of faults can result in abnormal voltage waveforms and can damage
the inverter and connected devices, if not detected and rectified in
a timely manner. The main focus of this paper is to diagnose open
switch fault in CHB-5LIs.

Open switch faults can lead to significant damage to the inverter
and the load and can even pose a safety hazard in some cases.
Therefore, early detection and diagnosis of open switch faults is
essential for ensuring the reliability and safety of CHB-5LIs in high-
power applications.Therefore, the application of fault diagnosis and
localization is of great interest in academia and industry.

Moreover, the proposed approach can be extended to diagnose
faults in other types of inverters and power electronics systems.
Inverters are widely used in renewable energy systems, electric
vehicles, and other applications, and fault diagnosis is crucial for
maintaining their performance and reliability.Therefore, developing
machine learning-based fault diagnosis approaches for other types
of inverters and power electronics systems can have significant
implications for industry and society.

Different open switch fault diagnosis techniques have been
proposed in literature.The existing fault diagnosis techniques can be
roughly divided into signal processing based and machine learning
based approaches. The signal processing-based approach might be
treated as traditional fault diagnosis methods, which rely on signal
processing techniques such as wavelet analysis, Fourier analysis,
and time-frequency analysis to extract features from the measured
voltage or current signals and identify the type and location of faults.

Farhadi and Babaei proposed a topology called cross-switched
MLI for reducing the number of power electronic switches Kangarlu
and Babaei (2013). The main advantage of this topology is that the
utilization of moderate voltage rating switches to avoid the polarity
part in its structure; therefore, it is more apt to static volt-ampere
reactive generation, magnetic resonance imaging application. This
topology is found to be suitable for high voltage applications only.

The ref J. A. Caballero et al. (2017) introduced a 5-level single
phase VSI in this paper. This topology includes two switches that
are bidirectional. The work was aimed at decreasing the number
of components, complexity of the system, and the number of gate
drives used. The control strategy for the VSI is formulated using
the space vector current controller. This topology meets simple
constraints but is unable to decrease the number of components and
voltage stress. Masaoud, et al. also proposed a 5-level three phase
DC link inverter. The topology aimed to reduce the number of DC
sources, gate drives, switches, and the area required for installation.
The modulation scheme used in this work is dependent on the
switching states of the VSI. However, this topology is not suitable
for higher voltage level requirements.

The semiconductor switch fault diagnosis based on motor
current Park’s vector pattern for voltage source inverter-fed AC
drives is proposed in Mendes. A.M.S and Saraiva (1998) and A.M.S

and A.J.M (1999). Since output currents are used in these methods,
classification accuracy varies with load. The fault detection in a
five-level diode-clamped multilevel inverter using wavelet analysis
of output voltages and input DC currents is discussed in Keswani
and Ballal (2015) and Keswani and Ballal (2014). Input current
varies with loads that may lead to misinterpretation under a large
load variation. In Hu (2022), a method to detect the open-circuit
fault of loads and semiconductors is discussed. The authors used
discrete wavelet transform-based analysis for the classification of
fault. The detection of fault is performed with the help of switching
pulses and corresponding line voltages. When the fault occurs,
the line voltage magnitude will be between the threshold voltage
specified and can detect the fault. Once the fault is detected, fault
classification algorithms will start working where multi-resolution
analysis (MRA) of wavelet transform is used to extract the unique
feature of each fault from the measured line voltage.

From the aforementioned it can be concluded that signal
processing-based fault diagnosis methods suffers from drawbacks
of using mathematical models and signal processing techniques,
which can be complex and time consuming. Contrary to the
signal processing-based approaches, several machine learning-
based methods have been proposed in the existing literature to
detect and diagnose faults in CHB-5LIs.The use ofmachine learning
techniques for fault diagnosis in CHB-5LIs is a challenging task due
to the complex nature of the system and the various types of faults
that can occur.

Machine learning algorithms have been widely used in
the power industry, such as Narciso (2020) has presented a
comprehensive review of the machine learning algorithms in
the power industry to study energy efficiency. In Zhou (2019),
a backpropagation neural network with a genetic algorithm is
used for fault detection. Bridge arm voltage is selected as the fault
diagnosis signal. DC components with fundamentals and harmonics
are fed as the input data for the BP neural network. Weights and
thresholds of the BP neural network are optimized with the help of
a genetic algorithm. This method can detect the individual switch
fault effectively, but the computational effort is high.

In Kuraku and Yi (2019), a fuzzy-based fault detection approach
is presented to identify single and multiple switch faults in
motor drives. The phase current of the drive is employed as a
fault identification characteristic; nevertheless, the absence of a
systematic methodology and slower reaction are the fundamental
limitations of fuzzy logic-based fault detection. Despite fault
detection, locating the exact location of the fault in diagonal pairs
of switches in CHB MLI is challenging due to the identical fault
features. Therefore, there is still a lack of studies in determining the
exact location of faulty switches in multiple fault scenarios.

The author in this paper proposed Raj and George (2018), an
intelligent FD approach is deployed to locate single switch gate
drive faults on CHB MLI. The FD using two distinct machine
learning (ML) algorithms, SVM and KNN, is suggested, with the
PPCASVM-based ML algorithms providing the most accurate and
efficient fault detection. Moreover, the approaches presented in Raj
and George (2018), Ali and Che (2021) give SS fault detection in
CHBMLI and do not address the faults in multiple switches.

The Support Vector Machine (SVM) model is used along with
Relative Principal Component Analysis (RPCA) in X. Hao et al.
(2014). This paper proposes a simple and fast diagnostic method
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for open switch fault in cascaded H-bridge multilevel inverter.
The classification algorithm is less complex, and the fault location
identification can be done accurately within one cycle of the output
voltage. Single switch open fault is analyzed for 5-level CHB MLI.

The existing machine learning based approaches, while showing
promise in fault detection and localization, exhibit limitations
that necessitate a transition to deep learning. Traditional machine
learning struggles to unravel the intricate fault patterns inherent
to complex systems like Multilevel Inverters (MLIs). The reliance
on manually engineered features impedes its adaptability to the
diverse fault scenarios and temporal dependencies present in MLIs.
Consequently, the research pivot to deep learning, exemplified
by the CNN-1D architecture, becomes crucial to overcome these
constraints, enabling automatic feature extraction and enhancing
the accuracy and efficiency of fault diagnosis in the realm
of CHB MLIs.

The author in this paper Yu et al. (2023a) introduces a novel
machine vision approach combining deep CNNs and improved D-S
theory for evaluating corrosion and coating defects in coal handling
plants. Initially, CNNs analyze structural surface images for defect
identification, followed by an enhanced D-S fusion algorithm to
combine results from multiple CNNs. The method, validated on a
dataset of 3,593 surface imageswith various defect severities, notably
improves recognition accuracy and reduces misclassification rates.
Furthermore, robustness tests demonstrate effectiveness even under
noise pollution, highlighting the approach’s practical applicability.

In Yu et al. (2023c), a novel deep learning approach to predict
the degradation of compressive strength in cement-based materials
exposed to sulphate conditions, addressing a significant gap in
existing predictive models. A deep convolutional neural network
(DCNN) is constructed with optimized hyperparameters through
particle swarmoptimization, utilizing input variables such as cement
content, water-to-cement ratio, sand, sulphate concentration,
and exposure temperature. Experimental validation demonstrates
superior performance compared to traditional models, offering a
promising solution for accurately predicting remaining strength in
cement-based materials under sulphate attack, crucial for assessing
long-term durability in marine environments.

The author in this paper proposed Yu et al. (2022) an automated
vision-based method for identifying surface cracks in concrete
structures, aiming to overcome limitations of current manual
inspection methods. By utilizing pre-trained CNNs and transfer
learning on a dataset of 41,780 concrete surface images, the proposed
approach achieves improved crack detection accuracy through
decision-level image fusion with a modified Dempster-Shafer
algorithm. Validation against single CNN models and robustness
testing against various types of noise demonstrate the superiority
and practical applicability of the method, showcasing its potential
for accurate crack profiling in real-world scenarios.

A novel hybrid framework integrates optimized deep learning
models and multi-sensor fusion for diagnosing the condition of
concrete arch beams in Yu et al. (2023b). Vibration responses
undergo principal component analysis for noise reduction, followed
by deep networks based on stacked autoencoders (SAE) at each
sensor for initial diagnosis. An enhanced whale optimization
algorithm optimizes network parameters, while Dempster-Shafer
fusion combines sensor outputs for accurate final diagnosis.
Laboratory tests on a miniature Sydney Harbour Bridge component

with artificial damages validate the method’s effectiveness in
detecting structural damage even with limited sensors and high
uncertainties.

The review of existing literature underscores the pressing
requirement for advancing fault detection for inverters.The impetus
for the proposed research can be succinctly encapsulated as follows:

• Refining Fault Localization: Current fault detection approaches
manage to detect faults but struggle to accurately pinpoint
the specific location of faults in diagonal pairs of switches
within CHB MLI. The inherent similarity in fault features adds
complexity to this challenge, leaving a gap in research regarding
the precise identification of faulty switches within diverse fault
scenarios.
• Addressing Simultaneous Faults: The effectiveness of fault
diagnosis can be compromised when attempting to identify
simultaneous faults across multiple switches. This shortcoming
can lead to incorrect diagnoses and the potential delay of vital
reconfigurations, emphasizing the need for improved accuracy
in handling such scenarios.
• Holistic Fault Consideration: The severity of faults showcases
significant variations contingent upon fault types, locations,
and operational contexts. This underscores the necessity for a
fault diagnosis scheme capable of swift and accurate detection,
and classification across an extensive range of potential fault
scenarios.

Through a comprehensive exploration of existing literature,
several gaps have emerged in the current fault detection and
localization techniques applied to Multilevel Inverters (MLIs). The
traditional model-based strategies, signal processing techniques,
and metaheuristic methods have all exhibited limitations in
delivering robust fault detection, particularly concerning single and
double switch faults. Moreover, the evaluation of these techniques
often lacks depth, especially in assessing their performance under
various fault scenarios.

Moreover, signal processing methods tend to falter in
the presence of signal noise. The need for optimization and
transformation methods to enhance the accuracy of fault diagnosis
becomes evident. To address these challenges, this study shifts its
focus towards AI-based fault detection and localization approaches,
harnessing the capabilities of CNN-1D architecture. Outlined below
are the key contributions made by this research endeavor:

• Theprimary objective of this study is to introduce an innovative
approach utilizing CNN-1D architecture for the fault detection
and localization process within the context of Cascaded
H-Bridge Multilevel Inverters (CHB MLI), so that it can
detect both single and double open circuit faults, effectively
accommodating a wide array of fault types, their varying
locations, and differing operating conditions.
• Themethod’s performance is underscored by impressive results.
Achieving a high detection accuracy rate, this approach
showcases its efficiency in pinpointing the location of single and
double open circuit faults.

In this paper, we propose a deep learning-based approach
for open switch fault diagnosis in CHB-5LIs using only voltage
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waveform data. Our approach is based on a convolutional neural
network (CNN) architecture that can detect a maximum of two
switches faults at a time. The proposed approach can diagnose open
switch faults with high accuracy and can help improve the reliability
and safety of CHB-5LIs in high-power applications.

The remainder of this paper is organized as follows. Section 2
discusses the brief overview of the structure and operation of
CHB-5LIs and discusses the different types of faults that can
occur. Section 3 describes the proposed fault diagnosis approach,
including the dataset preparation, the CNN architecture, and the
training and testing procedures. Section 4 presents the results of the
proposed approach and compares them with those of traditional
fault diagnosis methods. Finally, Section 5 concludes the paper and
discusses future directions for research in this area.

2 Modeling and operation of CHB-5LIs

The Cascaded H-Bridge Multilevel Inverter (CHB MLI), a
collaborative interplay unfolds between the h-bridge modules and
the low-voltage DC power sources. This collaborative synergy is
pivotal in furnishing power levels that can be either elevated or
diminished. Such power level adjustments are achieved through the
strategic addition or removal of h-bridge modules from the system.

In this intricate orchestration, each h-bridge unit assumes a
critical role. Configured with precision, these units generate three
distinctive output voltage levels: +Vdc, 0Vdc, and -Vdc. This voltage
differentiation is accomplished by meticulously manipulating the
connections between the direct current (DC) supply and the
load. These connections are facilitated through an array of switch
configurations, carefully orchestrated to achieve the desired voltage
polarity and amplitude.

In essence, theCHBMLI thrives on the harmonious cooperation
between the h-bridge modules and the low-voltage DC power
sources. This cooperation empowers the system to effectively tailor
power levels according to requirements, thereby enabling a versatile
and dynamic energy distribution mechanism.

The structure of CHB-5LIs shown in Figure 1 consists of two H-
bridge units connected in series, as in Figure 1 each H-bridge unit
consisting of four switches and a DC source. The number of H-
bridge units determines the number of output levels, with each level
corresponding to a unique combination of switch states. CHB5LIs
can achieve a maximum of five output levels, hence the name 5-level
inverter. The number of output phase voltage levels m is defined by:

m = 2∗n+ 1 (1)

Where n is the number of separated DC sources andm represent the
output level of the multi-level inverter.

The output voltage levels, and their corresponding switching
states are given in Table 1. “1” means the corresponding switch is
in ON position and “0” means corresponding switch is in OFF state.
Table 1 represent the switching state w.r.t Figure 1.

The operation of CHB-5LIs involves switching the different
combinations of switches to achieve the desired output voltage
waveform. The switches are controlled using a Pulse Width
Modulation (PWM) technique,which adjusts thewidth of the switch
pulses to regulate the output voltage.The PWM technique also helps

FIGURE 1
Cascaded H-bridge 5 level inverter switch based structure.

to reduce the harmonic distortion in the output voltage waveform.
The voltage equations for each of the H-bridge modules can be
written as follows:

Vab1 = Va1 −Vb1 (2)

Vab2 = Va2 −Vb2 (3)

Vload = Vab1 +Vab2 (4)

where Vab1 and Vab2 are the voltages across the first and second
H-bridge modules, and Vload is voltage across the output load
respectively.

To generate PWM signals for a CHB-5LI, we use carrier-
based pulse width modulation (PWM) with a sinusoidal carrier
waveform. The carrier waveform is used to generate a high-
frequency oscillating signal, while the modulation signal is used to
control the amplitude of the carrier waveform to generate the desired
output voltage.

The modulation signal is typically generated by comparing the
desired output voltage with a reference voltage using a feedback
control loop. The output of the control loop is then fed into a
comparator circuit that compares the modulation signal with the
carrier waveform to generate the PWM signal.

The modulation index (m) represents the ratio of the amplitude
of the desired output waveform to the maximum amplitude of the
fundamental output voltage. It can be calculated as follows:

m =
Vre f
Vdc

(5)

where Vref is the reference voltage, and Vdc is the DC bus voltage.
ThePWMwaveform for eachH-bridgemodule can be generated

using the following equation:

PWM (i) = m
2
+ m
2π
⋅ sin (wt+ d (i)) (6)
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TABLE 1 Voltage levels and Switching states for CHB-5LI’s.

Sr # Output voltage S1 S2 S3 S4 S5 S6 S7 S8

01 2V 1 0 0 1 1 0 0 1

02 V 1 0 0 1 0 1 0 1

03 V 0 1 0 1 1 0 0 1

04 0 0 1 0 1 0 1 0 1

05 -V 0 1 1 0 0 1 0 1

06 -V 0 1 0 1 0 1 1 0

07 2V 0 1 1 0 0 1 1 0

FIGURE 2
PWM generation for CHB-5LI’s.

where i = 1,2 and di is the phase shift of the ith PWMwaveform.The
values of di are typically chosen such that the switching frequency of
the inverter is constant (Figure 2).

Despite their advantages, CHB-5LIs are prone to different types
of faults, which can lead to significant damage to the inverter and the
connected load, and even pose a safety hazard in some cases. The
different types of faults that can occur in CHB-5LIs include open
switch faults, short circuit faults, and capacitor voltage imbalances.
Open switch faults occur when one ormore switches in theH-bridge
units fail to operate properly, resulting in an incomplete circuit.This
can lead to a high voltage across the faulty switch, which can cause
damage to the switch and the connected load. Short circuit faults
occur when there is a direct connection between the high voltage
and low voltage sides of the inverter, resulting in a high current
flow that can damage the switches and the load. Capacitor voltage
imbalances occur when there is a difference in the voltage across the
capacitors in the H-bridge units, which can lead to unequal sharing
of the load and potentially cause damage to the capacitors. Here this
paper just focuses on open switch faults withmaximum two switches
fault detection at a time only.

FIGURE 3
No switch faulty output.

2.1 Analysis and impact of open circuit
faults

• When there is no switch in faulty state. Then all switches
perform well and dilervers the five level at the output. The
structure of no switch faulty is shown in Figure 1 and output
waveform of CHB-5LI’s, when no switch is in faulty state
is shown in Figure 3.
• Single switch fault, which involves the occurrence of an
Open Circuit Fault (OCF) at one of the switches S1 to S8
the outcome manifests as a reduction in the peak voltage
as shown in Figure 5. This reduction is observed in either
the positive or negative voltage levels, contingent upon the
position of the affected switch. Consequently, the average peak
voltage experiences a decrease. The faulty switch is shown
in Figure 4A and the output of single switch number one
is shown in Figure 4B.

Double Switch (DS) fault within the Cascaded H-Bridge
Multilevel Inverter has a discernible impact on the load voltage.This
impact results in a variable output voltage waveform characterized
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FIGURE 4
(A) S1 Faulty Switch. (B) Single Switch Faulty Output in CHB-5LI’s.

by diminished voltage levels. In the context of this study, these DS
faults are classified as intricate and multifaceted anomalies.

The instances of double switch fault cases within the main
inverter are systematically organized into three distinct fault classes.
This classification approach helps categorize and comprehend
the various manifestations of DS faults, contributing to a more
comprehensive understanding of their behavior and consequences.

• Failure of diagonal switches such as switches S1 and S4 as
shown in Figure 5A, or S2 and S3 leading to open-circuit
conditions, a notable outcome is the reduction of peak voltage
to 50% V. The occurrence of a Double Switch (DS) fault in
this context introduces an element of asymmetry to the output
voltage waveform as shown in Figure 5B. This asymmetry
results from the unbalanced operation caused by the fault,

thereby influencing the overall shape and characteristics of the
output waveform.
• Upper or lower switches experience a failure specifically,
switches S1 and S3, or S2 and S4 as shown in Figure 6A,
resulting in open circuit conditions, a distinct outcome
emerges. The peak voltage experiences a reduction during both
halves of the cycle. Despite the absence of the two voltage levels
due to the fault, an interesting observation is that the voltage
waveform maintains its symmetry. This means that, despite
the fault-induced reduction in peak voltage, the waveform’s
fundamental symmetry is retained as shown in Figure 6B, albeit
with altered voltage levels.
• The failure of a leg within the system, when switches within
the same leg experience a fault shown in Figure 7A, leads to a
distinct outcome. In such instances, the output voltage becomes
nullified. This phenomenon sets this particular type of Open
Circuit Fault (OCF) apart from other OCF types. Through
careful analysis, it becomes evident that the fault characteristics
in the output voltage waveform of diagonal switches, upper and
lower switches, and leg switches shown in Figure 7B, display
notable similarities. Consequently, these fault types are logically
grouped together into three distinct categories, based on these
shared fault characteristics and patterns.

Detecting and diagnosing faults in CHB-5LIs is essential for
ensuring their reliability and safety in high-power applications.
Traditional fault diagnosis methods for CHB-5LIs typically rely on
mathematical models and signal processing techniques, which can
be complex and time consuming. However, recent advances in deep
learning based approaches have shown promising results in fault
diagnosis of power electronics systems, including CHB-5LIs.

3 Methodology

The proposed fault diagnosis approach for open switch fault
diagnosis of cascaded H-bridge 5-level inverters (CHB-5LIs) using
deep learning includes dataset preparation, convolutional neural
network (CNN) architecture, and training and testing procedures,
the flow of the research is shown in Figure 8.

The proposed Fault Detection (FD) system for the Cascaded H-
Bridge Multilevel Inverter (CHB MLI) using a 1D Convolutional
Neural Network (CNN-1D) architecture. The CNN-1D framework
is particularly well-suited for sequential data, like the voltage
signals collected from the CHB MLI. This architecture leverages
the strengths of CNNs while accommodating the nature of time-
series data. The proposed method flow chart is shown in Figure 8,
this method detect the faulty switches of cascaded h-bridge 5 level
inverters using CNN-1D, as discussed in Figure 8.

The input layer of the CNN-1D accepts features such as
output voltage, individual h-bridge voltage, and switch pair voltages,
extracted from simulation results. The voltage measurements are
then preprocessed by normalizing the values to the range of
[0,1] to improve the convergence speed of the CNN-1D model
during training. These features are sequentially analyzed using 1D
convolutional layers.The1Dconvolution operationdetects temporal
patterns and dependencies within the data, crucial for fault feature
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FIGURE 5
(A) S1 and S4 Faulty Switches. (B) Diagnoal Switches Faulty Output
in CHB-5LI’s.

extraction. The mathematical modeling of a 1D convolutional layer
involves the convolution operation and the use of filters or kernels.

Let’s denote the input sequence as X and the filter as W.
The convolution operation in a 1D convolutional layer can be
expressed as follows:

(X∗W) [i] =
K−1

∑
k=0

X [i+ k] ⋅W [k] (7)

Here:

• (X∗W)[i] represents the result of the convolution operation at
position i.
• K is the size of the filter (also known as the kernel size).
• X[i+ k] denotes the value of the input sequence at
position i + k.

FIGURE 6
(A) S2 and S4 Faulty Switches. (B) Lower Leg Switches Faulty
in CHB-5LI’s.

• W[k] represents the weight of the filter at position k.

Following the convolutions, activation functions like
ReLU are applied element-wise to the convolved outputs,
injecting non-linearity and allowing the network to learn
complex relationships present in the time-series data. The
mathematical expression for the ReLU activation function
is given by:

f (x) =max (0,x) (8)

This (8) simply returns the input x if it is positive, and it returns 0
for any negative input. The function introduces non-linearity to the
model, allowing the neural network to learn complex patterns and
relationships in the data during training.
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FIGURE 7
(A) S1 and S2 Faulty Switches. (B) Same Leg Switches Faulty Output
in CHB-5LI’s.

Pooling layers, designed for 1D data, perform downsampling
along the time axis. This reduces the computational load and
enables the network to focus on salient temporal patterns while
retaining their temporal relationships. The mathematical equation
for the 1D max pooling operation is given an input sequence
X, and a pooling window of size P, the output sequence Y is
obtained by selecting the maximum value within each window
of size P:

Y [i] =
P−1
max
k=0

X [i× P+ k] (9)

Here:

• Y[i] is the output at position i.
• P is the size of the pooling window.

FIGURE 8
Proposed method flow chart.

• X[i× P+ k] represents the value of the input sequence at
position i× P+ k.

The depth of the CNN-1D architecture is determined by
the number of hidden layers, the architecture of CNN-1D
is given in Figure 9. In this proposal, two hidden layers are
employed, each comprising multiple filters. These filters capture
distinct temporal features and contribute to the network’s ability to
identify fault-related patterns. Subsequently, max average pooling
simplifies the feature maps’ temporal dimensions, preserving
essential information while further reducing computational
demands.

Fully connected layers follow, which fuse the learned temporal
features for decision-making. These layers allow the network to
recognize complex temporal patterns and make accurate fault
classifications.

Here in this paper we used Adam optimizer as it combines
ideas from two other popular optimization algorithms: RMSprop
(Root Mean Square Propagation) and Momentum. The purpose
of Adam is to provide an adaptive learning rate to different
parameters during training, allowing for faster convergence and
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FIGURE 9
CNN-1D model flow chart.

improved performance.TheAdam optimizer maintains twomoving
averages for each parameter: the first moment (mean) and the
second moment (uncentered variance). These moving averages
are then used to adaptively adjust the learning rates for each
parameter.

mt = β1 ⋅mt−1 + (1− β1) ⋅∇θJ (θ) (10)

vt = β2 ⋅ vt−1 + (1− β2) ⋅ (∇θJ (θ))
2 (11)

m̂t =
mt

1− βt1
(12)

v̂t =
vt

1− βt2
(13)

TABLE 2 Model sequential.

Layer (type) Output shape Param #

conv1d (None, 899, 32) 224

max_pooling1d (None, 449, 32) 0

conv1d_1 (None, 447, 64) 6,208

max_pooling1d_1 (None, 223, 64) 0

conv1d_2 (None, 221, 128) 24704

max_pooling1d_2 (None, 110, 128) 0

conv1d_3 (None, 108, 256) 98560

max_pooling1d_3 (None, 54, 256) 0

Flatten (None, 13824) 0

Dense (None, 512) 7078400

Dropout (None, 512) 0

Dense_1 (None, 256) 131328

dropout_1 (None, 256) 0

Dense_2 (None, 128) 32896

dense_3 (None, 37) 4,773

θt+1 = θt −
α

√v̂t + ϵ
⋅ m̂t (14)

Here:

J (θ) − objective function (e.g., loss)w.r.t.parametersθ.

∇θJ (θ) − gradientof theobjective functionw.r.t.parameters.

α − learningrate.

β1,β2 − decayrates for the firstandsecondmoments.

ϵ − smallconstant toavoiddivisionbyzero.

Ultimately, the output layer, activated with suitable functions,
generates the classification results. The CNN-1D’s architecture and
sequential analysis ensure effective fault detection and diagnosis in
the CHBMLI system.

The proposed CNN architecture consists of three convolutional
layers, followed by two fully connected layers, and a softmax
output layer. Each convolutional layer is followed by a batch
normalization layer and a rectified linear unit (ReLU) activation
function. The output of the final convolutional layer is flattened and
fed into the fully connected layers, which are also followed by batch
normalization layers and ReLU activation functions. The softmax
output layer is used to classify the faults. Tables 2, 3 shows the size of
each layer used in CNN-1D model and total number of parameter
used by this model for training.
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TABLE 3 Details of parameters.

Total parameters 7,377,093

Trainable parameters 7,377,093

Non-trainable parameters 0

For training, an extensive dataset containing both normal
and faulty conditions is employed. The dataset is partitioned into
training, validation, and testing subsets, enabling the network to
generalize well. Backpropagation, in conjunction with optimization
techniques like Adam or RMSprop, adjusts the network’s weights
and biases to minimize the loss, thereby enhancing the network’s
capacity to detect faults.

4 Results and discussion

In the section, the study finding of CNN -1D model that
was developed for dealing with fault detection in open switch
cascaded H-Bridge 5-level inverter are presented. First, we present
the evaluation values that will be used to evaluate the proposed
CNN-1D algorithm. The accuracy of the model achieve by this
model is 98.99% and loss of the model is 0.0177%.

After that, the results of CNN model training and testing are
presented in Figures 10A, B respectively which include the findings
of model accuracy, and model loss function curves on 20 learning
epochs for the proposed deep learning model. This model is trained
using Adam optimizer, which acheives better results as compared to
other optimzer.

The test case when switch 1 and 3 are faulty at a time, then
the results of performance metrics results is this scenario are
shown in Figure 11 and calculated values are shown in Table 4. The
Performance metrics are measures used to assess the effectiveness,
efficiency, and overall success of a system, process, or activity, here
performance metrics for specific case is shared in Figure 11.

For the comparison purpose, we trained our model using
different deep learning techniques, RNNs are designed to process
sequential data by maintaining internal memory. A common
variant, particularly for sequence classification tasks, is the Long
Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU)
architecture due to their ability to capture long-range dependencies.
For this paper we used three numbers of LSTM layers to capture
varying levels of abstraction. The number of hidden units in
each LSTM layer can be adjusted based on the complexity of the
dataset and computational resources. For training of model we
used the sigmod activation function. The learning rate can be
determined through experimentation, and first time get common
values from literature which is 0.01, in Figures 12A, B demonstrate
the model accuracy and model loss respectively for RNN based
model on 20 learning epochs with help of Adam optimizer.
As shown in Figures 12A, B, we can observe that model accuracy
is round about 89% only, the main reason behind is that, RNN used
the LSTMmethod, so for this specific generated dataset, RNNmodel
does not gives as good accuracy as CNN-1D gives.

FIGURE 10
(A) Accuracy vs. Epoches. (B) Loss vs. Epoches. CNN-1D Model.

FIGURE 11
Performance metrics for Switch 1 and 3 faulty.

Figures 13A, B demonstrate the model accuracy and model loss
respectively for Inception time-based model on 20 learning epochs
with help of Adam optimizer. Time inception models are sensitive
to the distribution of the training data. If the distribution of the test
data differs significantly from the training data, performance may
degrade will CNN-1D model does not suffering with this problem.
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TABLE 4 Performance metrics for SW faulty 1 and 3

S. No Metric Value

0 Accuracy 1.000000

1 F1 Score 1.000000

2 Loss 0.177,573

FIGURE 12
RNN model. (A) Accuracy vs. Epoches. (B) Loss vs. Epoches.

ResNet is characterized by residual blocks that allow for training
very deep networks by mitigating the vanishing gradient problem.
ResNet typically consists of several residual blocks stacked on top
of each other. The number of blocks and layers within each block
can vary depending on the depth of the network desired. Each
residual block consists of convolutional layers followed by shortcut
connections. Here we experiment with different configurations of
convolutional layers and the number of filters in each layer. But the
final ResNetmodel contain four residual block formodel training for
the generated dataset. ReLU is used as the activation function within
each residual block. Batch normalization technique applied before
the activation function to improve training stability. Figures 14A, B
demonstrate the model accuracy and model loss respectively for
1D-Resnet based model on 20 learning epochs with help of SGD

FIGURE 13
Time inception model. (A) Accuracy vs. Epoches. (B) Loss vs. Epoches.

optimizer, the issue with this model for the generated dataset is that
with a large number of layers, are prone to overfitting, particularly
when the training dataset is limited. Overfitting can result in poor
generalization to new, unseen data.

We trained different deep learning models on the collected
dataset of cascaded H-Bridge 5 level inverter for making
comparisons between these models with CNN-1D model. Table 5
below shows the comparison based on accuracy, F-score, and loss.
This was done for simplicity of reader for better understanding why
we pick CNN-1D over other models.

Evaluation metrics such as accuracy, precision, recall, and
F1-score gauge the CNN-1D’s performance in distinguishing
normal from faulty conditions. This approach demonstrates the
potency of CNN-1D architecture in advancing fault diagnosis and
classification for dynamic systems like the CHBMLI over other deep
learning models.

In summary, the proposed fault diagnosis approach includes
dataset preparation, CNN architecture, and training and testing
procedures. The approach is designed to detect open switch faults
in CHB-5LIs using voltage measurements only and can also detect
maximum two faults at the same time. The proposed approach
can achieve high accuracy, precision, recall, and F1-score for fault
diagnosis in CHB-5LIs.
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FIGURE 14
1D-Resnet model. (A) Accuracy vs. Epoches. (B) Loss vs. Epoches.

TABLE 5 Comparision of different deep learning models.

S. No Trained model Test accuracy Loss

1 CNN-1D 0.9899 0.0177

2 RNN 0.8898 0.1648

3 Inception Time 0.8944 0.1787

4 Hybrid Architectures 0.0231 Nan

5 1D ResNet 0.8888 0.1452

5 Conclusion

In conclusion, our proposed approach showed promising results
for fault diagnosis in the cascaded H-bridge 5-level inverter using
deep learning. The approach was able to diagnose faults accurately
and detect multiple faults simultaneously, which is a significant
improvement compared to traditional methods. Moreover, the
proposed approach was less sensitive to changes in operating
conditions and fault types and required less expert knowledge,
making it more accessible for practitioners in the field.

Future directions for research in this area is to investigate the
performance of the proposed approach with different fault types
and operating conditions. While the proposed approach showed
promising results for open switch faults, other types of faults such as
short-circuits, or overloading may require different approaches or
modifications to the existing approach. Additionally, the proposed
approach was tested using simulations, and further research can be
conducted to evaluate its performance with real-world datasets and
experimental setups.

We aim to complement our simulation-based approach with
experimental validation to enhance the reliability and applicability
of our fault diagnosis method for CHB-5LIs. Specifically, we
recognize the need to investigate the impact of saturation and dead
time effects, which can potentially exist in practical implementations
of CHB-5LIs. Saturation effects may occur due to limitations in
the magnetic components or power semiconductor devices, leading
to non-linear behavior in the inverter’s operation. Dead time, on
the other hand, refers to the duration during which both the
high and low side switches of an H-bridge inverter are turned
off to prevent shoot-through currents. Understanding the effects
of saturation and dead time on the performance of the inverter
system is crucial, as they can introduce additional complexities and
uncertainties that may influence fault diagnosis accuracy.Therefore,
in future investigations, we will explore how saturation and dead
time effectsmanifest in the voltagewaveforms and their implications
for fault diagnosis.Thiswill involve conducting experimental studies
to capture real-world phenomena and validate our simulation
findings. By considering these factors, we aim to develop a more
comprehensive and robust fault diagnosis methodology for CHB-
5LIs that accounts for practical implementation challenges.
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