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The urgent need to achieve net-zero carbon emissions by 2050 has led to a
growing focus on innovative approaches to producing, storing, and consuming
energy. Integrated energy systems (IES) have emerged as a promising solution,
capitalising on synergies between energy networks and enhancing efficiency.
Such a holistic approach enables the integration of renewable energy sources
and flexibility provision from one energy network to another, reducing emissions
while facilitating strategies for operational optimisation of energy systems.
However, emphasis has been mostly made on steady-state methodologies,
with a dynamic verification of the optimal solutions not given sufficient
attention. To contribute towards bridging this research gap, a methodology to
verify the outcomes of an optimisation algorithm is presented in this paper. The
methodology has been applied to assess the operation of a civic building in the
UK dedicated to health services. This has been done making use of real energy
demand data. Optimisation is aimed at improving power dispatch of the energy
system by minimising operational costs and carbon emissions. To quantify
potential discrepancies in power flows and operational costs obtained from
the optimisation, a dynamic model of the IES that better captures real-world
system operation is employed. By incorporating slow transients of thermal
systems, control loops, and non-linearity of components in the dynamic
model, often overlooked in traditional optimisation modules, the methodology
provides a more accurate assessment of energy consumption and operational
costs. The effectiveness of the methodology is assessed through model-in-the-
loop co-simulations between MATLAB/Simulink and Apros alongside a series of
scenarios. Results indicate significant discrepancies in power flows and
operational costs between the optimisation and the dynamic model. These
findings illustrate potential limitations of conventional operational optimisation
modules in addressing real-world complexities, emphasising the significance of
dynamic verification methods for informed energy management and
decision-planning.
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1 Introduction

Several countries and organisations have committed to achieve
net-zero carbon emissions by 2050 and limit global temperature
increase to 1.5°C above pre-industrial levels (Climate Change
Committee, 2023; IEA, 2024). In light of this, the energy sector is
actively contributing towards climate changemitigation by adjusting
how energy is produced, stored, and consumed, with significant
progress been made in developing and deploying alternative low-
carbon technologies (Gielen et al., 2019; European Scientific
Advisory Board on Climate Change, 2024). Additionally, robust
strategies to reduce energy consumption while meeting demand are
essential. These strategies can be facilitated by a holistic approach in
which energy vectors are interfaced through coupling technologies
to constitute an integrated energy system (IES), where the
interdependencies between energy networks are exploited
(Moeini-Aghtaie et al., 2014; Taylor et al., 2022). IESs not only
facilitate the integration of intermittent energy sources into the
electricity grid (e.g., solar and wind), but also enable flexibility
provision. Flexibility is critical for mitigating emissions, reducing
costs, and achieving global decarbonisation objectives (Gonzalez
et al., 2015; Ulbig and Andersson, 2015).

Decarbonising heat is crucial for decarbonising energy systems,
as heating, including space cooling, contributes over 40% to global
energy-related CO2 emissions (IRENA, 2024). Thus, the
coordinated management of electricity and heat may result in
substantial environmental and economic benefits (Alper and
Oguz, 2016). Fluctuations in energy demand and prices prompt
an IES to adapt its behaviour, allowing it to integrate technologies
that enhance the system’s reliability and reduce operational costs
(Wang et al., 2024). In this context, energy storage units serve as a
useful flexibility resource and are vital in cases where there are
sudden disruptions in the energy supply (Mitali et al., 2022). Energy
storage units also enable efficient demand-side management in the
daily operation of an IES (Oskouei et al., 2022). When integrated
with heating and cooling applications driven by electricity (e.g., heat
pumps, electric chillers), thermal stores provide additional
flexibility, enhancing the synergies between energy vectors and
the performance of the IES by enabling energy to be stored
during off-peak hours for later use during the peak hours of
thermal energy demand (Guelpa and Verda, 2019).

1.1 Literature review

Work on optimisation of IESs initially focussed on ensuring
optimal dispatch within the system (Geidl and Andersson, 2007a).
Since then, several different algorithms have been proposed,
demonstrating the evolving landscape of IES optimisation. Notable
among these are nature-inspired metaheuristic algorithms such as
particle swarm optimisation and genetic algorithms. Reference
(Wang et al., 2010) employed a particle swarm optimisation
algorithm to optimise a combined cooling, heating and power
system for a building integrated with thermal stores and hybrid
cooling systems. The reference shows the energetic, economic, and
environmental performance of such a system configuration with
redundant connections compared to a conventional system for a
building. Similarly, two dispatch-optimisers for centralised energy

management systems were presented in (Nemati et al., 2018),
including an improved genetic algorithm and an enhanced mixed
integer linear programming method. These approaches addressed
unit commitment and optimal dispatch while considering network
restrictions and unit constraints. The effectiveness of each method was
evaluated using a test microgrid model under different
operation policies.

Consideration of demand response and integration of renewable
energy sources (RES) into IESs complicates the decision-making for
power dispatch, urging for the exploration of new methods for the
task. For example, an interval optimisation model was presented in
(Zhang et al., 2020) for coordinating and scheduling a gas and
electricity based IES involving wind power integration and demand
response. Modern artificial intelligence-based techniques such as
deep reinforcement learning have also been adopted to deal with
IESs involving intermittent RES and demand uncertainty. For
instance, the ability of deep learning to respond to dynamic
changes in energy sources and loads was demonstrated in (Zhou
et al., 2023), achieving a performance comparable to traditional
programming approaches. The uncertainties associated with volatile
wind power input to an IES could also be addressed adopting
hydrogen systems as fast power regulators. A relevant example is
presented in (Ding et al., 2022), where the optimal power dispatch of
an IES is scheduled with a two-stage optimisation approach solved
via the column and constraint generation method.

Additional aspects in the analysis of IESs involve optimisation
strategies for carbon emissions reduction and introducing
operational flexibility. These aspects could be coupled to those
stated in previous paragraphs. For example, an integrated
demand response (IDR) pricing method and a stepped carbon
trading mechanism were introduced in (Ye et al., 2023) to
minimise carbon emissions and operating costs in an IES. In
another example, an optimal day-ahead dispatch model for an
IES with carbon emission trading to tackle environmental
challenges was presented in (Zhang et al., 2021). In this
reference, the energy hub approach was adopted to establish a
non-linear integer programming problem. This, in turn, was used
to minimise wind curtailment and improve system efficiency,
highlighting the importance of carbon emission costs in guiding
energy dispatch decisions. Another relevant example of considering
operational flexibility in a low-carbon optimal operationmodel of an
IES was presented in (Wang et al., 2022). In this reference, the IES of
an industrial park was optimised with a focus on the response from
controllable flexible loads to minimise operating costs.

The optimisation goals for an IES could vary depending on the
specific interests of multiple stakeholders. Such scenarios could be
analysed by considering an IES governed by multiple agents such as
energy service providers, renewable energy owners, and users, and
using multi-objective optimisation such as the non-dominated
sorting genetic algorithm-III to balance the interests of each
agent (Zeng et al., 2019). Besides, a hierarchical framework for
trading IDR resources among users in IESs using blockchain and an
energy management system could increase user participation,
reduce costs, minimise resource loss, and improve system
flexibility, as discussed in (Wang et al., 2022).

The emphasis on steady-state methodologies has overlooked the
need for dynamic verification of optimal solutions. Recent references
in this context have discussed integrating low-carbon energy
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solutions into an IES to decarbonise the energy sector (de la Cruz
Loredo et al., 2022a; 2022b), where emphasis was placed on the need
to transition from steady-state to dynamic analysis due to the
complex interactions within IESs. A methodology for validating
optimised operation strategies in IESs through simulation platforms
was presented in (Chen et al., 2022). By comparing the results
obtained from optimised simulation models with those from
physical simulation models, the reference demonstrated that the
optimised strategy, using the interior point optimisation algorithm,
produced dynamic simulation results with deviations of less than
10% compared to the physical models.

Implementing a day-ahead operational optimisation module
may be helpful to ensure the effective coordination of an IES (Xu
et al., 2023). This module would operate every 24 h, optimising
system performance to minimise, for instance, operational costs and
carbon emissions simultaneously. However, traditional optimisation
modules do not account for the slow transients, control loops, and
non-linearity of components present in thermal systems (Good
et al., 2017; Martinez Cesena et al., 2020), which may impact the
daily estimation of optimal power flows. In turn, these may induce
significant errors in the calculation of total operational costs in the
long-term—hindering, as a result, the decision-making process. By
understanding the impact of these effects, a more accurate
assessment of operational costs can be achieved, allowing
stakeholders and system operators to make more informed
decisions on infrastructure management and expansion planning.

1.2 Contributions of the paper

While the theoretical basis of the optimisation algorithms
described in the previous section is fundamentally correct, their
verification process and applicability in real systems are not
straightforward and must be further investigated.

To bridge this gap, this paper presents a novel methodology for
dynamically verifying the results of an optimisation algorithm aimed
at improving the power dispatch of an integrated electrical-thermal
system supported by thermal stores. Verification has been done
against results obtained with a dynamic model. By incorporating
slow transients of thermal systems, control loops, and non-linearity
of components in the dynamic model, often overlooked in
traditional steady-state approaches, the presented methodology
provides a more accurate assessment of energy consumption and
operational costs.

The optimisation algorithm is based on sequential quadratic
programming (SQP) (Bonnans et al., 2006; Nocedal and Wright,
2006). It demarcates conventional energy supplies from low-
carbon sources by their respective carbon footprints. By
incorporating this key environmental factor into the decision-
making process, operational costs are minimised while
promoting a smart and eco-friendly approach. System
optimisation and verification using the dynamic model have
been carried out using real data from a civic building in the
UK dedicated to health services. Such energy system draws
electricity from the local electricity grid and operates power-
to-heat units and gas boilers (GBs) to meet energy demand.

The dynamic verification of the optimisation algorithm is
conducted through a series of scenarios designed to examine its

adaptability and performance under diverse operating conditions of
the IES under study. Optimisation has been carried out in
MATLAB/Simulink, and a “model-in-the-loop” (MiL) simulation
method has been adopted to perform the dynamic verification with
Apros—a commercial software for modelling and dynamic
simulation of energy systems. The presented methodology offers
a practical approach to evaluate optimisation strategies under
realistic operating conditions and quantifying discrepancies in
power flows and operational costs between the optimisation
module and the dynamic model of the IES under
study—contributing to the development of more accurate and
effective optimisation solutions for IESs.

2 Methodology

The hypothesis of this work is that an optimisation algorithm,
when applied to the power dispatch of IESs, may exhibit
discrepancies in power flows and operational costs when
compared to the results obtained from a high-fidelity dynamic
model. These discrepancies are expected to arise due to the
complex interactions and slow dynamics inherent in thermal
networks, which are not fully accounted for in traditional steady-
state optimisation modules.

The objective of this paper is to assess the accuracy and
reliability of an optimisation algorithm for an IES in real-world
operating conditions and supported by historical data to verify the
hypothesis stated above. To achieve this, the sub-objectives of the
paper are:

i. To establish a general framework to assess potential
mismatches in power flows and operational costs resulting
from optimising steady-state operation with respect to
dynamic models.

ii. With the developed framework, to investigate the IES from
Queen Elizabeth Hospital (QEH) King’s Lynn, a public
healthcare facility in Norfolk County, England (further
details on the system under investigation are provided in
Section 3). To this end, specific scenarios arising from
retrofitting sustainable energy technologies to the existing
energy system are developed.

FIGURE 1
Flowchart of dynamic verification methodology for IESs.
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iii. To conduct qualitative and quantitative analysis of the
discrepancies in power flows and operational costs for
different scenarios of the IES obtained from the
optimisation and dynamic models.

To achieve the objective and sub-objectives, this section outlines
the methodology employed to dynamically verify the optimisation
algorithm for power dispatch of IESs.

The dynamic verification process (illustrated with a flowchart in
Figure 1) consists of the following steps:

• Steady-state model development: A steady-state model is
formulated for the IES under investigation to facilitate
system optimisation and techno-economic analysis.

• Optimisation algorithm implementation: An optimisation
algorithm is implemented to optimise power dispatch. The
algorithm minimises operational costs while considering the
carbon footprint of conventional and low-carbon
technologies.

• Dynamic model development: A dynamic model is developed
to include the effect of slow dynamics intrinsic to the thermal
network within the system under study.

• MiL simulation: The optimisation module, in this case
running in MATLAB, is interfaced with a dynamic process
simulator using a MiL simulation approach. For this paper,
Apros has been employed as the dynamic process simulator,
which is a commercial software for the dynamic simulation of
energy systems (Fortum, 2024).

• Data collection and analysis: Data collected during simulation,
including power flows, energy consumption, and operational
costs, are analysed to quantify any discrepancies between the
results obtained with the optimisation module and the
dynamic model.

Relevant details of the previous steps are discussed next.

2.1 Steady-state model

For this paper, the ‘energy hub’ modelling methodology was
adopted (Eladl et al., 2023). The energy hub concept, introduced
in (Geidl and Andersson, 2007b), provides a framework for
steady-state modelling and simulation of IESs. Essentially, an
energy hub links different energy vectors (e.g., heat, gas,
electricity, hydrogen) via coupling technologies.

Figure 2 shows an example of an energy hub. The hub receives
electricity and natural gas from their respective distribution
networks as inputs, converts them to other energy forms, and
stores them using different components such as a combined heat
and power (CHP) unit, a gas boiler, an electric battery, and a
thermal energy storage (TES) unit. These energy conversion and
storage components, when operated in a coordinated manner,
help fulfil the system’s energy demand—for example, for the
system in Figure 2, electricity demand and heat demand. The
operation of these elements within the energy hub could be
optimised to minimise, for instance, operational costs, among
other objective functions (see Section 2.2).

Energy hub’s components establish redundant connections
within the IES, offering two key benefits. Firstly, they enhance
supply reliability for the loads, reducing dependence on a single
network. Secondly, the additional flexibility enables optimal
supply management by evaluating energy vector utilisation
based on criteria such as cost, carbon emissions, and
availability, ensuring the efficient utilisation of resources
(Geidl et al., 2007).

The modelling concept of an energy hub enables analysing
power flows through converter devices by determining their
energy efficiency, which is calculated as the steady-state output
and input ratio. When there are multiple energy vectors as inputs
and outputs, a conversion matrix may be employed to
mathematically establish connections between energy networks
(Geidl et al., 2007).

FIGURE 2
Example of an energy hub coupling electricity, gas, and heat. The energy hub considers two coupling technologies (a CHP unit and a gas boiler) and
two energy storage devices (an electric battery and a TES unit).
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2.2 Optimisation algorithm and
optimisation module

Once a steady-state model of the system under investigation has
been developed, as discussed in Section 2.1, an optimisation module
is employed to meet operational specifications, such as minimising
system operational costs and carbon emissions. The optimisation
module requires the definition of an objective function subjected to a
number of equality and inequality constraints (Frangopoulos, 2009).
These constraints may depend on the characteristics of the system
under study.

For an IES linking electricity, heat, and gas energy vectors as in
the system shown in Figure 2, electrical and heat demand profiles are
used as inputs to the optimisation module. The outputs of the
module provide the optimal power flows for the system under
study—thereby driving power dispatch and optimising system
operation on a 24-h basis.

The optimisation approach here adopted differs from
conventional multi-objective optimisation algorithms by
employing a single-objective function that minimises
operational and carbon emission costs simultaneously (Capone
et al., 2021). The implementation is done in MATLAB 2021b,
utilising the “fmincon” function (MathWorks, 2024), which
employs the SQP algorithm. This algorithm is considered
highly effective for non-linear programming and is
characterised by a rapid convergence to optimal solutions
(Bonnans et al., 2006; Nocedal and Wright, 2006).

The optimisation approach has been borrowed from
(Morales Sandoval et al., 2023). To prevent duplication of
published work, interested readers are referred to the
reference for full details.

2.3 Dynamic model

The dynamic models used for components within a thermal-
hydraulic system are based on differential equations that
capture the transport phenomena of a heat transfer fluid
(HTF), which is essentially a fluid employed to move thermal
energy across two locations (Incropera et al., 2011). These
equations include both the hydraulic characteristics, which
detail the fluid flow, and the thermal attributes, which
describe the temperature propagation. Valves, pipes, heat
exchangers, hydraulic pumps, hydraulic separators, and
energy storage tanks are typical elements considered in these
models (De la Cruz-Loredo et al., 2022b).

In general, for an IES integrating heat as an energy vector, a
dynamic model of the heating system is utilised to capture the
slow thermal transients, which are often overlooked in traditional
optimisation modules (Martinez Cesena et al., 2020).

2.3.1 Hydraulic components
The application of the Reynolds transport theorem, expressed

for linear momentum, establishes the dynamic representation of a
hydraulic component in a general way. This formulation assumes
the characteristics of a one-dimensional flow and homogeneous
incompressible fluid conditions (Cengel and Cimbala, 2010).
Mathematically, this is given as

∑ �F � V
d

dt
ρ �v( ) � ρV

d �v

dt
(1)

In Eq. 1, ρ [kg/m3] is the density of the fluid, d �v/dt [m/s2] the rate of
change of the linear velocity of the fluid, and ∑ �F [N] the
summation of all the external forces acting on the volume V
[m3] of the hydraulic component. ∑ �F is expressed by the
product of the flow area Af [m2] and the pressure differential
Δpc [Pa] across the component as ∑ �F � AfΔpc. For each
hydraulic component, Δpc is given by (de la Cruz Loredo
et al., 2022b):

Δpc � 1
2
ρ �v20 − �v2( ) + ρg z0 − z( ) + Δpf + ΔpL + ΔpB (2)

where the first two terms in Eq. 2, 1
2 ρ( �v20 − �v2) + ρg(z0 − z),

represent the pressure loss due to the hydrostatic and dynamic
pressure differentials across the component, g [m/s2] is the
gravitational constant, z0 and z [m] are the heights of the inlet
and outlet ports of the component, and �v0 [m/s] the velocity of the
fluid at the inlet port of the component. Also in the equation, Δpf is
the pressure loss due to the fluid’s friction against the component’s
internal walls, ΔpL [Pa] is the pressure loss due to sudden changes in
the flow path within the component, and ΔpB [Pa] is the pressure
boost generated by the component.

2.3.2 Thermal components
The dynamic model of a one-dimensional thermal component

with a volumeV [m3] and containing an incompressible single phase
HTF is given by (Incropera et al., 2011):

_HC � ρVcp,C _TC � _m cp,inTin − cp,CTC( ) +∑ _Qconv +∑ _Qcond (3)

where _HC [W] is the rate of change in the enthalpy of the fluid
contained in the component, _TC [°C/s] is the rate of change in the
temperature of the fluid, and ρ [kg/m3] and cp,C [J/kg°C] are the
density and specific heat value of the fluid at a temperature TC [°C].
The term _m(cp,inTin − cp,CTC) is the rate of change in the
components’ enthalpy owing to the mass exchange with other
thermal components. The rate of mass flow exchange, or mass
flow rate, is given by _m [kg/s], where Tin [°C] is the temperature of
the fluid entering the component and cp,in [J/kg°C] the specific heat
value of the fluid at Tin. ∑ _Qconv and ∑ _Qcond [W] are the
summation of the different convection and conduction heat
transfer events between the component and its surroundings.

Eq. 3 does not consider radiation heat transfer due to the
negligible contribution of radiation within the temperature and
environmental conditions considered in this paper. If radiation
heat transfer effects had a representative contribution, an
additional term would be required at the right-hand side of the
equation (i.e., ∑ _Qrad).

2.4 Quantification method

By comparing the outcomes of the optimisation module
(described in Section 2.2) with those of the dynamic model
(Section 2.3), potential deviations in power flows and operational
costs are quantified. This method allows assessing the impact of slow
thermal dynamics on system performance, thereby providing
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stakeholders and system operators with valuable insights for
decision-making. This step is described in further detail in
Section 3.5 for the system under study, where the operational
costs for two seasons of a calendar year are investigated.

3 Case study

3.1 System description

The system under study operates based on the electricity and
heat consumption of QEH. The facility is connected to both an
electricity network and a gas supply network and is structured
into heating zones (HZs). Each heating zone is treated as an
independent heat consumption unit within the primary
heating system.

The architecture of the primary heating system involves 1,200 m
of pipelines connecting seven HZs through main and boiler pipeline
loops, as shown in Figure 3A. The boiler loop incorporates two CHP
units with an output power of 1,400 kW and four GBs with an
output power of 5,200 kW located in HZs 1, 2, 4, and 5 to meet
electricity and heat demand (see Figure 3B).

The original system configuration shown in Figure 3 was
modified to incorporate sustainable energy technologies, in line
with UK’s National Health Service and national targets to reduce
greenhouse gas emissions (NHS Foundation Trust, 2015).

The upgraded IES is shown in Figure 4. This system
configuration includes the two CHP units, 3 GBs located in HZs
1, 2, and 4, and an electric boiler (EB) in HZ5 within the boiler
loop. In addition, a 100 m3 TES system consisting of four
interconnected hot water tanks was considered. This sensible
heat TES system is connected at the bottom to the return
pipeline of the main loop and at the top to the boiler loop, after
the GB in HZ1, for charging purposes. To avoid any disturbance to

the supply temperature in the boiler loop, the TES system discharges
immediately before the GB in HZ1 (De la Cruz-Loredo et al., 2022b).

In both the optimisationmodule and the dynamic model utilised
for this study, the two individual CHP units within the physical
system are considered as a single CHP unit with an equivalent
output power for simplicity. Therefore, reference to the CHP units
will be made using the term “CHP plant” to denote the collective
operation of the units as a single entity.

Table 1 shows the considered capacities of the retrofitted
technologies. These have been selected based on practical
specifications and availability in the UK market (London
Engineers Company, 2023; Refrigeration Technology Co. Ltd,
2023). For the different system configurations studied in this
paper, the schematics and essential mathematical formulations
for each are outlined in Supplementary Appendix SA.

3.2 System modelling for optimisation

Real electricity and heat demand profiles from QEH were
used as inputs to the optimisation module. These profiles
correspond to different seasons of the year and are provided
in Supplementary Appendix SB. However, to maintain control
over supply and return temperatures and prevent fluctuations in
the dynamic model, an overestimation of electrical demand and
underestimation of heat demand were considered. A 1-h
granularity was employed.

Figure 5 shows the daily price profiles for gas and electricity
adopted in this paper based on energy prices available at the hospital
site in 2020 and average market prices (Guelpa, 2024).

The following assumptions were considered for system
modelling within the optimisation module (based on the data
provided by QEH and information available in the literature)
(Morales Sandoval et al., 2023):

FIGURE 3
(A) Schematic of the primary heating system of QEH. (B) Boiler loop structure of the heating system of QEH (De la Cruz-Loredo et al., 2022b).
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i. The system is considered to be in steady-state between any
two time periods.

ii. There are no stand-by energy losses from system
components.

iii. The gas-to-electricity conversion efficiency (ηg/eCHP) of the
CHP plant is 37.8% and its gas-to-heat conversion
efficiency (ηg/hCHP) is 49.7%.

iv. The efficiency of the GB (ηGB) is 81% (Brumbaugh, 2004).

FIGURE 4
(A) Boiler loop structure of the upgraded dynamicmodel implemented in Apros (De la Cruz-Loredo et al., 2022b). (B) Steady-state schematic for the
upgraded IES optimisation.

TABLE 1 Capacities of the incorporated technologies.

Technology Capacity

EB 1,000 kW

TES system 250 kWh per tank, or 1,000 kWh in total

FIGURE 5
Hourly gas and electricity prices.
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v. The efficiency of the EB (ηEB) is 100% (de la Cruz Loredo
et al., 2022a).

vi. The charging and discharging efficiencies of the TES system
(ηTES) are 90% (Geidl and Andersson, 2007b).

vii. Exporting surplus electricity from the IES back to the external
grid is not provisioned in this case study.

3.3 Dynamic modelling for the system
under study

A detailed dynamic model of the heating system was
implemented. However, representation of the electricity system,
for simplicity, was limited to reproduce the energy balance
between supply and demand based on real historical data. The
dynamic model was implemented in Apros using available library
models (de la Cruz Loredo et al., 2022a; 2022b).

The following modelling assumptions were considered:

i. A constant pressure loss coefficient KL � 0.1 was adopted for
all components.

ii. All components in the heating system are covered with a
40 mm thick insulating layer with a constant conduction heat
transfer coefficient value of κ � 0.025 W/(m°C).

iii. Heat supply and demand were implemented as single external
heat flows generating or consuming heat from a
pipeline element.

iv. As for system optimisation (see Section 3.2), exporting surplus
electricity from the IES back to the external grid is not
provisioned.

The operation of the hospital’s heating systemwas regulated by a
process control system consisting of four control elements: the
marginal differential pressure control, the supply temperature
control, the return temperature control, and the TES system
control. These elements regulate pressure, flow, and temperature
within different sections of the IES by adjusting parameters such as
pump speed, valve opening range, and heat flow from the heat
generation units. For this purpose, proportional-integral (PI)
controllers were employed. Table 2 shows relevant specifications
of these controllers.

Similar to the optimisation module, real electricity and heat
demand profiles from QEH were used. As mentioned before, these

are provided in Supplementary Appendix SB. However, the dynamic
model adopted a 30-min granularity for the energy demand data.

3.4 Optimisation module

The energy system needs to select the optimal proportion of
electricity and gas intake to reduce energy costs and the production
of CO2. To minimise the daily operational cost of the system while
also minimising carbon emissions, the objective function is
expressed as (Morales Sandoval et al., 2023)

C � ∑24

i�1 CE
grid,i × PE

grid,i( ) + CG
grid,i × PG

grid,i( ) + CE
CO2

( ) + CG
CO2

( )[ ]
(4)

where C is the daily operational cost, CE
grid,i and CG

grid,i are the
electricity and gas unit costs at hour i, PE

grid,i and P
G
grid,i are the power

inputs to the energy system from the external electricity and gas
networks at hour i, and CE

CO2
and CG

CO2
are the costs of CO2

production associated with electricity and gas consumption.
Objective function in Eq. 4 is subject to the following equality

constraints (representing the electricity and heat balance equations)

PE
grid,i + η

g/e
CHPP

G
CHP,i − ηEBPEB,i � PE

d,i i � 1, 2, 3, . . . 24 (5)
η
g/h
CHPP

G
CHP,i + ηGBP

G
GB,i + ηEBPEB,i − PTES

ch,i + PTES
dis,i � PH

d,i

i � 1, 2, 3, . . . 24
(6)

where PG
CHP,i and PG

GB,i are the power inputs to the CHP plant and
the GBs from the gas grid; PEB,i is the electrical power input to the EB
either from the electric grid or from the surplus produced by the
CHP plant; and PTES

ch,i and PTES
dis,i represent the charging and

discharging powers of the TES system.
Based on the dimensions of hot water tanks available in the

market and considering the supply and return temperatures of the
IES under study (de la Cruz Loredo et al., 2022b; Refrigeration
Technology Co. Ltd, 2023), the capacity of the TES system used in
this paper was selected as 1,000 kWh (Majić et al., 2013) (250 kWh
per individual hot water tank, see Table 1). Its charging and
discharging powers PTES

ch,i and PTES
dis,i per time period (i.e. 1 h) are

constrained as

0≤PTES
ch,i ≤ 250 kW( ) (7)

0≤PTES
dis,i ≤ 250 kW( ) (8)

TABLE 2 Specifications of the marginal pressure differential, supply and return temperatures controllers (de la Cruz Loredo et al., 2022a).

Control
component

Actuators Manipulated
variable

Regulated variable Control
actions

Setpoints

Marginal pressure
differential

Circulation pumps in the
boiler loop

Rotational speed of the
pumps

Pressure differential
across HZ4

PI control Δpmarg � 0.3 [bars]

Supply temperature GBs in HZs 1, 2 and 4 Heat supply Temperature in the boiler loop
after the GB

PI control TGB1 � 80

TGB2 � 80

TGB � 74 [°C]

Return temperature Motorised control valves in
all the HZs

Valve opening area Temperature at the outlet ports
of the HZs

PI control THZ,ret � 74pTHZ3,ret � 70
[°C]

*THZ,ret is the return temperature setpoint for all the HZs, except for HZ3.
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To ensure the energy levels in the thermal store remain within
the predefined maximum and minimum limits, the following
constraints were imposed:

∑j

i�1 ηTESP
TES
ch,i − 1/ηTESP

TES
dis,i[ ] ×Δt≤ L max

TES j � 1, 2, 3, . . . 24 (9)
∑j

i�1 ηTESP
TES
ch,i − 1/ηTESP

TES
dis,i[ ] ×Δt≥ LTES

min j � 1, 2, 3, . . . 24 (10)

where Δt is the hourly time period considered in the optimisation
algorithm, and Lmax

TES and L min
TES are the maximum and minimum

capacities of the TES system.
In the previous formulation, Eqs 5, 6 denote the equality

constraints, while Eqs 7-10 denote inequality constraints to meet
the objective function in Eq. 4.

To ensure the energy stored in the TES system at the end of the
diurnal cycle remains the same as during the start of the cycle, the
following equality constraint was included:

∑24

i�1P
TES
ch,i − PTES

dis,i � 0 (11)

Constraint in Eq. 11 enables the cyclic operation of the energy
storage unit.

3.5 Quantification of operational costs

To assess operational costs, two contrasting seasons, summer
and winter, were selected to represent periods of high and low
heat demand across the year. For simplicity and to provide a basis
for discussion, weekly costs were extrapolated to account for
52 weeks in a year. This way, the annual operating cost for each
scenario under investigation was determined using

Ca � CS
w × 26( ) + CW

w × 26( ) (12)
where Ca is the estimated annual cost of the IES and CS

w and CW
w

represent the weekly operational cost for summer and winter.

3.6 Implementation

Different software packages may be adopted for simulating the
complex dynamics of real IESs, facilitating the adoption of a model-
based design approach. This approach enables the development of
dynamic models, control, and communication systems to conduct
virtual tests—eliminating the need for costly verification in real
systems. Following this approach, the effectiveness of the

optimisation algorithm was demonstrated through an MiL
configuration.

MiL simulation was carried out as a co-simulation utilising two
software platforms, as shown in Figure 6. The optimisation
algorithm and dynamic models of the CHP plant and the EB
were implemented in MATLAB/Simulink, while the control
schemes and dynamic models of the TES system and the heating
network were developed in Apros. The connection between the two
software platforms was achieved through the utilisation of an open
platform communications (OPC) protocol, which is available in
both MATLAB and Apros (OPC foundation, 2024). Such a co-
simulation architecture has been successfully adopted in the
literature (Morales Sandoval et al., 2021; de la Cruz Loredo et al.,
2022a, 2022b; Bastida et al., 2023).

3.7 Scenarios

Three different system configurations—namely, Scenario 1 (base
case, see Supplementary Figure SA1), Scenario 2 (IES with a TES
system, Supplementary Figure SA2), and Scenario 3 (IES with EB
and a TES system Supplementary Figure SA3)—were chosen to
quantify discrepancies in power flows and operational cost by
comparing the outcomes of the optimisation module and the
dynamic model.

4 Results

To evaluate the performance of the optimisation module against
that of the dynamic model, the three systems defined in Section 3.7
were considered.

As discussed in Section 3.5, the operational costs for each IES
configuration was determined by extrapolating weekly costs
using Eqs 4, 12. A summary of the results is presented in
Table 3; where significant differences between the operational
cost for the three defined systems are observed. The operational
costs obtained by the dynamic model compared to those by the
optimisation module are higher by 5.5% for the base case
(Scenario 1), by 5.3% for the system upgraded with a TES
system (Scenario 2), and by 5.4% for an upgraded system with
an EB and a TES system (Scenario 3). The higher costs exhibited
by the dynamic simulations could be attributed to the
consideration of real-world complexities, such as losses, non-
linearity, transient phenomena in different system components,

FIGURE 6
Co-simulation framework for the dynamic verification.
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and differences between demand forecasts and actual
demand—which are neglected in optimisation studies.

A detailed discussion for each system configuration is
presented next to delve further into the comparative analysis.
For the sake of visualisation and simplicity of the explanation,
the analysis is focussed on the first day of the week for each
scenario, with operational costs quantified for the full week. For
further details on the weekly comparison, interested readers are
directed to Supplementary Appendix SC, which provides
additional graphical results covering the entire week
under study.

4.1 Scenario 1

The base case, similar to the current system configuration at
QEH, is examined in more detail in this section. In this case, the
electricity and heat demand are met through the external electricity
grid, CHP plant and GBs. Figure 7 compares the optimal heat power
output _QCHP,opt produced by the CHP plant during a day in summer
(see Figure 7A, green trace) and winter (Figure 7B, blue trace) with
the heat power output _QCHP,dyn obtained with the dynamic model
(orange and purple traces in the figures, with markers). Given that
operation of the CHP plant is dictated by the optimisation module

TABLE 3 Summary of annual operational costs for different IES scenarios.

Scenario Optimal operational cost (£) Operational cost from dynamic simulation (£)

1. Base case 1,480,802 1,562,068

2. IES with a TES system 1,471,313 1,549,985

3. IES with an EB and TES system 1,457,566 1,536,136

FIGURE 7
Scenario 1. Comparison of heat power flows for CHP plant. Day
in: (A) summer and (B) winter.

FIGURE 8
Scenario 1. Comparison of heat power flows for GBs. Day in: (A)
summer and (B) winter.
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and the electricity demand fluctuations being balanced with the
electricity grid, a good agreement is observed in heat power flows. In
response to the higher energy demand during winter, an increase in
the use of the CHP plant can be noticed in both cases.

Figure 8 shows a comparison between the heat power flows
_QGBs,opt of GBs for a summer day (Figure 8A, green trace) and a
winter day (Figure 8B, blue trace) obtained with the optimisation
module and via dynamic simulation ( _QGBs,dyn, orange and purple
traces). Here, the differences in heat power flows become evident
with higher energy demand in winter, leading to a significant
increase in the utilisation of GBs. While the dynamic model aims
to replicate the optimal heat power flows, the influence of system
dynamics is evident in the model output. Therefore, in scenarios
involving large quantities of heat flows (e.g., in winter months with
higher heat demand), the discrepancy between the static
optimisation module and the dynamic system model becomes
more pronounced.

The heat power flow variations exhibited by GBs have an impact
on the estimation of daily and weekly operational costs in summer
and winter. The weekly operational costs are shown in Table 4.
During the week in summer, the operational cost resulting from the
dynamic model deviates by £836.28 (equivalent to 4.87%) from the
estimated optimal operational cost. In the winter week, with the
increased GBs usage, a notable deviation in operational cost is
observed, where the output of the dynamic model differs from
that of the optimal model by £2289.34, or 5.75%.

4.2 Scenario 2

In Scenario 2, the electricity and heat demand are met through the
external electricity grid, CHP plant, GBs, and TES system. Figure 9
compares the optimal heat power output _QCHP,opt produced by the
CHP plant during a day in summer (Figure 9A, green trace) and winter
(Figure 9B, blue trace) with that obtained with the dynamic model
( _QCHP,dyn, orange and purple traces with markers).

TABLE 4 Operational costs of the base case obtained from optimisation and dynamic simulations.

Summer week Winter week

Day Optimal operational
cost (£)

Dynamic operational
cost (£)

Optimal operational
cost (£)

Dynamic operational
cost (£)

1 2,343.50 2,495.77 6,047.18 6,334.45

2 2,265.95 2,411.71 5,609.17 5,857.89

3 2,407.21 2,545.93 5,472.72 5,884.58

4 2,568.83 2,666.77 5,504.66 5,899.01

5 2,529.88 2,630.70 5,136.18 5,548.01

6 2,565.65 2,659.01 5,938.73 6,230.33

7 2,484.10 2,591.52 6,080.18 6,323.87

Total weekly
cost

17,165.12 18,001.40 39,788.80 42,078.14

FIGURE 9
Scenario 2. Comparison of heat power flows for CHP plant. Day
in: (A) summer and (B) winter.
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Comparing Figure 9A with Figure 7A from Scenario 1, it can
be observed that both the optimal power output produced by the
CHP plant ( _QCHP,opt, green traces in both figures) and the heat
power output obtained with the dynamic model ( _QCHP,dyn,
orange traces with markers in both figures) vary during the
summer day when a TES system is present in the system. This
variation is influenced by energy demand and cost. For instance,
during hours 15 to 19, electricity demand is high while heat
demand is low (refer to Supplementary Figure SB1).
Consequently, surplus heat from the CHP plant is directed to
the TES system. This stored heat can be utilised during periods of
increased energy cost, resulting in operational cost savings. The
heat power output produced by the CHP plant during the winter
day is similar as in the base case considered as Scenario 1 (Figures
7B, 9B, see all traces in the figures). This is because the
incorporation of a TES system into the IES does not have any
effect in the winter season as it is not operative.

Figure 10 shows a comparison between the heat power flows
_QGBs,opt of GBs for a day in summer (Figure 10A, green trace) and
winter (Figure 10B, blue trace) obtained with the optimisation

module and dynamic simulation ( _QGBs,dyn, orange and purple
traces). A decrease in the heat power output produced by the
GBs during summer is noticed when compared to Scenario 1
(comparing Figure 10A with Figure 8A, green traces in both
figures). For instance, here the maximum peak of the optimal
heat power output produced by the GBs is around 700 kW,
against the peak of approximately 850 kW observed in Scenario 1
(Figure 8A). However, it is important to note that the heat power
output produced by GBs in the winter day for Scenario 2 remains
unchanged compared to that of Scenario 1 (see all traces in
Figures 8B, 10B).

Figure 11 compares the performance of the TES system during
both summer (Figure 11A) and winter (Figure 11B) days. In
Figure 11A, negative values indicate the TES system is charging,
while positive values mean the TES system is discharging. A clear
discrepancy is observed between the optimal performance indicated
by the optimisation module ( _QTES,opt, green trace) and the dynamic
performance achieved by the dynamic simulation ( _QTES,dyn, orange
trace with markers) during the day in summer. Figure 11B confirms
that the TES system is not operational during the winter day, with no

FIGURE 10
Scenario 2. Comparison of heat power flows for GBs. Day in: (A)
summer and (B) winter.

FIGURE 11
Scenario 2. Comparison of TES system performance. Day in: (A)
summer and (B) winter.

Frontiers in Energy Research frontiersin.org12

Morales Sandoval et al. 10.3389/fenrg.2024.1385839

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1385839


TABLE 5 Operational costs of the IES with TES system obtained from optimisation and dynamic simulations.

Summer week Winter week

Day Optimal operational
cost (£)

Dynamic operational
cost (£)

Optimal operational
cost (£)

Dynamic operational
cost (£)

1 2,287.15 2,434.64 6,047.18 6,334.58

2 2,211.95 2,346.29 5,609.17 5,857.91

3 2,346.28 2,471.16 5,472.72 5,884.46

4 2,509.52 2,593.76 5,504.66 5,898.74

5 2,485.23 2,594.42 5,136.18 5,547.88

6 2,530.61 2,576.56 5,938.73 6,230.45

7 2,429.44 2,520.06 6,080.18 6,323.90

Total weekly
cost

16,800.18 17,536.89 39,788.80 42,077.92

FIGURE 12
Scenario 3. Comparison of heat power flows for CHP plant. Day
in: (A) summer and (B) winter.

FIGURE 13
Scenario 3. Comparison of heat power flows for GBs. Day in: (A)
summer and (B) winter.
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charging or discharging occurring. This is consistent with the
discussion around Figure 9B.

The variations in heat power flow exhibited for Scenario 2 affect
the estimation of daily and weekly operational costs in both summer
and winter, as detailed in Table 5. During the summer week, the
operational cost resulting from the dynamic model deviates by
£736.7 (equivalent to 4.38%) from the estimated optimal
operational cost. In the winter week, a deviation of 5.75% exists
between the output of the dynamic model and that of the
optimisation module, as the TES system remains idle—consistent
with results obtained in Scenario 1.

4.3 Scenario 3

For Scenario 3, electricity and heat demand are met through the
external electricity grid, CHP plant, GBs, EB, and TES system.
Figure 12 compares the optimal heat power output _QCHP,opt

produced by the CHP plant during the day in summer
(Figure 12A, green trace) and winter (Figure 12B, blue trace)

with those obtained with the dynamic model ( _QCHP,dyn, orange
and purple traces with markers). An increase in the heat output
power provided by the CHP plant during the summer day
(Figure 12A) compared to both Scenario 1 (see Figure 7A) and
Scenario 2 (Figure 9A) is observed in the initial hours of the day by
both the optimisation module and the dynamic simulation. This
increase is attributed to the surplus electricity generated by the CHP
plant being utilised to power the EB, which entirely converts the
electricity consumed to heat supply due to its high efficiency. The
same behaviour occurs in the winter day (Figure 12B), where the
CHP plant operates at maximum capacity to generate surplus
electricity while meeting the heat demand.

Figure 13 shows a comparison between the heat power flows
_QGBs,opt of GBs for the summer (Figure 13A) and winter
(Figure 13B) days obtained with the optimisation module (green
and blue traces) and dynamic simulation ( _QGBs,dyn, orange and
purple traces). During the summer day (Figure 13A), the
optimisation module does not operate the GBs (see green trace,
with values of zero throughout) as the heat demand is met with the
EB. However, the dynamic model requires GBs to regulate the

FIGURE 14
Scenario 3. Comparison of heat power flows for EB. Day in: (A)
summer and (B) winter.

FIGURE 15
Comparison of TES system performance. Day in: (A) summer and
(B) winter.
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supply temperature within the system and prevent disturbances in
temperature, as illustrated by the orange trace. During the winter
day (Figure 13B), a reduction in the utilisation of the GBs is observed
compared to Scenario 1 (Figure 8B) and Scenario 2 (Figure 10A).
This decrease is due to the support provided by the EB in meeting
the heat demand.

Similar to the management of the CHP plant, the operation of
the EB is governed by the optimisation module for power dispatch.
As a result, the discrepancies between the optimal heat power output
( _QEB,dyn) and that obtained with the dynamic model ( _QEB,dyn) are
minimal, as shown in Figure 14.

Figure 15 compares the optimal and dynamic performance of
the TES system during both summer (Figure 15A) and winter
(Figure 15B) days. As in Scenario 2, a discrepancy is observed
between the optimal behaviour suggested by the optimisation
module ( _QTES,opt) and the dynamic performance achieved via
simulations ( _QTES,dyn) during the summer day. As before, the
TES system remains idle during the winter day (see Figure 15B).

Table 6 compares the weekly operational costs for Scenario 3.
During the summer week, the operational cost resulting from the
dynamic simulations deviates by £731.58 (equivalent to 4.36%) from
the estimated optimal operational cost. In the winter week, the
operational cost obtained with dynamic simulations differs from
that of the optimal model by £2290.37, or 5.83%.

5 Conclusion

A methodology enabling the dynamic verification of an
optimisation algorithm for the power dispatch of IESs was
presented in this paper. The algorithm assumed steady-state
operation of the IES components between consecutive time-
steps, while minimising operating cost and emissions. A
dynamic model of the IES was adopted in tandem to account
for the real-word physical phenomena, such as the transient
response of thermal systems and non-linearity of system
components, which were not considered in the steady-state
optimisation module. The two models were then compared by

using a series of scenarios and real data from a civic building in
the UK dedicated to health services. The scenarios considered the
base system upgraded with low-carbon technologies to reflect
national targets to reduce carbon emissions.

The optimisation module and the dynamic model were
integrated through an MiL co-simulation approach, where
MATLAB/Simulink was interfaced with Apros using the OPC
protocol. This approach enabled an assessment of the
discrepancies between the steady-state optimisation and the
dynamic model, providing valuable insights into the practical
implications of real-time operation of the IES under study.

The key findings, implications, and recommendations arising
from this research work are outlined next:

• The optimisation and dynamic simulations yielded different
power flows for system components, with significant
discrepancies for GBs and smaller differences for the CHP
plant. Both approaches suggested the use of the TES system
only in summer months, where the relative availability of
thermal energy was greater compared to its demand.
Furthermore, both models suggested a higher degree of
utilisation of the EB in winter and showed more disparity
in the estimated power flows in summer.

• The discrepancies in power flows led to higher operational
costs in dynamic simulations compared to optimal solutions.
This highlights the potential limitations of traditional
optimisation algorithms and underpins the
recommendation to consider real-world complexities
associated with the IES, such as losses, non-linear
behaviour of components, and transient phenomena while
optimising IESs.

• The TES system increased the flexibility of the IES, allowing
surplus heat to be stored during off-peak periods for later use
during peak heating demand periods, resulting in operational
cost savings. Incorporating an EB into the IES created
opportunities to utilise surplus electricity generated by the
CHP plant for highly efficient conversion to heat, reducing
conventional heat generation.

TABLE 6 Operational costs of the IES with an EB and TES system obtained from optimisation and dynamic simulations.

Summer week Winter week

Day Optimal operational
cost (£)

Dynamic operational
cost (£)

Optimal operational
cost (£)

Dynamic operational
cost (£)

1 2,276.78 2,425.25 5,978.91 6,267.55

2 2,198.82 2,334.04 5,542.16 5,791.00

3 2,343.49 2,467.12 5,410.24 5,821.80

4 2,509.14 2,594.39 5,438.88 5,834.92

5 2,485.24 2,593.80 5,072.98 5,482.84

6 2,530.61 2,577.22 5,853.15 6,144.84

7 2,428.94 2,512.78 5,990.86 6,234.61

Total weekly
cost

16,773.03 17,504.61 39,287.19 41,577.56
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• The approach provided by the presented methodology may be
useful for energy management and planning by decision-
makers to understand the practical implications of real-
time operation of an IES and how these may affect
operational costs.
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