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The search method for key
transmission sections based on
an improved spectral clustering
algorithm

Jiliang Lin and Min Liu*

Energy and Electricity Research Center, Jinan University, Zhuhai, China

With the increased complexity of power systems stemming from the connection
of high-proportion renewable energy sources, coupled with the escalating
volatility and uncertainty, the key transmission sections that serve as indicators
of the power grid’s security status are also subject to frequent changes,
posing challenges to grid monitoring. The search method for key transmission
sections based on an improved spectral clustering algorithm is proposed in
this paper. A branch weight model, considering the impact of node voltage
and power flow factors, is initially established to comprehensively reflect the
electrical connectivity between nodes. Subsequently, a weighted graph model
is constructed based on spectral graph theory, and an improved spectral
clustering algorithm is employed to partition the power grid. Finally, a safety
risk indicator is utilized to identify whether the partitioned sections are key
transmission sections. Results from case studies on the IEEE39-node system
and actual power grid examples demonstrate that the proposed method
accurately and effectively searches for all key transmission sections of the
system and identifies their security risks. The application in real power grid
scenarios validates its ability to screen out some previously unrecognized key
transmission sections.

KEYWORDS
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1 Introduction

In the backdrop of substantial integration of intermittent renewable energy sources
such as wind and solar, combined with the rapid expansion of electric vehicle charging
stations into the power grid, the power system experiences augmented volatility and
uncertainty (Cheng et al., 2022). During occurrences of severe weather events that
lead to transmission line outages, a widespread transfer of power flow takes place,
a significant redistribution of power flow ensues, potentially triggering a series of
cascading system incidents (Wang et al., 2021; Hui et al., 2023). Key Transmission Sections
(KTS) have emerged as critical safety features of the power grid, revealing susceptible
areas. Monitoring and analyzing KTS can significantly enhance the stability and
operational efficiency of power systems (Wang et al., 2019). Conventional methodologies
rely on the expertise of power grid dispatch professionals for the identification
of KTS. However, in light of the escalating intricacies of the power grid, this
manual selection approach proves inadequate to meet the heightened requisites of the
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contemporary intelligent power grid. Consequently, researching
an expeditious KTS search method and conducting an thorough
analysis of safety stability assumes paramount significance.

Currently, methods for searching KTS can be categorized into
two main types: those based on the analysis of power flow transfer
relationships and those depending on power grid partitioning.
Methods centered around power flow transfer relationships
commonly start from a particular overloaded branch and utilize
parameters such as power flow transfer distribution factors or
clustering indicators to identify line cut sets that exhibit strong
electrical associations with the overloaded line. Zio and Golea.
(2012) approached from the perspective of power grid security,
searching for a set of lines closely associated with overloaded lines
as transmission sections. Yu et al. (2023) proposed a transmission
section search method based on graph theory and PMU data. It
obtains transmission sections by searching the first k path with the
minimumweight and ultimately filters KTS by calculating the safety
margin of the sections. Lv et al. (2018) studied the impact ofmultiple
faults on security and stability characteristics of power grid andweak
transmission sections, and proposed a KTS identification method
considering multiple preconceived faults. The K value setting in
the shortest path method is relatively subjective, and the range of
searching for the shortest path in the entire network is too large,
resulting in a waste of search resources. Hu et al. (2023) employed
the transient safety assessment method of feature selection, but it
needs to screen a high-accuracy power flow feature set and the
expression ability of the model needs to be enhanced. Diao et al.
(2023) utilized a deep learning model to predict KTS, which has
strong expressive ability (Bo et al., 2024), but cannot discover
new KTS.

The methodologies for power grid partitioning are grounded in
common attributes shared among network nodes, such as electrical
distance, power voltage, or energy sensitivity (Samudrala et al.,
2020). These approaches segment the power grid into several zones,
classifying sections within high-safety risk areas as KTS (He and
Fang, 2017). The methods for grid partitioning can be categorized
into two types: one is the method of disconnecting lines to split the
grid. Luo et al. (2014) utilized the Gervan-Newman (GN) algorithm
to find tie lines with high transmission betweenness, and removed
these tie lines to partition the power grid. Nonetheless, the search
for lines within the partitions was neglected. Wang et al. (2022)
utilized the fuzzy C-means clustering algorithm to explore lines with
similar power composition to those broken, thus forming the initial
transmission section. Additionally, a composite factor criterion was
introduced to identify KTS. However, the clustering results are
greatly affected by the initial clustering center.

Another partitioningmethod is the node clustering partitioning
method, which clusters nodes or lines with the same properties
into a group of transmission sections. Hou et al. (2014) proposed
a fast search and identification method for weak transmission
section searching based on automatic subnetwork combination.
Zhao et al. (2017) proposed a network partitioning method
based on community detection algorithm, which divides the
distribution network into multiple communities. Xue and Duan
(2019) introduced an online search method for identifying
typical transmission sections with consideration for geographical
attributes. The method employs a cut-set search algorithm
based on matrix operations of graph theory and utilizes safety

margin criteria to screen typical transmission sections within the
power grid. For the numerous transmission sections resulting
from partitions, Liang et al. (2022) employed N-1 and N-2 fault
verification to identify sections at risk of exceeding limits as KTS.
Wu et al. (2023) utilized comprehensive indicators based on the
line outage distribution factor and line load rate to determine
KTS. The aforementioned methodology transforms the process
of grid partitioning into a graph partitioning process. During
the construction of the branch weight matrix, it may lack the
incorporation of multivariate characteristics in the data (Bai et al.,
2021), such as line parameters, geographical location, system
operating status, etc., thereby posing challenges in ensuring the
accuracy of the partitioning. Deficiencies in conducting KTS
searches for internal sections within the sub-partitions may lead
to the problem of overlooked or missed KTS.

In view of the above problems, a method for searching KTS
based on an improved spectral clustering algorithm is proposed
in this paper. The approach conceptualizes the power system as
a weighted graph model, with branch weights determined by
considering the influences of voltage stability and power flow
characteristics. The power grid is partitioned using the improved
normalized cut spectral clustering algorithm. To tackle the challenge
of numerous transmission sections emerging between partitions,
making it difficult to ascertain their criticality, a safety risk indicator
is devised and employed as a screening criterion. This method fully
exploits the advantages of spectral clustering algorithms in terms of
their low computational complexity and reduced solution difficulty,
while concurrently circumventing the issue of potential omissions
caused by the lack of internal section searches within partitions,
thereby achieving a significant enhancement in accuracy.

2 Power grid partitioning method
based on spectral clustering

Thespectral clustering algorithmhas gained increasing attention
in the realm of electrical engineering due to its solid theoretical
foundation and commendable clustering efficacy (Saxena et al.,
2017). Derived from the theory of spectral graph partitioning,
this algorithm transforms data clustering challenges into graph
cutting problems, providing a fresh perspective for addressing
power grid partitioning. This study utilizes the spectral clustering
algorithm to partition the power grid. Initially, the electrical power
system is abstracted into a weighted graph, with due consideration
given to both voltage and power flow factors in branch weighting.
Subsequently, by constructing the weight matrix and Laplacian
matrix of the graph, the power grid is divided intomultiple partitions
based on the normalized cut criterion.

2.1 Construct branch weight model

Theapplication of spectral clustering for power grid partitioning
fundamentally hinges upon the utilization of eigenvalues and
eigenvectors derived from the Laplacian matrix. A pivotal stage in
this process involves the formulation of a weight matrix for the
graph’s branches, wherein different weight models wield a direct
influence on the partitioning method’s effectiveness. Typically, these
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FIGURE 1
Simplified branch mode.

models consider similar characteristics among network nodes, like
electrical distance, node voltage, branch power flow, etc. However,
prevalent methods mostly consider the above-mentioned single
factors when assigning branchweights, and cannot comprehensively
reflect multiple factors, making it difficult to ensure the rationality
and accuracy of the partitioning outcome (Li et al., 2023).This study
proposes a novel weight model that amalgamates considerations of
both node voltage levels and branch power flowdynamics, providing
a comprehensive reflection of electrical interconnectedness. The
simplified branch model is shown in Figure 1.

In the diagram, Yij = Gij + jBij is the branch admittance; V̇i =
Vi∠θi and V̇j = Vj∠θj are the voltages at the ends of the branch. The
injected power at node i on the branch side is given by:

{
{
{

Pi = ViVj (Gij cosθij +Bij sinθij) +V2
iGij

Qi = ViVj (Gij sinθij −Bij cosθij) −V
2
i Bij

(1)

where, θij is the phase angle difference; The partial derivative of
reactive power Qi and voltage amplitude Vj is:

∂Qi

∂Vj
= Vi(Gij sinθij −Bij cosθij) (2)

In the above equation, due to the significantly higher reactance than
resistance in high-voltage transmission lines, that is, Bij ≫ Gij. The
voltage phase angle difference θij between the ends of the branch is
usually small, and sinθij close to 0, so Gijsinθij can be ignored. The
branch’s susceptance parameter Bij serves as a direct indicator of the
electrical distance between two nodes, while ∣ θij ∣ is linked to the
load ratio of the line, exhibiting an increase as the load ratio expands.
From this, it can be inferred that the partial derivative ∂Qi/∂Vj is
directly proportional to the node voltage Vi and the susceptance B ̈y
of the line, and inversely proportional to the voltage phase angle
∣ θij ∣.That is, when the node voltage is smaller, the electrical distance
between nodes is larger, and the load ratio is greater, the partial
derivative becomes smaller.

In spectral clustering algorithms, it is required that all branch
weights be positive values. To avoid the possibility of a negative value
for ∂Qi/∂Vj due to a smaller reactance of the intermediate winding
in the equivalent circuit of a three-winding transformer, the absolute
value of ∂Qi/∂Vj is taken (Zhao and Yu, 2008). At the two ends of the
same branch, the partial derivative values ∂Qi/∂Vj and ∂Qj/∂Vi can
be obtained, and their deviation is minimal when the power grid is
operating normally. Therefore, the branch weight is determined by
taking the average of these two values:

wU =
1
2
(|

∂Qi

∂Vj
| + |

∂Qj

∂Vi
|) (3)

The KTS in the power grid refers to a collection of transmission
lines connecting twopartitions.These lines are characterized by high
active power flow values at steady-state. Considering the network
losses, for any branch i− j, the weight based on active power flow
factor is given by:

wP =
∣ Pi ∣ + ∣ Pj ∣

2
(4)

From the preceding discussion, it is clear that node voltage and
branch power flow are pivotal factors influencing branch weighting.
The branch weights in this study are designated as:

wij =
wU

wP
= (|

∂Qi

∂Vj
| + |

∂Qj

∂Vi
|)/(∣ Pi ∣ + ∣ Pj ∣) (5)

The equation indicates that as the voltage at node increases, the
branch power flow decreases, resulting in a higher branch weight
and signifying a close connection between the two nodes.Therefore,
two closely interconnected nodes are typically assigned to the same
partition. Conversely, as the power flow in the branch increases,
the weight of the branch decreases, indicating weaker connectivity
between the two nodes, and they are partitioned into different
regions. Hence, this branch weight model provides a comprehensive
representation of factors including node electrical distance, active
power flow value in the branch, and load conditions. Consequently,
it facilitates the spectral clustering algorithm in partitioning nodes
with similar features into the same region.

2.2 Construct a weighted graph based on
spectral graph theory

The power system can be conceptualized as a graph with
weighted branches. Leveraging spectral graph theory, a weighted
graph comprising n nodes andm edges can be expressed as:

G = (V ,E,W) (6)

where,V is the set of nodes; E is the set of branches;W is the weight
matrix, where the matrix elements are defined as:

Wij =
{
{
{

wij (i, j) ∈ E

0 (i, j) ∉ E
(7)

where, wij is the weight of branch i− j. The connection relationship
between nodes can be represented by a degree matrix, where non-
diagonal elements are zero, and diagonal elements are the sum of
the row elements of the weight matrix. The Laplacian matrix of the
constructed graph is:

L = D −W (8)

2.3 Power grid partitioning method based
on normalized cut criteria

In the realm of spectral clustering for power grid partitioning,
the efficacy of graph cutting criteria exerts a significant bearing
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FIGURE 2
The comparison between the minimum cut and normalized
cut criteria.

on the partitioning outcomes. Various graph cutting criteria,
including but not limited to minimum cut, ratio cut, normalized
cut, and minimum-maximum cut, can be utilized by optimizing
the corresponding objective functions through minimization or
maximization, thereby yielding optimal clustering results (Jia et al.,
2014). Some scholars have observed that the minimum cut criterion
might lead to unbalanced partitions (Von Luxburg, 2007). To
address this concern, Shi and Malik proposed the normalized
cut criterion, aiming to mitigate significant differences in the
size of vertex sets between subgraphs (Shi and Malik, 2000). The
comparison between the minimum cut and normalized cut criteria
is illustrated in Figure 2.

The normalized cut criterion serves the dual purpose of
assessing the internal closeness of nodes within subgraphs and
evaluating the inter-subgraph connection looseness. Furthermore, it
ensures equitable subgraph sizes, effectively averting the possibility
of skewed partitions. The objective function for the normalized cut
criterion, dividing the graph into subgraphs A and B, is expressed as
follows:

NcutNcut (A,B) =
Cut (A,B)
vol (A)

+
Cut (A,B)
vol (B)

(9)

where, Cut(A,B) is the total sum of weights of all branches
connecting subgraphs A and B; vol(A) is the sum of weights of all
branches within subgraph A; vol(B) is the sum of weights of all
branches within subgraph B. Minimizing the function Ncut(A,B),
referred to as the normalized cut criterion, is tantamount to
optimizing the objective function for themost favorable partitioning
of node data. When employing the normalized cut criterion for
power grid partitioning, it takes into account not only the external
connections between partitions but also the internal connections
within each partition, resulting in a balanced partitioning effect.

The optimal solution to the graph partitioning criterion
presents an NP-hard challenge, yielding 2n−1 potential outcomes
for a graph comprising n nodes. For this problem, Donath and
Hoffman proposed a solution method based on the eigenvector
of the adjacency matrix, while Fiedler demonstrated the intimate
correlation between graph bisection and the second eigenvector
of the Laplacian matrix, advocating for the utilization of
this eigenvector in graph partitioning (Fabjawska, 2012). The
optimization problem of the normalized cut criterion can then
be transformed into an eigenvalue problem as follows:

Ly = λDy (10)

Transforming the problem into solving the normalized form of the
Laplacian matrix:

L′ = D1/2 (D −A)D1/2 (11)

Z = D1/2Y (12)

L′Z = λZ (13)

Solving the equation for Fiedler’s eigenvector, denoted as VF ,
corresponding to the second smallest eigenvalue of matrix L′,
enables the derivation of the graph’s partitioning indicator vector
based on the Fiedler eigenvector. Let n× 1 order vector be:

K = VF + ρ (14)

As the variable ρ spans from negative infinity to positive infinity,
the elements of vector K undergo n sign changes, yielding n− 1

FIGURE 3
The simple 10-bus system and its transmission sections.
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distinct segmentation indicator vectors X = (x1,x2,…,xn)T. The
process entails calculating n− 1 normalized cut objective function
values based on partitioning indicator vectors. Among these, the
partition that corresponds to the indicator vector which minimizes
the objective function is identified as the optimal partition.

3 Search method for KTS

3.1 The KTS identification method based
on power grid partitioning

Grid partitioning facilitates the identification of KTS. In the
case of practical large-scale power grids, power experts typically
divide the grid into several sub-areas based on geographic or
administrative regions, forming multiple partitioned section. When
a partition section or a combination of multiple partitioned
sections can divide the system into independent subsystems, several
important transmission lines that are closely connected between
these partitions constitute a transmission section (Liu et al., 2017).
However, after the power grid is divided, a large number of
transmission sections will be formed, and it is difficult to monitor
all transmission sections. KTS that have a greater impact on the
stability of the power system are usually selected as the focus of
safety analysis andmonitoring. Currently, there is no strict definition
for KTS, leading to different identification methods. To facilitate
the identification of KTS and distinguish them from non-KTS, this
study defines KTS as follows:

1) The active power flow of the section’s lines is high, and the flow
direction is consistent;

2) The transmission lines forming the section are closely
connected, with the outage distribution factor between lines;

3) The section’s line loading rate is high, and there are overloaded
lines in the section under N-1 failure;

4) The system is divided into several mutually independent
and connected subsystems once all lines in the transmission
sections are disconnected.

The study employs a spectral clustering algorithm based on
normalized cut for power grid partitioning, where the cut sets
between partitions are identified as KTS.Throughout the power grid
partitioning process, the algorithm strives to cluster similar node
data into the same partition, ensuring that nodes within a given
partition are closely connected, while nodes in different partitions
exhibit weaker connections.

3.2 Defects in methods for identifying KTS
through power grid partitioning

The KTS identification method based on power grid
partitioning exhibits limitations as it tends to overlook internal
searches within partitions during the KTS search process,
potentially resulting in the omission of relevant KTS. In
section 2.3 of this study, the selection of KTS relies on the
minimum value of the normalized cut’s objective function
corresponding to a partition section. However, the omission of
further identification for the remaining n− 2 objective values

FIGURE 4
The workflow for searching KTS.

related to transmission sections may lead to misidentifications
or exclusions of KTS. To illustrate this, the drawbacks of the
partition method based on the normalized cut are discussed using
the simple 10-bus system and its transmission sections depicted
in Figure 3 as an illustrative example.

In Figure 3, the numerical values assigned to the branches
represent their respective weights, denoted as Ncut for the
normalized cut objective function value, and Z for the load ratio of
the lines. Section 1 is the minimum cut, with the largest objective
function value and a skew-cut issue. Section 2, a normalized cut,
boasts the smallest objective function value, resulting in a more
balanced partitioned subgraph, albeit without overloaded lines.
Although the objective function value of section 3 is larger than
the objective function value of section 2, the lines in section 3 are
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TABLE 1 The results of the comparison between the two methods.

Method KTS Component lines Security risk index N-1 over-limit line

Reference (Wang et al., 2020)

RKTS 1 6-11,13-14 1.39 l13−146−11 , l
6−11
13−14

RKTS 2 10-11,10-13 1.09 l10−1110−13, l
10−13
10−11

RKTS 3 2-25,26-27 1.01 l26−272−25

RKTS 4 5-6,6-7,13-14 0.91 Non

RKTS 5 16-21,16-24 or 16-24,21-22 0.68or1.05 non or l21−2216−24

This paper

SKTS 1 6-11,13-14 1.39 l13−146−11 , l
6−11
13−14

SKTS 2 10-11,10-13 1.09 l10−1110−13, l
10−13
10−11

SKTS 3 2-25,26-27 1.01 l26−272−25

SKTS 4 16-21,23-24 1.15 l16−2123−24, l
23−24
16−21

SKTS 5 6-11,4-14,16-17 1.06 l6−114−14, l
4−14
6−11

SKTS 6 1-2,2-3,26-27 1.07 l26−272−3

FIGURE 5
Distribution of KTS obtained by the two methods.

subject to heavy load operation and load over-limit. According to
the definition of KTS, it is obvious that section 3 is the real KTS.
Upon the above analysis, the identification method for KTS based
on the normalized cut exhibits the following shortcomings:

1) The assessment of section criticality relies solely on the
magnitude of normalized cut objective function values, and the
accuracy of partitioning depends excessively on the settings of
branch weights.
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FIGURE 6
Three-dimensional diagram and its top view of the sorted weight
matrix. (A) The weight of branches. (B) Node partitioning and its
transmission lines.

2) The exploration of KTS is not incorporated within the
partitioning process.

3) There is a lack of specific criteria for distinguishing between
KTS and non-critical transmission sections.

3.3 The KTS search method based on
security risk indicator

In order to systematically search KTS and avoid the issue of
omission, this paper improves the spectral clustering algorithm
based on the normalized cut. It introduces a safety risk indicator for
evaluating the criticality of transmission sections and employs this
indicator to identify KTS during the partitioning process. When an
N-1 fault occurs on a transmission section, the over-limit value of
the transmission line is:

γ =
Pl + αk→lPk

Pl
− 1, l ∈ S,k ∈ S (15)

where, S is the set of transmission section lines; Pl and Pl−max are
the active power flow and transmission limits of the line l; Pk is the
active power flow of the line k; αk→l is the outage distribution factor
when the power flow transfers to line l after line k is disconnected.

The defining characteristics of KTS, as per its definition, involve a
high line load rate and a small safety margin. When the lines of KTS
experience an N-1 fault, the remaining lines in KTS exceed their
flow limits, denoted as γ > 0. To highlight the ascending correlation
between the line overload values of the transmission section and
safety risk more vividly, this study opts for the natural exponent e
as the base and utilizes over-limit value γ as the exponent, thereby
formulating the safety risk index for the transmission section as:

β =max{exp(
Pl + αk→lPk
Pl−max

− 1)}, l ∈ S,k ∈ S (16)

It can be seen from the above formula that the over-limit value
and the safety risk increase exponentially. If the transmission section
surpasses the limit value and the safety risk index exceeds 1, it
is identified as KTS. Hence, this safety risk index serves as an
evaluative criterion for distinguishing betweenKTS and non-critical
transmission sections.

The procedural aspects of the spectral clustering algorithm
based on normalized cut are improved in this paper, with security
risk indicators being utilized to conduct KTS searches within the
partition. As indicated in Section 2.3, during the partitioning of
an n-node system, the search for KTS within the partitions is
overlooked, implying that identification is not conducted for the
remaining n− 2 transmission sections. The algorithmic procedure
outlined in the preceding text is refined in this study. Initially,
the n− 1 transmission sections undergo sorting in ascending
order based on their normalized cut target values. Subsequently, a
sequential N-1 safety verification is executed on the lines within
each transmission section, resulting in the derivation of the outage
distribution factor αk→l and the safety risk indicator β. The selection
of a transmission section as a KTS is made when the safety risk
indicator meets criterion β > 1.

3.4 The KTS search process

This paper presents a KTS search methodology based on
an enhanced spectral clustering algorithm. The approach initially
computes the power flow and branch weights of the power grid
according to its operational scenarios, leading to the construction
of a weighted graph for the power grid. Subsequently, a recursive
spectral clustering algorithm is applied to partition the power
grid, and the criticality of the partitioned sections is assessed
through safety risk indicators. The partitioning process is iteratively
conducted until noKTS is identified in any partition.Theprocedural
framework for the KTS search is illustrated in Figure 4.

4 Case studies

This paper selects the IEEE 39-node system and the actual
power grid 23-node system to verify the effectiveness of the
proposed method.

4.1 IEEE 39-bus system example

Based on the parameters of the IEEE 39-bus system, a
comparison was conducted between the Search Key Transmission
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FIGURE 7
The partition results of the 23-bus system.

TABLE 2 The search results for partitioned sections.

Partitioned section Location Component lines Line power(MW) Load rate Security risk indicators

1 Partition 2,5 1-6,1-13,5-6 171,878,136 0.90,0.50,0.47 1.11

2 Partition 1,2 1-3,1-4,3-5 80,90,371 0.65,0.40,0.85 1.01

3 Partition 4,5 20-21,13-20 501,288 0.38,0.21 0.61

4 Partition 2,3,5 1-13,12-13 878,396 0.30,0.27 0.46

5 Partition 2,3 1-7,1-12,1-14 110,28,62 0.08,0.06,0.06 0.4

6 Partition 3,4 7-20,7-15 14,20 0.01,0.03 0.3

Section (SKTS) recognized by the method proposed in this paper
and the Reference Key Transmission Section (RKTS) identified in
reference (Wang et al., 2020).The results of the comparison between
the two methods are presented in Table 1, where the superscript
of l denotes the disconnected line, and the subscript indicates the
overloaded line.

From Table 1, it can be discerned that the method presented
in this paper identifies 6 SKTS, compared to 5 RKTS in reference
(Wang et al., 2020). Notably, SKTS1, SKTS2, and SKTS3 align
perfectly with RKTS1, RKTS2, and RKTS3. Upon conducting a
comparative analysis of safety risk indicators, it is evident that all
SKTS exhibit safety risk indices greater than 1, accompanied by
transmission lines exceeding their limits under N-1 fault scenarios.
Conversely, the safety risk indicators for RKTS 4 (16–21, 16–24)
and RKTS 5 (16–21, 16–24) are less than 1, with no over-limit

lines, thereby excluding them as KTS. The distribution of KTS
identified by both methodologies is depicted in Figure 5, wherein
red dotted lines denote identical KTS shared by both methods, and
yellow dotted lines and blue dotted lines respectively illustrate the
additional SKTS and RKTS.

A comparative analysis of the criticality between SKTS 4
(16–21,23–24) and RKTS 5 (16–24,21–22) was carried out. As
displayed in Figure 5, both transmission sections consist of four
branches connecting nodes 16, 21, 22, 23, and 24, embodying
an instance of an optimal cut problem within the graph. The
active power flows across these four branches are: P16−21 = 330,
P23−24 = 354, P16−24 = 43, P21−22 = 604. It is evident that the SKTS 4
has larger active power flows and a higher safety risk value.

Through the above discussion and analysis, it can be concluded
that the KTS identified by the proposed method have larger power
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TABLE 3 The comparison between SKTS searched in multiple scenarios and MKTS.

Monitoring KTS Component lines Search KTS Component lines Probability Comparative Results

MKTS 1 1-6,13-18

SKTS 1 1-6,5-6,13-18 15.30% coverMKTS 2 5-6,13-18

MKTS 3 1-6,5-6

MKTS 4 1-3,1-4,3-5 SKTS 2 1-3,1-4,3-5 11% same

MKTS 5 1-6,20-21
SKTS 3 1-6,5-6,20-21 0.7% cover

MKTS 6 5-6,20-21

MKTS 7 1-6,1-13
SKTS 4 1-6,1-13,5-6 0.5% cover

MKTS 8 5-6,1-13

SKTS 5 1-5,1-6,1-13 9.1% new search

flows and higher safety risks, which align with the established
definition of KTS. Moreover, the proposed method incorporates
a safety risk indicator into the algorithmic process to filter KTS
and non-critical transmission sections, ensuring result accuracy
while minimizing the potential for false positives and false negatives
selections.

4.2 The actual electrical grid example

In order to verify the effectiveness of this method in actual
power grids, this paper selects an actual power grid in a city in
Guangdong, China, which contains a high proportion of new energy,
as a calculation example. The power stations and lines of the power
grid with voltage levels above 220 kV are simplified into a system
of 23 bus and 34 lines. The power nodes include 1 pumped hydro
storage, 2 thermal power units and 3 large-scale wind and solar
farms. The total installed capacity of the power supply is 7300 MW,
and the proportion of new energy installed capacity is 49%.

4.2.1 KTS in summer load peak scenario

In actual power grid operations, electrical experts commonly
select representative operational scenarios to identify KTS.
Therefore, this study initially identified KTS in the actual power
grid in the scenario of the summer peak load.The proposed method
effectively segmented the power grid into five partitions, after which
the nodes were rearranged based on their partition sequence,
culminating in a sorted weighted matrix. Three-dimensional
diagram and its corresponding top-down view of the sorted weight
matrix are shown in Figure 6.

As can be seen in Figure 6, the element distribution chart of the
weighted matrix, sorted according to the partition results, clearly
illustrates the connections between nodes and the connections
between different partitions. In Figure 6A, the vertical axis
represents the weight of branches between two nodes, where higher
weight indicates a closer connection between the nodes, increasing

the likelihood of both nodes being assigned to the same partition.
In Figure 6B, dots represent branches between two nodes. The five
rectangles indicate the 5 partitions, each containing nodes and
branches. High branch weights inside the rectangle indicate strong
connections between nodes, leading to their assignment to the
same partition. Low branch weights outside the box suggest weaker
connections, making them inter-partition transmission lines. For
example, the transmission line between partition 5 and partition 2
identified as five to six, with a considerably low weight, representing
a weak link connecting the two partitions. The partition results of
the 23-bus system under typical operating conditions in the summer
peak load scenario are illustrated in Figure 7.

Based on the above partitioning results, the partitioned section
is obtained in the scenario of the summer peak load, that is,
the collection of transmission lines between partitions. The search
results for partitioned sections are shown in Table 2.

From Table 2, it is evident that a total of 6 partitioned sections
were identified in the scenario of the summer peak load. Among
them, partitioned section 1 and partitioned section 2 have higher
power flow and load rate, and the safety risk index value is greater
than 1, which means they are KTS.

4.2.2 KTS in multiple scenarios

There are 8 Monitoring Key Transmission Sections (MKTS)
identified by experts in the actual power grid, but the SKTS in the
scenario of the summer peak load is only 2. Therefore, the KTS
obtained in one scenario cannot cover allMKTS. To address this, this
paper employs Monte Carlo sampling to generate 1,000 scenarios
based on the historical power output and load demand data of the
actual power grid, producing a scenario set that encompasses all
extreme conditions (Bao et al., 2021). KTS are searched in every
scenario, and their occurrence probabilities are calculated. The
comparison between SKTS searched in multiple scenarios and
MKTS is shown in Table 3.

As can be seen from Table 3, a total of 5 SKTS were identified
in multiple scenarios, among which SKTS 2 is the same as MKTS
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4, and SKTS 5 is a new searched section. SKTS 1, SKTS 2, and
SKTS 4 merge multiple MKTS respectively, reducing the number
of MKTS, thereby decreasing the overall number of MKTS while
enhancing monitoring efficiency. For example, SKTS 1 combines
the monitoring of MKTS 1, MKTS 2, and MKTS 3. In order to
verify its rationality, N-1 verification is performed on the three
lines 1–6, 5–6, 13–18. The breaking distribution factors are all
greater than 0.2 and there are line overruns. This shows that the
three lines of SKTS 1 are closely connected, that is, when one
line is broken, the power flow quickly transfers to the other two
lines. However, MKTS 1, MKTS 2, and MKTS 3 only monitor
two of these lines, resulting in a case of missing monitored lines.
Therefore, the approach presented in this paper is more accurate and
efficient.

Through searching and analyzing KTS in 1,000 scenarios,
the results show that the maximum probability of SKTS 1
occurrence is 15.3%, while the minimum probability for SKTS
4 is 0.5%. Among them, the newly searched SKTS 5 has a
probability of occurrence at 9.1%, indicating a higher risk of
section overload. Therefore, SKTS 5 should be included in the
monitored sections.

5 Conclusion

This paper studies the KTS search method of power systems
and proposes a KTS search method based on improved spectral
clustering algorithm. The advantages of this method include:
1) An improved normalized cut spectral clustering algorithm
is adopted for partitioning the power grid, which features a
lower computational complexity and is suitable for large-scale
power networks; 2) Consideration of both node voltage and
active power flow when constructing branch weights, providing a
comprehensive reflection of the tight connections between nodes
and thus improving the accuracy of the model; 3) Search the
internal sections of the partition during the partitioning process
to avoid missing KTS; 4) Establishing a safety risk indicator for
identifying KTS in cases where numerous partitioned sections are
formed.The proposed method has been validated through practical
applications in power system engineering. It can not only accurately
and efficiently search for KTS currently monitored in operational
control, but also filters out KTS with high risk that operational
experts may have overlooked. This contributes to risk mitigation

and enhances monitoring efficiency for operational dispatch
personnel.
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