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This study presents a Data-Enhanced Optimum Load Frequency Control (DEO-
LFC) strategy for microgrids, targeting an optimal balance between generation
costs and frequency stability amidst high renewable energy integration. By
replacing traditional controls with agent-based systems and reinforcement
learning, the DEO-LFC employs an optimal balance between generation costs
and frequency stability amidst high renewable energy integration. By replacing
traditional controls with agent-based systems and reinforcement learning, the
DEO-LFC employs a Soft Graph Actor Critic (SGAC) algorithm, integrating deep
reinforcement learning with graph sequence neural networks for effective
frequency management. Proven effective in the China Southern Grid’s island
microgrid model, DEO-LFC offers a sophisticated solution to the challenges
posed by the island microgrid model. Proven effective in the China Southern
Grid’s island microgrid model, DEO-LFC offers a sophisticated solution to the
challenges posed by the variability of modern power grids.
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1 Introduction

In the context of escalating concerns over fossil fuel depletion, the importance of
renewable energy in enhancing smart grid capabilities has surged. Renewable energy
sources, inherently constrained by environmental conditions and geographical
dispersion, necessitate integration into the power grid via sophisticated inverter
technologies, leading to the development of Distributed Generation (DG) (Wang et al.,
2013). This shift towards distributed generation presents a stark contrast to traditional
centralized power generation systems, offering notable benefits in terms of energy efficiency,
environmental sustainability, operational flexibility, reliability, and economic viability.

However, the integration of renewable energy into the power grid introduces challenges
related to its unpredictable output, characterized by random intermittency and volatility
(Mahboob Ul Hassan et al., 2022). Such unpredictability can compromise the power quality
and jeopardize the stability of the grid system (Su et al., 2021). To address these issues and
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harness the full potential of distributed generation, the microgrid
concept has been proposed. As an advanced technological solution
predicated on renewable distributed power generation, microgrids
are poised to play a pivotal role in the evolution of smart grid
infrastructures. They facilitate the integration of diverse small-scale
distributed energy resources and loads, ensuring safe and reliable
operation both in grid-connected and islanded modes (Huang and
Lv, 2023).

In grid-connected mode, microgrids complement the utility grid
by supplying power to local loads and potentially exporting surplus
energy back to the grid. Conversely, in scenarios of grid failure or
disturbances, microgrids transition to islanded mode, independently
powering local loads. This operational flexibility, however,
necessitates robust control strategies to maintain system stability
in the absence of grid support, given that islanded microgrids
(IMGs) rely heavily on renewable energy sources (RESs)
connected via power electronic converters. This configuration
results in a diminished system inertia, posing challenges for
frequency stability, reliable power supply, and efficient renewable
energy utilization (Hosseini and Etemadi, 2008).

Load Frequency Control (LFC) emerges as a critical mechanism
within power systems to balance frequency and active power
demand across specific control areas (Bengiamin and Chan,
1982). Achieving optimal LFC performance in islanded
microgrids requires a nuanced approach that not only improves
frequency control but also minimizes the generation costs associated
with distributed energy resources. Traditional LFC strategies, such
as proportional-integral control (Mi et al., 2013), model predictive
control (Mi et al., 2016), and adaptive control (Chen et al., 1991),
often struggle to meet these dual objectives effectively.

Therefore, this discourse underscores the imperative for
innovative control strategies that can adeptly manage the unique
challenges posed by the integration of renewable energy sources into
microgrids. The advancement of microgrid technology and the
optimization of LFC mechanisms are essential for realizing the
full potential of renewable energy within the smart grid
paradigm, ensuring both environmental sustainability and
grid stability.

1.1 Proportional-integral control

Initial LFC studies stem from the Proportional-Integral (PI)
control era, valued for their simplicity and computational ease
(Wang et al., 1993). Integrated into LFC, PI controls split into
steady-state integral and transient proportional parts. The PI
control’s widespread use in LFC hinges on its non-differential
regulation efficacy in fundamental power setups. However, as
power systems grow and face more stochastic disruptions, PI’s
static nature limits its dynamic stability, threatening frequency
equilibrium and risking failures (Wang et al., 1994). Scholars
have since sought to improve PI for LFC, with (Chen et al.,
2022) incorporating sliding mode control for disturbance
resilience. The rise of complex, nonlinear, and interconnected
power systems demands control strategies that address these
traits. Long et al. (2021) introduces a tri-layer LFC model for
detailed power system dynamics, with a control strategy for
nonlinear management. Yet, its reliance on specific parameters

and a model-centric approach limits broad use. This shift from
PI to adaptive, interconnected strategies reflects the ongoing effort to
manage modern power systems’ complexities. The ongoing
evolution of LFC methods highlights the necessity for flexible,
robust, and efficient controls to maintain the stability and
reliability of our increasingly intricate and interconnected
power grids.

1.2 Model predictive control and
adaptive control

Model Predictive Control (MPC) uses dynamicmodels, typically
linear empirical ones, to predict and optimize system behavior over a
future time span, adjusting the present state with future constraints
in mind (Peng et al., 2023). This allows for real-time feedback and
corrections. A distributed MPC algorithm promotes collaborative
LFC between wind and thermal plants, improving overall system
performance through dynamic cooperation.

Adaptive Control (AC), on the other hand, adjusts its
parameters and rules in response to changing system conditions,
maintaining stability despite uncertainties and significant
disturbances without needing known variability bounds (Yan
et al., 2022). AC in LFC, via adaptive dynamic programming,
minimizes frequency deviations in grids, requiring less reliance
on prior knowledge than MPC. However, AC systems tend to be
more complex and costly.

Traditional controls often lack adaptability, affecting the
performance and cost of frequency control in islanded
microgrids. AI algorithms offer a solution, handling nonlinear
complexities and improving operational efficiency and stability.
AI learns and adapts to changing conditions, refining LFC
strategies, enhancing energy efficiency, and ensuring reliable
power supply. AI’s predictive abilities also help prevent system
failures, increasing microgrid resilience to uncertainties and
disturbances.

1.3 Artificial intelligence control

In the modern era of islanded microgrids, which significantly
integrate renewable energy resources, the complexity and
interconnectedness of information flow across various regions
necessitate a systematic approach for prioritizing the use of novel
energy sources. Traditional LFC strategies face challenges in
navigating the intricate decision-making processes required for
efficient energy management. Within the realm of computer
science, Artificial Intelligence (AI) emerges as a critical field,
striving to emulate human cognitive abilities, including learning,
decision-making, and problem-solving. The inherent capability of
AI to engage with and learn from its environment independently
positions it as a formidable tool for addressing complex challenges in
energy systems.

The integration of AI with LFC mechanisms represents a
pioneering effort to transcend the limitations of conventional
LFC methods. For example, the work of Jia et al. (2019)
showcases the successful application of Q-learning to LFC,
significantly enhancing system adaptability through the ongoing
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refinement of the state-action matrix for comprehensive power
control in simplified models. Furthermore, Yu et al. (2012) have
introduced an innovative imitation learning strategy that integrates
eligibility traces into reinforcement learning, yielding improved LFC
performance in islanded systems through faster convergence and
enhanced dynamic capabilities. In another notable advancement, Yu
et al. (2015) have developed a cooperative reinforcement learning
strategy, employing multiple intelligent agents to devise an optimal
unified control strategy, effectively addressing the challenges posed
by the interconnectivity of disparate control regions.

Additionally, Zhang et al. (2023a) have constructed a tri-level
architecture for a multi-agent system, enabling coordinated control
over LFC and Automatic Voltage Control (AVC). This architecture
leverages the autonomous, independent, and collaborative nature of
intelligent agents to ensure logical consistency while decentralizing
control functions physically. In a groundbreaking approach, Xi et al.
(2018) propose the Evolutionary Population Cooperative Control
(EPCC) strategy, utilizing a win-lose criterion and space-time
tunneling concept to quickly achieve Nash equilibrium within a
multi-agent system (MIS) framework. This strategy, rooted in the
Multi-Agent System Stochastic Consensus Game (MAS-SCG),
promotes frequent information exchanges among intelligent
agents, demonstrating the potential of AI to enhance decision-
making and operational efficiency in complex energy systems.

Reinforcement Learning (RL) is a key machine learning
paradigm that focuses on devising strategies for agents to
make optimal decisions to meet set objectives through
interactions with environmental states. Utilizing a Markov
decision process, RL entails recognizing states and selecting
actions guided by rewards, leading to state transitions. Studies
have investigated applying power system’s instantaneous
frequency and transmission line power flow as RL
environmental states, with power allocation directives as
action decisions, tackling power allocation challenges
effectively. (Yu et al., 2011; Shangguan et al., 2021; Zhang
et al., 2023b).

Zhang et al. (2020) have considered the total profit of power
generation companies, incorporating dispatch mileage
compensation into power command allocation to enhance the
economic efficiency of power generation. Li et al. (Zhang et al.,
2021) introduced an adaptive distributed auction algorithm for
optimizing LFC power command allocation, minimizing the
deviation between total and allocated power commands. This
method is praised for its rapid convergence and model-free
nature, ensuring precise generator power control. Moreover, Li
et al. (2021) proposed a double-delay deep deterministic policy
gradient algorithm, augmented by a multi-experience pool
probabilistic replay strategy, improving controller training
efficiency, action instruction quality, and mitigating stochastic
perturbations in systems incorporating new energy sources,
highlighting the evolving applications of RL in power system
optimization.

In the dynamically evolving context of islanded microgrids,
enriched with a diverse array of renewable energy resources, the
exploration of AI control strategies combined with RL
distribution tactics is underway to realize an intelligently
integrated LFC system across multiple regions. This research
endeavor has led to the development of multi-regional, multi-

layered distributed LFC frameworks, enabling intelligence
dissemination from macro to micro levels (Xi et al., 2016a; Xi
et al., 2016b). To address these limitations and enhance
generalizability, Xi et al. (2021) replaced the traditional wolf
climbing LFC algorithm with PDWoLF-PHC, proposing a
VWPS-HDC method that offers improved performance
through time-consistent climbing. Additionally, to overcome
the drawbacks of the WPH algorithm, Xi et al. (2022)
introduced a cost-consistent VWPC-HDC method, achieving
faster dynamic optimization, enhanced robustness, and reduced
generation costs.

However, the practicality of these methodologies, based on the
wolf pack hunting principle, is constrained by their reliance on
extensive knowledge systems. To mitigate these limitations.

The challenge of ensuring wide-ranging applicability in the
domain of standalone microgrid Load Frequency Control (LFC)
remains a critical issue. It necessitates the creation of control
frameworks and algorithms that can effectively operate in diverse
scenarios beyond the scope of their original design. This adaptability
is essential for managing the dynamic operational landscapes and
the variability in demand that are characteristic of isolated
microgrids. The integration of a diverse set of techniques,
alongside reinforcement learning, is vital for enhancing the
robustness and adaptability required to navigate changes in the
environment.

This paper introduces the Data-Enhanced Optimum Load
Frequency Control (DEO-LFC) methodology, which is designed
to achieve a harmonious balance between generation costs and
frequency stability in microgrids with a substantial integration
of renewable energy sources. The Soft Graph Actor Critic
(SGAC) algorithm is presented as a groundbreaking fusion of
deep reinforcement learning and graph sequence neural network
models, tailored to manage the intricacies of adaptive frequency
regulation. By employing a Markov decision process for system
modeling and a graph to sequence neural network for policy
function approximation, the DEO-LFC approach highlights its
potential impact. Its application to the isolated island city
microgrid model within the China Southern Grid serves as a
testament to its effectiveness in modern electrical grid settings.

The main contributions of this paper are summarized as follows.

1) Introduction to the DEO-LFC Methodology: The DEO-LFC
methodology signifies a paramount advancement in the realm
of frequency stability enhancement and cost minimization in
isolated microgrids, especially those with substantial
renewable energy sources integration. This methodological
shift toward employing agent-based systems, which utilize
reinforcement learning algorithms, marks a departure from
conventional control strategies. The DEO-LFC framework
presents an innovative, adaptive approach to managing
frequency control challenges in complex operational
contexts. It specifically targets the issues arising from the
fluctuating nature of renewable energy sources, thereby
facilitating a more reliable and cost-effective energy
management system.

2) Creation of the SGAC Algorithm: Central to the DEO-LFC
methodology is the groundbreaking creation of the SGAC
(Simultaneous Graph-based Actor-Critic) algorithm. This
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state-of-the-art algorithm fuses the sophistication of deep
reinforcement learning with the nuanced processing
capabilities of graph sequence neural networks, making it
uniquely equipped to navigate the complexities of load
frequency control. The algorithm employs a Markov
decision process for comprehensive system modeling and is
further enhanced by the integration of advanced iterative
learning techniques. The SGAC algorithm’s design is
purposefully crafted to devise an optimal strategy for
frequency management, showcasing an innovative approach
that elevates the performance and reliability of modern
electrical power grids.

The organisation of this manuscript is as follows: Section 2
delineates the configuration of the islanded microgrid system.
Subsequently, Section 3 introduces a groundbreaking approach,
detailing its structural framework. Section 2 delineates the
configuration of the islanded microgrid system. Section 4 is
dedicated to the execution of case studies designed to evaluate
the proposed method’s efficacy. Finally, Section 5 concludes the
document by providing a comprehensive summary and discussing
the principal outcomes derived from the research conducted.
Finally, Section 5 concludes the document by providing a
comprehensive summary and discussing the principal outcomes
derived from the research conducted.

2 Islanded microgrids and
DEO-LFC model

2.1 DEO-LFC model

In microgrids, integration of Distributed Generation (DG) units
such as Photovoltaic (PV), Wind Power (WP), and Energy Storage
(ES) systems is achieved via grid-connected inverter interfaces,
which allow these units to align with desired power outputs
through specific control mechanisms. A simplified model for
these inverters is used to explain the Load Frequency Control
(LFC) framework, highlighting the role of traditional, renewable,
and storage energy sources in frequency regulation.

Figure 1 illustrates an autonomous microgrid setup featuring
diverse generation sources like diesel engines, micro gas turbines,
fuel cells, PV, wind turbines, ES systems, and consumer loads. Here,
diesel engines and ES systems play a crucial role in frequency
regulation, while renewables focus on maximizing power output
through Maximum Power Point Tracking (MPPT), offering limited
frequency support. The control system of the microgrid dynamically
distributes power to match demand, prioritizing efficiency,
sustainability, and stability.

For independent operation, microgrids require self-adjusting
power generation for voltage and frequency stability, incorporating
Primary Frequency Control (PFC) and LFC mechanisms. PFC deals

FIGURE 1
DEO-LFC model.
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with immediate power output adjustments in response to frequency
changes, whereas LFC involves coordinated efforts across multiple
sources to correct frequency discrepancies, typically managed by
centralized controllers and communication systems. ES and diesel
generators are key to microgrid frequency stability, with PV andWP
units focusing on MPPT due to their variable output.

Recent research suggests strategies for integrating wind and
solar into frequency regulation by reserving part of their output to
improve system response. Yet, the focus remains on PFC. This study
explores how diesel and ES significantly contribute to frequency
stability, managing variances in power supply. Wind and solar,
despite their fluctuating nature, are considered less reliable for
maintaining balance and stability in microgrids.

This paper introduces a DEO-LFCmethod designed to optimize
generation costs while ensuring frequency stability in microgrids
rich in renewables. The DEO-LFC strategy balances cost-efficiency
with the critical need for frequency stability, addressing the
challenges posed by high renewable energy integration in isolated
microgrids.

The framework employs advanced algorithms for adaptive
frequency regulation, adept at navigating the complex dynamics
characteristic of such systems. It promises improved performance,
especially in mitigating the unpredictability associated with
renewable energy sources. By integrating data-driven insights and
knowledge-based control, the DEO-LFC approach enhances the
reliability and efficiency of frequency management in microgrids,
aligning operational expenditures with the overarching goal of
frequency stabilization. This methodological innovation stands to
significantly advance the operational robustness of isolated
microgrids, ensuring stability amidst the fluctuating nature of
renewable energy contributions.

2.2 Unit modelling

2.2.1 Diesel engine modelling
Diesel generators (DGs) serve as pivotal controllable Distributed

Generation (DG) units within microgrids, offering low operational
costs and high reliability but posing environmental concerns. They
are particularly crucial in islanded microgrid systems (Su et al.,
2021), where they significantly contribute to maintaining the
equilibrium between power supply and demand. However, DGs
exhibit minimum operational power thresholds, leading to
inefficiencies under low-load conditions. Consequently,
optimizing the usage of diesel generators necessitates minimizing
their operation at low loads while prioritizing their deployment for
higher load demands. This strategy ensures efficient energy
production and enhances the overall operational efficacy of
microgrid systems, aligning with the objectives of balancing
energy supply with demand while addressing the inherent
limitations of DGs. The relationship between diesel generator fuel
and power is given as follows.

Q t( ) � α · P t( ) + β · P0 (1)

where Q is the fuel per hour of the diesel generator, P is the current
power of the diesel generator, P0 is the rated power, α and β are the
fuel consumption factors.

2.2.2 Micro gas turbines
In the early stage of invention of micro gas turbine, due to the

immaturity of related technology, which resulted in low power
generation efficiency, the usage rate of micro gas turbine was not
very high at first, but with the development of power generation
technology, the power generation efficiency has been gradually
improved, and the practicality has been enhanced after the size is
reduced. As a kind of controllable distributed power generation unit,
when the renewable energy power generation equipment becomes
unstable due to the natural environment, the micro gas turbine can
be adjusted to coordinate the microgrid to achieve the optimal
operation state.

MGTs operate as rotary heat engines utilizing fuel and air,
emerging as viable, energy-efficient, and eco-friendly power
solutions suitable for urban, rural, and remote applications. The
MGT system comprises components such as a gas bath wheel,
combustion chamber, reheater, and compressor. The process
involves air being drawn in and pressurized by the compressor,
then preheated andmixed with fuel in the combustion chamber. The
resultant high-temperature, high-pressure gas drives an electric
motor to produce electricity. The output power of MGTs is
directly proportional to fuel consumption, necessitating a
mathematical model to optimize cost efficiency. This
technological evolution underscores the MGT’s significance in
enhancing microgrid resilience and sustainability across diverse
geographical locales. The magnitude of the generation power of
the micro gas turbine is determined by the consumption of the fuel,
and the mathematical model of its cost is as follows (Hosseini and
Etemadi, 2008):

CMT � ∑T
t�1

CΔtPMT t( )
LHVηMT

(2)

ηMT � 0.0753
PMT

65
( )3

− 0.3095
PMT

65
( )2

+ 0.417
PMT

65
( ) + 0.1068

(3)
where CMT is the fuel cost of the micro gas turbine, C is the unit price
of the fuel gas, PMT is the power generated by the micro gas turbine
at t, LHV is the low calorific value of natural gas.

2.2.3 Fuel cells
The power output of Fuel Cells (FCs) is directly correlated with

the quantity of fuel supplied, allowing for modulation of power
levels through the adjustment of fuel flow rates. FCs are
characterized by their superior dynamic response capabilities,
enabling rapid adjustments to power output in response to
varying operational demands. This attribute not only enhances
the adaptability of FCs within energy systems but also
underscores their potential in applications requiring quick
response times and flexible power generation.

Pfuel cell � Kfuel cell · Ffuel (4)
where Pfuel cell is the output of the FCs, FFuel is the fuel flow rate and
Kfuel cell is the conversion efficiency.

2.2.4 Distributed WT modelling
Wind Turbines (WTs) serve as devices for transforming

airflow kinetic energy into mechanical energy, subsequently
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converted into electrical energy. The primary components of a
WT include blades, a gearbox, and a generator. The process
entails wind propelling the blades, thereby converting the wind’s
kinetic energy into mechanical energy. This mechanical energy
is then amplified through gearbox-mediated blade acceleration,
which powers the generator to convert mechanical energy into
magnetic field energy, and ultimately into electrical energy. The
correlation between a WT’s output power and wind speed is
mathematically represented in Equation 5, illustrating the
efficiency of energy conversion under varying wind conditions:

PWt �
0, v≤ vci v≥ vco

Pr
v − vci
vr − vci

vci ≤ v≤ vr

Pr, vr ≤ v≤ vco

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (5)

where PWT is the output power of the fan at the time of t, Pr is the
rated output power of the fan, vci is the cut-in wind speed, vr is the
rated wind speed, vco is the cut-out wind speed.

2.2.5 Distributed PV modelling
Photovoltaic (PV) power generation system is a new type of

power generation model that uses the photovoltaic effect of
semiconductor materials to directly convert solar radiation
energy into electricity. The photovoltaic effect refers to the
change of carrier distribution state and concentration of
semiconductor materials after they are exposed to light, thus
generating electric current and electric potential. Photovoltaic
power generation system consists of photovoltaic panel module,
controller, inverter and transformer, as shown in Figures 2, 3, the
photovoltaic panel module is easily affected by external conditions,
making its output energy is not stable enough, the battery as an
energy storage device, can be converted to solar panels to store solar
energy, so as to meet the needs of continuous load operation. The
temperature of the PV array at a certain moment is related to the
current solar radiation intensity and the warming coefficient of the
PV array, and the temperature of the PV array at a certainmoment is
given by the following equation.

TPV � TSTC + ωQPV (6)

FIGURE 2
Graph Neural Networks in SGAC framework.
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where TPV represents the temperature of the PV array at t, TSTC

represents the temperature of the PV array under the standard test
conditions, ω represents the warming coefficient of the PV array,
and QPV represents the intensity of solar radiation at t. The
generation power of the PV power generation system is closely
related to the current solar radiation intensity, the current
temperature of the PV array and the temperature difference
coefficient of the PV array, and its generation power expression
is shown as follows.

PPV � PSTC
QPV

QSTC
1 + k TPV − TSTC( )[ ] (7)

PPV � PSTC
QPV

QSTC
1 + θQPV[ ] (8)

where QSTC denotes the intensity of light radiation under standard
test conditions, PPV denotes the output electric power of PV at the
time of t, PSTC denotes the output electric power of PV under
standard test conditions, k denotes the temperature difference
coefficient of PV array, and θ denotes the radiation intensity
coefficient.

2.3 Generation costs

The formulation of generation cost within the electricity
production sphere is articulated via a sophisticated mathematical
model, meticulously capturing the comprehensive economic
obligations of power generation firms. This model is all-
encompassing, amalgamating crucial operational cost elements
integral to the generation process. It assimilates direct costs, such
as fuel expenses encompassing a spectrum from fossil to renewable
sources, and extends to cover the wide range of maintenance
demands for generation infrastructure, encompassing routine
checks, parts replacement, and emergency repairs. Furthermore,
the model includes labor expenses covering wages, training, and

health and safety measures for personnel, along with various indirect
costs. These indirect expenses encompass regulatory compliance
charges, environmental levies, and investments in technological
innovation, essential for the electricity generation continuum.

Crafted with precision, the model reflects the intricate dynamics
prevalent in the energy sector by integrating both variable costs,
which alter with production levels and operational intensity, and
fixed costs, which are invariant to output volume. This dual
approach offers a comprehensive perspective on the economic
terrain of electricity generation, covering the spectrum from
initial capital outlay to incremental operating expenses.

Merging such varied economic components into a unified
model provides stakeholders with an in-depth view of the critical
economic considerations vital for prudent and sustainable
power generation management. It facilitates a detailed
comprehension of the interplay between different cost
determinants and their collective influence on the cost-
efficiency and -effectiveness of power plants. Ultimately, this
model transcends being a mere cost inventory, evolving into a
dynamic tool that underpins strategic decision-making and
future-oriented planning, pivotal for the advancement of the
power generation industry. The cost of power generation is
as follows:

Ci PGi( ) � aiP
2
Gi + biPGi + ci (9)

where PGi is the output of the ith unit, ai, bi,ci are constants, and Ci is
the cost of the ith unit.

Ci PGi,actual( ) � Ci PGi,plan + ΔPGi( ) � αiΔP2
Gi + βiΔPGi + γi (10)

αi � ai
βi � 2aiPGi,plan + bi
γi � aiP2

Gi,plan + biPGi,plan + ci

⎧⎪⎨⎪⎩ (11)

where ΔPGi is the output of ith unit, PGi,actual is the output of ith
unit,αi, βi, γi are coefficients.

FIGURE 3
Results in case 1. (A) Frequency deviation (B) Total regulated output.
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2.4 Objective functions and constraints

The Differential Evolution Optimization for Load Frequency
Control (DEO-LFC) framework represents a vanguardmethodology
in the domain of electrical grid management, specifically engineered
to fortify frequency stability across power networks—a critical factor
for ensuring uninterrupted service and superior power quality
within microgrid configurations. Achieving and maintaining an
exact frequency balance is of paramount importance, as
deviations from the established frequency spectrum can lead to
detrimental effects, such as the deterioration of infrastructure,
compromised quality of electricity, and a heightened risk of grid
instability. Within the realm of microgrid management, the
economic aspects of power generation take on a significant role,
deeply influencing the operational dynamics and the economic
viability of these systems. The implementation of efficacious
frequency control measures is indispensable for reducing
superfluous energy consumption and operational expenses,
thereby enhancing the economic efficiency of microgrids,
optimizing the use of resources, and improving the cost-
efficiency of power generation initiatives.

Islanded microgrids, characterized by their compact scale and
increased susceptibility to fluctuations in load demand, encounter
unique challenges in achieving consistent frequency control. These
standalone power systems require intricate and flexible management
strategies that can effectively align the twin goals of cost
minimization and optimization of system performance. The
DEO-LFC approach addresses these challenges by deploying an
innovative multi-objective optimization framework, carefully
crafted to strike a balance between cost-effectiveness and
dependable system performance. This framework is designed to
minimize the adverse effects of operational constraints while
preserving the integrity of economic and performance objectives,
thus embodying a holistic strategy that caters to both economic and
operational performance imperatives.

Incorporating multi-objective optimization techniques, the
DEO-LFC methodology skillfully manages the intricate interplay
between grid stability and economic factors in power generation. It
delivers a refined solution that adeptly adjusts the equilibrium
between ensuring grid stability and contemplating the economic
dimensions of power generation. This versatile and comprehensive
approach is uniquely suited to address the fluctuating demands of
microgrid settings, guaranteeing frequency stability alongside a
commitment to operational efficiency and fiscal judiciousness.
The strategic formulation of objective functions and constraints
under this methodology underscores its capacity to navigate the
complexities of modern power systems, providing a robust
framework for the sustainable and efficient management of
energy resources in microgrids. Through the meticulous design
of its optimization processes, the DEO-LFC strategy exemplifies
an advanced paradigm in grid management, advocating for a
harmonious integration of technical and economic considerations
to foster resilient and economically viable microgrid ecosystems.
The objective functions and constraints are as follows.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (9a)

∑n
i�1
ΔPin

i � ΔPorder−∑
ΔPorder−∑*ΔPin

i ≥ 0

ΔPi
min ≤ΔPin

i ≤ΔPi
max

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(10a)

where ΔPorder-∑ is the total command, ΔPimax and ΔPimin are the
limits of the ith unit, ΔPiin is the command of the ith unit.

3 SGAC algorithm for DEO-LFC

In the realm of Artificial Intelligence (AI), rapid advancements
have necessitated the adaptation to complex task deployment, with
edge computing environments emerging as a pivotal solution due to
their low latency, high throughput, and energy-efficient
characteristics. These environments are increasingly applied
across various sectors including intelligent Internet of Things
(IoT), transportation, and healthcare, demanding efficient task
deployment to maximize computing performance and resource
allocation. Yet, task deployment poses a complex combinatorial
optimization challenge, entangled with inter-task dependencies and
multifaceted constraints. To navigate these complexities, the
scholarly and industrial sectors have proposed innovative
approaches, notably Graph Neural Networks (GNNs) and Deep
Reinforcement Learning (DRL) methodologies.

GNNs offer a graphical framework to encapsulate inter-task
dependencies, typically represented by a Directed Acyclic Graph
(DAG) in LFC scenarios. The adoption of a graph structure
transmutes the LFC challenge into a graph combinatorial
optimization problem, thereby enhancing LFC’s efficiency and
robustness. GNNs, as a subset of artificial neural networks adept
at processing graph data, can discern and manage task
dependencies, facilitating superior task deployment outcomes.

Conversely, DRL, a subset of reinforcement learning that derives
optimal strategies through environmental interaction, is
instrumental in refining LFC strategies. DRL optimizes LFC
policies to augment efficiency and precision, assimilating task
dependencies and constraints to advance LFC performance.

This section delves into the synthesis of GNNs and DRL to tackle
the LFC dilemma, particularly in isolated microgrid contexts. It
envisages employing GNNs for delineating task interdependencies
and optimizing these relationships. Concurrently, DRL will be
leveraged to formulate and implement optimal LFC policies,
aiming to address the intricate LFC issues inherent in islanded
microgrids. This integrative approach signifies a promising direction
for enhancing task deployment and LFC efficacy in complex
computational landscapes.

3.1 MDP modelling of DEO-LFCs

In Reinforcement Learning (RL), the dynamic interaction
between an agent and its environment is conceptualized through
a Markov Decision Process (MDP), serving as both the
mathematical foundation and a key modeling instrument for RL
challenges. An MDP framework typically encapsulates a state space,
action space, state transition probabilities, and a reward function.
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Within this structure, the agent selects actions in accordance with
the present state at each discrete time step, while the environment
responds by presenting a subsequent state and associated reward, as
dictated by the state transition probability function and the reward
function. The MDP framework posits that state transitions in the
decision-making process adhere to the Markov property—meaning
the forthcoming state is contingent solely on the current state and
the executed action, devoid of any historical influence. The
quintessential components of an MDP include.

1) State space: the set of all possible states.
2) Action space: The set of all possible actions.
3) State transfer probability: describes the probability distribution

from one state and one action to the next state.
4) Reward function: describes the immediate reward obtained

after performing an action in a state.

InMDP, the goal of an agent is to find an optimal strategy, i.e., to
choose an optimal action in each state to maximize the expected
cumulative reward.

3.1.1 Action space
In the sphere of sophisticated power grid management, the

imperative for an advanced control system is pronounced. Such a
system is essential for the generation and distribution of precise
control directives to every unit within specified sectors, highlighting
the need for a comprehensive action space for the supervisory entity.
This action space is crucial, crafted to encompass a full array of
commands vital for the seamless operation of each unit. The
contemplated action space is intricate, mirroring the wide array
of decisions the controlling agent must implement. These decisions
span various operational aspects, from adjusting power output levels
to fine-tuning for system equilibrium and reliability. The complexity
inherent in this space reflects the diverse nature of the required tasks,
emphasizing the necessity for the agent to exhibit exceptional
precision and adaptability.

Furthermore, the action space illustrates the complex
coordination and synergy required among different units to
attain collective operational efficacy. It establishes a structure that
not only facilitates task execution at the individual unit level but also
integrates these activities within the broader grid management goals.
This integration demands a degree of interaction and cooperation
that goes beyond mere directive issuance, necessitating a unified
approach that aligns with overarching performance objectives.

Thus, the agent must adeptly navigate this action space,
informed by the dynamic interrelations within the power grid, to
make decisions that are both cognizant of the current context and
anticipatory of future grid conditions. Such advanced decision-
making capability is crucial for ensuring optimal grid
performance, reducing operational interruptions, and enabling a
resilient adaptation to fluctuating demand and supply scenarios. The
meticulously designed action space is a fundamental element of the
control architecture, endowed with the complexity and strategic
insight necessary to meet the rigorous demands of contemporary
grid operation and management. The action space is as follows:

ΔPorder−∑[ ] (11a)

where ΔPorder−∑ is the total command.

3.1.2 State space
The autonomous control agent plays a pivotal role in diligently

managing a comprehensive database of operational metrics for the
standalonemicrogrid. Its core function is to meticulously implement
decisions that adjust for frequency deviations, leveraging an
extensive collection of real-time and historical data. This role is
crucial for the continuous monitoring and adjustment of the power
output from each turbine unit, especially critical in environments
lacking rapid-response mechanisms to counteract significant power
fluctuations.

Ultimately, this meticulous and strategic methodology endows
the autonomous agent with the capabilities required to uphold the
operational integrity of the microgrid. It underscores the agent’s
critical contribution to maintaining the resilience, efficiency, and
stability of the energy system, navigating the intricate dynamics of
managing standalone power grids effectively. The state space is
as follows:

Δf ∫t

0
Δfdt ΔPtotal

G[ ] (12)

where ΔPtotal
G is the total output.

3.1.3 Reward functions
Within the domain of power system operational efficiency

optimization, reinforcement learning algorithms frequently utilize
two paramount metrics as reward functions: frequency deviation
and generation cost. These metrics are integral for assessing system
performance and economic viability, respectively. To bolster the
training efficacy and mitigate the risk of frequency tuning errors
during the exploration phase, a penalty factor is strategically
implemented. This factor is aimed at accelerating the learning
curve by imposing penalties for actions resulting in non-ideal
outcomes, such as deviations from the desired frequency levels.

The incorporation of a penalty factor serves to guide the learning
algorithm towards optimal actions by introducing a cost for
inaccuracies, thereby enhancing the training process’s efficiency
and dependability. This approach addresses the exploration-
exploitation dilemma in reinforcement learning, necessitating a
balance between investigating novel actions and leveraging
established strategies. This equilibrium is crucial, especially in
intricate systems where the ramifications of less-than-optimal
decisions can significantly impact system stability and
operational expenses.

By embedding a penalty factor focused on rectifying frequency
tuning discrepancies, the training methodology is refined to
emphasize system stability and cost efficiency. Consequently, this
adjustment improves the power system’s operational performance,
aligning with the objectives of maintaining system reliability and
economic efficiency. The reward is as follows:

r � −μ2 Δf
∣∣∣∣ ∣∣∣∣ + μ3∑n

i�1
Ci (13)

A � 0 Δf
∣∣∣∣ ∣∣∣∣< 0.05HZ

−10 Δf
∣∣∣∣ ∣∣∣∣≥ 0.05HZ

{ (14)

where r is the reward and Ci is the punishment function.

Frontiers in Energy Research frontiersin.org09

Wu et al. 10.3389/fenrg.2024.1384995

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1384995


3.2 SGAC algorithm-based DEO-LFC
application

3.2.1 Maximum entropy exploration strategy
Upon reviewing the trio of DRL algorithms delineated in the

preceding section, it becomes apparent that the challenges
confronting the DRL domain are fundamentally consistent. These
challenges include the intricacies of exploration and decision-
making within high-dimensional state spaces, alongside the
convergence dilemmas encountered in function optimization. The
former challenge is attributed to the exponential growth in the
number of states within extensive state spaces, which significantly
escalates computational time and resource allocation, thereby
complicating the identification of optimal policies within
constrained temporal and spatial parameters. The latter challenge
pertains to the non-convex optimization issues inherent in
algorithmic exploration and decision-making processes. This
complication arises from the prevalence of numerous local
optima within the deep neural network’s parameter space,
impeding the algorithm’s progression towards a global optimum
due to entrapment in local optima during optimization phases.

It is crucial to acknowledge that these two predominant
challenges are not mutually exclusive but are interlinked,
necessitating concurrent resolution. Thus, addressing these issues
collectively is paramount. This paper introduces a novel approach
through the development of a flexible actor-critic algorithm, which
leverages the maximum entropy framework, diverging from
traditional DRL algorithms that solely prioritize maximizing
long-term rewards. The Soft Actor-Critic (SAC) algorithm
innovates by incorporating an action’s maximum entropy
estimation into its action selection strategy, aiming to enhance
decision-making robustness and algorithmic convergence. The
adoption of a maximum entropy-based strategy for the objective
function, as depicted in Equation 15, signifies a strategic pivot
designed to mitigate the aforementioned challenges by promoting
a more explorative and globally informed optimization process.

Jπ θ( ) � ∑T
t�0
E st,at( )~ρπ r st, at( ) + αH πθ · | st( )( )[ ] (15)

where α denotes the temperature control factor, which is used to
regulate the importance of the entropy termH(πθ(· | st)) relative to
the reward term r(st, at).

Incorporating the maximum entropy function into the Soft
Actor-Critic (SAC) algorithm fundamentally alters the
probabilistic landscape of action selection. This approach ensures
a distribution mechanism that mitigates the likelihood of the agent
persistently favoring actions with disproportionately high
probabilities. The primary advantage of integrating the maximum
entropy principle lies in its capacity to randomize the strategic
optimization pathway. This randomness acts as a catalyst for
enhanced exploration during the initial training phases, enabling
the algorithm to evaluate and learn from a broader spectrum of
action outcomes. Such a mechanism not only accelerates the
training process by enriching the exploration domain but also
prevents the convergence on suboptimal policies in later stages
by discouraging repetitive action selection.

By diminishing the repetitive selection of identical actions, the
strategy effectively minimizes the perturbation induced by noise,
thereby streamlining the algorithm’s path to convergence. This
reduction in noise influence is crucial for achieving a more stable
and efficient learning trajectory. The strategic application of the
maximum entropy function, therefore, plays a critical role in
balancing exploration with exploitation, optimizing training
velocity, and facilitating smoother algorithmic convergence by
alleviating the impact of stochastic behaviors on the
learning process.

In order to make the algorithm work in the continuous domain,
the SAC algorithm sets up function approximators for the value
function and the policy function that can assist the function to be
updated for optimization. There are three main types of objective
optimization functions in the SAC algorithm, namely, the state value
function (Vψ(st)) controlled by the parameter ψ, the action value
function (Qω(st, at)) controlled by the parameter ω and the policy
function (πθ(at | st)) controlled by the parameter θ. The function
approximator is used to perform the gradient of the three objective
functions. The function approximator’s role is to update the gradient
of the three types of objective functions, and the specific updating
formulas are shown in Equations 16–18, respectively.

∇̂ψJV ψ( ) � ∇ψVψ st( ) Vψ st( ) − Qω st, at( ) + log πθ at | st( )( ) (16)
∇̂ωJQ ω( ) � ∇ωQω st, at( ) Qω st, at( ) − r st, at( ) − γV �ψ st+1( ))( (17)

∇̂θJπ θ( ) � ∇θ log πθ at | st( ) + ∇at log πθ at | st( )(
− ∇atQ st, at( ))∇θhθ ϵt; st( ) (18)

where V �ψ denotes the target state value function, the stability of the
state value function is controlled by smoothing the network
parameters �ψ ; hθ denotes the policy function with the addition
of the noise vector ϵt, which converts the random sampling process
to input random noise through the reparameterization technique, so
that the function can undergo gradient updating.

In order to avoid over-estimation of the Q values of certain
actions by the action value function, the SGAC algorithm adopts the
cropping dual Q value learning technique, i.e., it uses two identical Q
networks, Q1 and Q2, and achieves the purpose of reducing the
training bias and improving the stability and robustness of the
algorithm by selecting the smaller of the largest Q values obtained
from the Q1 and Q2 networks. In order to simplify the block
diagram structure. For the current Q network, due to the
deletion of the V network, the gradient update formula of the
corresponding action value function Qω(st, at) will be rewritten
without the state value function, as shown in Equation 19.

∇̂ωJQ ω( ) � ∇ωQω st, at( ) Qω st, at( ) − r st, at( )((

+ γ Q �ω st+1, at+1( ) − αt+1* log πθ at+1 | st+1( ))))(
(19)

where Q �ω denotes the target action value function, and α*t denotes
the optimal value of the temperature control factor α at the current
moment, which can be expressed by Equation 20 containing the
minimum entropy constant �H, i.e., the opposite of the action
space dimension.
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A*
t � argmin

αt

Eρ*t
−αt log π*

t at | st( ) − αt �H[ ] (20)

In the deep reinforcement learning-based LFC scenario studied
in this paper, the training process of the recommended intelligences
model can also be represented as a serialisation process based on a
Markov decision process.

3.2.2 Actor networks
For the policy function of the system, the policy gradient

algorithm is particularly suitable for long-term interactive
recommendation scenarios because of its iterative optimization
feature, which can gradually accumulate experience through the
continuous interaction between the agent and the environment. In
this paper, we use the classic algorithm in the policy gradient
algorithm to optimise the policy, and the policy function of this
algorithm is shown below.

Jπ θ( ) � ∑T
t�0
E su,t ,au,t( )∈B γtr su,t, au,t( )[ ] (21)

Among them, B denotes the experience pool, which is used to
store the current state, target state, action and the instant reward
obtained after interacting with the environment of each
recommending agent, r(su,t, au,t) denotes the instant reward
obtained by the agent from the user’s feedback at the time of t,
and the attenuation factor of the sub-scenario of t. γ is used to
balance the relationship between the instant reward and the delayed
reward. Through the cumulative effect of the delayed reward and the
instant reward, the cumulative reward of the application in the long-
term recommending scenario can be computed.

3.2.3 Network of critics
This study introduces an advanced policy gradient algorithm

featuring a self-adjusting temperature control factor, designed to
enhance system robustness against interference and to accelerate
convergence rates. A distinctive aspect of this approach is the
incorporation of an entropy-based action selection term into the
policy objective function, as detailed in Equation 21. This
modification aims to optimize the policy function’s performance
by leveraging the value function for reward assessment, thereby
minimizing bias throughout the training phase. The formulation of
the actor component’s policy function within the SGAC algorithm is
elucidated in Equation 22. This innovative mechanism facilitates a
more dynamic adaptation process, significantly improving the
algorithm’s efficiency in navigating complex environments and
achieving optimal decision-making strategies.

Jπ θ( ) � ∑T
t�0
E ~ πθ α*t log πθ au,t′ | su,t( ) − Qω su,t, au,t′( )[ ] (22)

where log πθ(au,t′ | su,t) denotes the entropy term regulated by the
self-updating temperature-control factor α*t , Qω(su,t, au,t′) denotes the
reward term evaluated using the action-value function of the critics’
section, and au,t′ denotes all possible actions predicted by the current
strategy function.

Deep reinforcement learning algorithms based on the Actor-
Critic architecture usually choose the state value function or action
value function as an important basis for policy optimisation. In the
SAC algorithm, the action value function, as a direct influence on the

policy function update, is particularly important in the design. The
algorithm adopted in this paper contains one actor network and four
critic networks. The actor network is a strategy network, while the
critic network contains two identical current action value networks
and two identical target action value networks. The structure of the
current action value network and the target action value network is
basically the same, the only difference is that the parameter �ω in the
target action value network is realised through the smoothing factor
τ to adjust its own parameter and the parameter in the current action
value network, and the specific formula of the current action value
function is shown in Equation 23.

JQ ω( ) � ∑T
t�0
E su,t ,au,t( )~B

1
2

Qω su,t, au,t( ) − Q̂ su,t, au,t( )[ ]2 (23)

As can be seen from Equation 23, the current action value
function in the SGAC algorithm contains two terms related to the
value of Q. Qω(su,t, au,t) represents the predicted action value term,
whose main role is to directly participate in the evaluation operation
of some of the actors’ strategy functions, so as to achieve the
guidance for the optimization and updating of the strategy
network. Q̂(su,t, au,t) represents the real action value term based
on the reward and goal state values, which is shown in Equation 24.

Q̂ su,t, au,t( ) � r su,t, au,t( )
+ γ Q �ω su,t+1, au,t+1( ) − αt+1* log πθ au,t+1 | su,t+1( ))(

(24)
Since the SGAC algorithm deletes the state value network, the

target state value is represented as a target action value term
containing a decay factor and an entropy term containing a self-
renewal temperature control factor. The parameter updating
method of the target action value function is a flexible updating
method based on the smoothing factor τ, and the specific updating
formula is shown in Equation 25.

�ω � τω + 1 − τ( )�ω (25)

From Equation 25, it can be seen that the real action value
function including the target state value term is a major
innovation of the SGAC algorithm compared with the
traditional Q-learning algorithm, i.e., the introduction of the
operation term based on the entropy of the action selection is
used to balance the relationship between exploration and
exploitation, so as to improve the stability of the algorithm
and the convergence speed. In addition, the current action value
network and the target action value network in the SGAC
algorithm contain two identical network structures, and the
reward evaluation of the strategy function is performed by
selecting a smaller Q value from the same network structure,
which effectively reduces the training bias caused by
overestimation.

The SGAC algorithm has a significant improvement over the
original SAC algorithm in terms of updating the temperature
control factors. This improvement is mainly reflected in the fact
that the SGAC algorithm uses the constrained optimisation
method to split the entropy term into the strategy entropy
related to the strategy and the minimum entropy unrelated to
the strategy. The self-renewal temperature control factor α*t can
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be expressed as a temperature control network with the
temperature control factor as the network parameter, and the
specific formula is shown in Equation 26.

J α( ) � ∑T
t�0
Esu,t~B,au,t~πθ −α log πθ au,t | su,t( ) − α �H[ ] (26)

Compared with the original SAC algorithm, the self-updating
temperature control factor α*t solves the problem of maintaining the
weights of the quotient terms unchanged in the original SAC
algorithm, which makes the algorithm more intelligent in
utilising the entropy terms, and thus can show better
performance in complex learning tasks.

3.2.4 Graph neural networks
The GRL algorithm proposed in this paper consists of graph

convolutional neural network (GCN) and deep deterministic policy
gradient (DDPG), which includes graph policy network and graph
value network, its overall structure is shown in Figure 2. GRL
algorithm consists of graph policy network and graph
value network.

1) The input of the graph strategy network is the state diagram of
an islanded microgrid considering the knowledge of strong
nonlinear currents, which contains the adjacency matrix An×n

and the feature matrix Xt
n × f with the information of

frequency state, power, etc., and the output is the output of
the equipment power.

2) The initial input of the graph value network is the same as that
of the graph strategy network, the input of the first fully
connected layer (FC) after the graph convolution layer is
composed of the features output from the graph
convolution layer and the actions generated by the graph
strategy network, and the final output of the graph value
network is a one-dimensional data, i.e., the value of Q of
the actions applied in the environment state, which is used to
evaluate the actions.

In the graph strategy network θπ and graph value network θQ ,
the node feature information flows through the real topological
layers of the islanded microgrid in the form of hidden features, and
the propagation feature Z(l+1) at layer l + 1 can be expressed
as below.

Z l+1( ) � f Z l( ),An×n( ) � σ �AZ l( )W l( )( )
�A � D−1

2 An×n + E( )~D−1
2

⎧⎪⎨⎪⎩ (27)

where Z(l) is the input features of layer l ;W(l) is the weight matrix of
layer l ; D is the degree matrix of the adjacency matrix An×n ; σ(·) is
the activation function; E is the unit matrix.

Therefore, the rules for transferring feature information between
layers of the GRL algorithm are shown in Equations 28, 29.

Z l+1( ) � Relu D−1
2A−1

2Z l( )W l( )
GCN + b l( )

GCN( )
~A � A + I

⎧⎪⎨⎪⎩ (28)

Z l+1( ) � Relu Z l( )WFC + bFC( ) (29)

where W(l)
GCN and b(l)GCN is the weight matrix and bias vector of the l

layer GCN respectively; Relu(.) is the activation function; WFC and
bFC is the weight matrix and bias vector of the fully connected layer
respectively. The graph value network optimizes the parameters by
minimising the loss function as shown in Equations 30, 31.

L θQ( ) � E yt − Q st An × n,X
t
n × f( ), at | θQ( )2( ) (30)

yt � rt + γQ′
st+1 An×n,Xt

n × f( ),
π′ st+1 An×n,X

t
n × f( ) | θπ′( ) | θQ′⎛⎝ ⎞⎠ (31)

where st(An×n,Xt
n × f) is the state vector associated with the graph

adjacencymatrix and graph identitymatrix; yt is the target Q value;E(·)
is the expectation function; Q(· | θQ) is the value network under the
parameter θQ ; at is the action vector, at � π(st+1(An×n,Xt

n × f) | θπ); rt
is the immediate reward; γ is the discount factor;Q′(· | θQ′) is the target
Q value of the target graph value network under the parameter θQ′;
π′(· | θπ′) is the target strategy value of the target graph strategy network
under the parameter θπ′.

4 Case studies

Within the ambit of this research, the efficacy of the DEO-LFC
architecture, employing the SGAC algorithm, underwent a stringent
assessment against a backdrop of a sophisticated CSG microgrid
LFC paradigm, as explicated in the seminal work of (Yousef et al.,
2014), with the deployment of parameters extrapolated from
verifiable empirical datasets as expounded in (Bengiamin and
Chan, 1982). The microgrid subject to this study operates at a
nominal voltage of 10 kV and integrates a multifaceted energy
portfolio, including a 1.04 MWp solar photovoltaic array, a
50 kW wind power installation, a 1220 kW diesel power
generator, a 2000 kWh energy storage system, and a 300 kW
facility for electric This eclectic mix of energy sources and
storage capabilities facilitates a fluid and efficacious transition
across various strata of grid integration, from micro-energy to
energy storage. This eclectic mix of energy sources and storage
capabilities facilitates a fluid and efficacious transition across various
strata of grid integration, from micro-energy production and load
management to the incorporation of renewable energy sources and
the execution of energy control systems both locally and remotely.

The analytic scrutiny of the DEO-LFC model, predicated on the
SGAC algorithm, was conducted in juxtaposition with a spectrum of
alternative This encompassed DEO-LFC frameworks predicated on
algorithms such as Soft Q-Learning (Mi et al., 2016), Proximal Policy
Optimisation (PPO) (Chen et al., 1991), and the SGAC algorithm
(Wang et al., 1993). Proximal Policy Optimisation (PPO) (Yan et al.,
2022), Trust Region Policy Optimization (TRPO) (Mahboob Ul
Hassan et al., 2022), Distributed Distributional Deterministic Policy
Gradients (D4PG) (Yu et al., 2012), Asynchronous Actor-Critic
Agents (A3C) (Yu et al., 2015), Twin Delayed Deep Deterministic
Policy Gradient (TD3) (Shangguan et al., 2021), Deep Deterministic
Policy Gradient (DDPG) (Li et al., 2021), Double Deep Q-Network
(DDQN) (Chen et al., 2022), Deep Q-Network (DQN) (Zhang et al.,
2023b), Distributed Model Predictive Control (DMPC) (Su et al.,
2021), Model Predictive Control (MPC) (Hosseini and Etemadi,
2008), Fuzzy Fractional Order Proportional Integral (Fuzzy-FOPI)
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(Wang et al., 2013), Fuzzy Proportional Integral (Fuzzy-PI) (Chen
et al., 2022), and Particle Swarm Optimisation Proportional Integral
(PSO-PI) (Peng et al., 2023) for LFC purposes.

This extensive comparative review was meticulously designed to
evaluate the DEO-LFC framework, undergirded by the SGAC
algorithm, in terms of efficiency, reliability, and adaptability within
the operational milieu of advanced microgrid systems. The evaluative
criteria were centred on the system’s proficiency in maintaining
voltage stability, enhancing the integration and The evaluative
criteria were centred on the system’s proficiency in maintaining
voltage stability, enhancing the integration and exploitation of
renewable energy resources, securing The evaluative criteria were
centred on the system’s proficiency in maintaining voltage stability,
enhancing the integration and exploitation of renewable energy
resources, securing dependable energy storage and retrieval
mechanisms, and orchestrating efficacious load management
protocols. Research aims to shed light on the transformative
potential of cutting-edge deep learning algorithms in augmenting
the operational efficiency of smart This, in turn, is envisaged to
catalyze the evolution towards energy infrastructures that are not only
more sustainable but also markedly more resilient.

4.1 Case 1: random disturbance

In the present investigation, step disturbances were
systematically introduced into the Case study to meticulously
evaluate the system’s response and resilience under perturbed
conditions. The outcomes of this experimental setup are
comprehensively documented and presented through a series of
visual representations and quantitative data analyses, spanning

Figure 4. The outcomes of this experimental setup are
comprehensively documented and presented through a series of
visual representations and quantitative data analyses, spanning
Figure 4 and including the detailed numerical results compiled in
Table 1. This approach was deliberately chosen to facilitate a
nuanced understanding of the system’s dynamics and its
capability to maintain stability or adapt to sudden changes in
operating conditions. This approach was deliberately chosen to
facilitate a nuanced understanding of the system’s dynamics and
its capability to maintain stability or adapt to sudden changes in
operating conditions.

The inclusion of step disturbances serves as a critical
methodological tool to simulate real-world operational challenges,
providing insights into The inclusion of step disturbances serves as a
critical methodological tool to simulate real-world operational
challenges, providing insights into the system’s robustness and
the efficacy of implemented control strategies. This structured
presentation of findings, leveraging both graphical and This
structured presentation of findings, leveraging both graphical and
tabular formats, is designed to provide a comprehensive overview of
the experimental results, fostering an in-depth analysis of the
system’s response patterns. The empirical evidence gathered
through this methodology is instrumental in validating the
theoretical models and hypotheses posited in the study, thereby
contributing to the advancement of the system. The empirical
evidence gathered through this methodology is instrumental in
validating the theoretical models and hypotheses posited in the
study, thereby contributing to the advancement of knowledge in the
field. Furthermore, the detailed exposition of results in this manner
adheres to rigorous scientific communication standards, ensuring
clarity, precision, and replicability of the research findings.

TABLE 1 Data of case 1.

Control algorithms Average frequency error (Hz) Generation cost ($)

|Δf |avg Ctotal

SGAC 0.00980 3577.18

soft Q-learning 0.01169 3580.87

PPO 0.01315 3580.96

TRPO 0.01046 3580.78

D4PG 0.01167 3580.60

A3C 0.01076 3580.66

TD3 0.01121 3580.48

DDPG 0.01215 3580.42

DDQN 0.01213 3580.51

DQN 0.01458 3580.15

DMPC 0.01353 3580.24

MPC 0.01227 3580.42

Fuzzy-FOPI 0.02603 3578.26

Fuzzy-PI 0.03247 3580.15

PSO-PI 0.02531 3578.38
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Table 1’s analysis provides a detailed comparison of the SGAC
algorithm against other algorithmic models, focusing on frequency
deviation and generation cost metrics. The findings reveal that the
frequency deviations with other strategies were 1.089–4.155 times
greater than with the SGAC algorithm. Additionally, the SGAC
algorithm demonstrated a reduction in generation costs by 0.31%–
1.28% over its counterparts, underscoring its superior efficiency and
control in microgrid management. A deeper investigation into
frequency response and diesel generator outputs across different
control strategies highlights the variance in performance and the
efficacy of each control mechanism. The SGAC algorithm emerges
as the top performer, with soft Q-learning noted as a strong
alternative.

The standout performance of both the SGAC and soft
Q-learning algorithms is linked to their use of maximum entropy
exploration mechanisms, enabling precise adjustments in learning
rates and importance weighting through an updated experience-
sharing framework. This adaptability allows for customized control
strategies in various zones, enhancing operational flexibility.
Particularly, the SGAC algorithm excels in making decisions
based on dynamic joint trajectories and historical data, bypassing
traditional policy evaluation methods and improving its
responsiveness to learning adjustments.

The SGAC algorithm’s adaptability and control effectiveness
across diverse system conditions firmly establish its role as a leader
in the field of reinforcement learning, distinguished by its
straightforward and universally applicable parameters. However,
applying reinforcement learning broadly faces challenges, such as
setting a shared exploration goal for multiple agents in complex
tasks and dealing with the instability from agents needing to respond
to each other.

The introduction of multi-agent reinforcement learning
approaches, focusing on collective characteristics, marks a
significant advancement in overcoming these challenges, steering
reinforcement learning towards achieving dynamic tasks through
autonomous decision-making and agent exploration.

Further examination of operational dynamics, as shown in
Figure 3B, reveals the system’s ability to closely follow load
disturbances, including negative and square wave perturbations.
The LFC units’ power outputs adjust to address unpredictable power
changes effectively. An in-depth look at the regulation curves of
various LFC units in Figure 3A shows a strategic allocation based on
regulation costs and disturbance types, leading to optimized
frequency control. The uniform micro-increment rate principle
guides power distribution among LFC units, resulting in an
economically efficient power output, contrasting with other DRL
models that lack refinement mechanisms and heavily rely on
theoretical models, thus limiting their control accuracy.

4.2 Case 2: step disturbance and renewable
disturbance

In the research delineated within this document, a sophisticated
smart distribution grid model, replete with a plethora of renewable
energy sources, is meticulously constructed to facilitate an in-depth
analysis of the SGAC algorithm’s operational performance amidst a
highly stochastic environment. The model is enriched with an array
of renewable energy sources, encompassing electric vehicles, wind
turbines, small-scale hydropower plants, micro-gas turbines, fuel
cells, photovoltaic systems, and other energy sources. The model is
enriched with an array of renewable energy sources, encompassing

TABLE 2 Data of case 2.

Control algorithms Average frequency error (Hz) Generation cost ($)

|Δf |avg Ctotal

SGAC 0.01736 5494.52

soft Q-learning 0.01991 5499.85

PPO 0.02390 5499.98

TRPO 0.01867 5499.72

D4PG 0.02084 5499.46

A3C 0.01901 5499.56

TD3 0.01954 5499.32

DDPG 0.02140 5499.22

DDQN 0.02163 5499.33

DQN 0.02561 5498.81

DMPC 0.02351 5498.96

MPC 0.02188 5499.20

Fuzzy-FOPI 0.04315 5496.08

Fuzzy-PI 0.05273 5498.81

PSO-PI 0.04205 5496.26
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electric vehicles, wind turbines, small-scale hydropower plants,
micro gas turbines, fuel cells, photovoltaic systems, and biomass
energy solutions. Notably, certain renewable energy sources such as
electric vehicles, wind power, and photovoltaic power generation
exhibit considerable variability and unpredictability in their output.
Consequently, these sources are modelled as sources of random load
disturbances, their power outputs being incorporated into the
system without contributing to the frequency Consequently, these
sources are modelled as sources of random load disturbances, their
power outputs being incorporated into the system without
contributing to the frequency regulation mechanisms.

The variability inherent in wind power generation is captured
through the application of finite bandwidth white noise as the input
signal for the wind turbine model, thereby replicating the stochastic
nature of wind speeds. The variability inherent in wind power
generation is captured through the application of finite
bandwidth white noise as the input signal for the wind turbine
model, thereby replicating the stochastic nature of wind speeds.
Similarly, the active power output for the photovoltaic generation
model is derived by emulating the diurnal variations in solar
irradiance. Characteristic of these renewable energy sources,
thereby providing a robust framework for evaluating the efficacy
of the SGAC algorithm under conditions that closely mimic real-
world operational challenges.

Comprehensive details pertaining to the specifications and
operational parameters of each energy unit incorporated within
this model can be found in This extensive cataloguing of parameters
is instrumental in underpinning the simulation exercises with a high
degree of accuracy and relevance. This extensive cataloguing of
parameters is instrumental in underpinning the simulation exercises
with a high degree of accuracy and relevance, ensuring that the
insights gleaned from this study are both valid and applicable to the
design. This extensive cataloguing of parameters is instrumental in
underpinning the simulation exercises with a high degree of
accuracy and relevance, ensuring that the insights gleaned from
this study are both valid and applicable to the design and
optimization of future smart distribution grids. Through this
meticulously constructed model, the paper aims to shed light on
the adaptability and control capabilities of the SGAC algorithm,
particularly in managing the complexities introduced by the SGAC
algorithm. Particularly in managing the complexities introduced by
the integration of a diverse mix of renewable energy sources within
smart grid infrastructures.

This paper presents a detailed examination of the integration
of random white noise as a proxy for load disturbances within a
sophisticated smart distribution network model. This model is
intentionally crafted to mimic the erratic load fluctuations
commonly observed in power systems that are extensively
integrated with novel energy resources. The primary objective
of this research is to conduct a comprehensive evaluation of the
Soft Graph Actor Critic (SGAC)’s efficacy and resilience when
faced with environments characterized by substantial stochastic
disturbances. A key component of this investigation involves
conducting simulations that introduce 24-h cycles of random
white noise disturbances, thereby allowing for an in-depth
analysis of the SGAC algorithm’s robustness and long-term
operational integrity under scenarios of severe random load
fluctuations.

Figure 4 delineates the proficiency of the SGAC algorithm in
accurately and promptly tracking random disturbances, thereby
highlighting its precision in real-time disturbance management.
The outcomes of these simulations, systematically compiled in
Table 2, offer a quantitative assessment of the generation costs
incurred, representing a cumulative analysis of the total regulatory
expenses accumulated by all generating units over a 24-h period. A
comparative evaluation reveals that the frequency deviation
experienced with alternative control algorithms ranges from
1.388 to 3.711 times higher than that encountered when
employing the SGAC algorithm. Moreover, the generation costs
associated with the SGAC algorithm exhibit a nominal decrease,
spanning from 0.0006% to 0.019%. These statistics underscore the
SGAC algorithm’s superior economic efficiency, advanced self-
adaptive capabilities, and its distinguished performance in
executing coordinated optimal control compared to other
intelligent algorithms.

To further substantiate the SGAC algorithm’s performance
efficacy, an assortment of disturbances, including step waves,
square waves, and random waves, were systematically introduced
into the system. The resulting data underscore the SGAC’s
exceptional convergence properties and its elevated learning
efficiency, underscoring its unmatched adaptability and
robustness within stochastic operational environments. The
algorithm’s prowess in attenuating random disturbances and
enhancing dynamic control effectiveness across interconnected
grid landscapes is emphatically validated through these findings.

Figure 4 provides insight into how the output power from
various units aligns with load demand across a 24-h cycle,
showcasing the system’s adeptness at matching load fluctuations
and achieving optimal operational states through the synchronized
management of multiple energy sources under a cohesive power
command strategy. The Energy Storage System (ESS) is identified as
a pivotal element, demonstrating its capability to swiftly and
accurately modulate power output, thereby contributing

FIGURE 4
Results in case 2.
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significantly to the balance of supply and demand through its flexible
charging and discharging functionalities. The real-time optimization
conducted by the system controller enables a smoother and more
stable regulation process, facilitating rapid and efficient cooperative
responses to abrupt load changes within the power system. This, in
turn, validates the SGAC algorithm’s capacity to support swift and
optimal cooperative operations amidst fluctuating system
conditions, thereby enhancing the overall operational efficiency
and reliability of the power system in managing dynamic and
unpredictable environments.

5 Conclusion

In conclusion, this study presents a comprehensive evaluation of
the integration challenges posed by emerging energy sources within
electrical grids, specifically highlighting the resultant variability that
complicates traditional Load Frequency Control (LFC) mechanisms.
Specifically highlighting the resultant variability that complicates
traditional LFC mechanisms. The key findings of this research can
be summarised as follows. The key findings of this research can be
summarised as follows.

Challenge Identification: This study highlights the complexities
introduced by renewable energy integration into electrical grids,
specifically the variability leading to frequency fluctuations and
increased generation costs.

Innovative Approach: Introduction of the Data-Enhanced
Optimum Load Frequency Control (DEO-LFC) approach and the
Soft Graph Actor Critic (SGAC) algorithm, utilising deep
reinforcement learning and graph sequence neural networks
for adaptive frequency regulation. Algorithm, utilising deep
reinforcement learning and graph sequence neural networks for
adaptive frequency regulation.

Methodological Shift: Transition from traditional control
mechanisms to agent-based frameworks within DEO-LFC,
aiming to enhance grid stability and optimise generation costs
amidst high renewable energy penetration.

Validation and Impact: Application of DEO-LFC to the
China Southern Grid’s isolated island city microgrid model,
showcasing its effectiveness in managing grid stability and
reducing generation costs in environments with substantial
renewable energy sources.

The study underscores the importance of advanced LFC
strategies and algorithmic innovations for addressing the
challenges of renewable energy integration into electrical grids,
offering a pathway towards more stable and cost-efficient grid
operations. The study underscores the importance of advanced
LFC strategies and algorithmic innovations for addressing the
challenges of renewable energy integration into electrical grids,
offering a pathway towards more stable and cost-efficient grid
operations.

Our future work will enhance the robustness of the algorithm
and apply it to the power grid.

6 Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

MW: Writing–original draft, Writing–review and editing. DM:
Writing–original draft, Writing–review and editing. KX:
Writing–original draft, Writing–review and editing. LY:
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by Science and Technology Project of China
Southern Power Grid Corporation, under Grant No.
GDKJXM20220183.

Conflict of interest

Authors MW, KX, and LY were employed by Dongfang
Electronics Corporation. Author DM was employed by
Guangzhou Power Supply Bureau of Guangdong Power Grid
Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bengiamin, N. N., and Chan, W. C. (1982). Variable structure control of electric
power generation. IEEE Trans. Power Appar. Syst. PAS-101, 376–380. doi:10.1109/
TPAS.1982.317117

Chen, Y. H., Leitmann, G., and Kai, X. Z. (1991). Robust control design for
interconnected systems with time-varying uncertainties. Int. J. Control 54,
1119–1142. doi:10.1080/00207179108934201

Frontiers in Energy Research frontiersin.org16

Wu et al. 10.3389/fenrg.2024.1384995

https://doi.org/10.1109/TPAS.1982.317117
https://doi.org/10.1109/TPAS.1982.317117
https://doi.org/10.1080/00207179108934201
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1384995


Chen, Z., Zhu, J., Li, S., Liu, Y., and Luo, T. (2022). Detection of false data injection
attacks on load frequency control system with renewable energy based on fuzzy logic
and neural networks. J. Mod. Power Syst. Clean. Energy 10, 1576–1587. doi:10.35833/
MPCE.2021.000546

Hosseini, S. H., and Etemadi, A. H. (2008). Adaptive neuro-fuzzy inference system
based automatic generation control. Electr. Power Syst. Res. 78, 1230–1239. doi:10.1016/
j.epsr.2007.10.007

Huang, T., and Lv, X. (2023). Load frequency control of power system based on
improved AFSA-PSO event-triggering scheme. Front. Energy Res. 11, 1235467. doi:10.
3389/fenrg.2023.1235467

Jia, Y., Dong, Z. Y., Sun, C., and Meng, K. (2019). Cooperation-based distributed economic
MPC for economic load dispatch and load frequency control of interconnected power systems.
IEEE Trans. Power Syst. 34, 3964–3966. doi:10.1109/TPWRS.2019.2917632

Li, J., Yu, T., Zhang, X., Li, F., Lin, D., and Zhu, H. (2021). Efficient experience replay
based deep deterministic policy gradient for AGC dispatch in integrated energy system.
Appl. Energy 285, 116386. doi:10.1016/j.apenergy.2020.116386

Long, B., Liao, Y., Chong, K. T., Rodríguez, J., and Guerrero, J. M. (2021). Enhancement of
frequency regulation in ACmicrogrid: a fuzzy-MPC controlled virtual synchronous generator.
IEEE Trans. Smart Grid 12, 3138–3149. doi:10.1109/TSG.2021.3060780

Mahboob Ul Hassan, S., Ramli, M. A. M., and Milyani, A. H. (2022). Robust load
frequency control of hybrid solar power systems using optimization techniques. Front.
Energy Res. 10, 902776. doi:10.3389/fenrg.2022.902776

Mi, Y., Fu, Y., Li, D., Wang, C., Loh, P. C., andWang, P. (2016). The sliding mode load
frequency control for hybrid power system based on disturbance observer. Int. J. Electr.
Power Energy Syst. 74, 446–452. doi:10.1016/j.ijepes.2015.07.014

Mi, Y., Fu, Y., Wang, C., and Wang, P. (2013). Decentralized sliding mode load
frequency control for multi-area power systems. IEEE Trans. Power Syst. 28, 4301–4309.
doi:10.1109/TPWRS.2013.2277131

Peng, B., Ma, X., Ma, X., Tian, C., and Sun, Y. (2023). Coordinated AGC control strategy for
an interconnected multi-source power system based on distributed model predictive control
algorithm. Front. Energy Res. 10, 1019464. doi:10.3389/fenrg.2022.1019464

Shangguan, X. C., Zhang, C. K., He, Y., Jin, L., Jiang, L., Spencer, J. W., et al. (2021).
Robust load frequency control for power system considering transmission delay and
sampling period. IEEE Trans. Ind. Inf. 17, 5292–5303. doi:10.1109/TII.2020.3026336

Su, K., Li, Y., Chen, J., and Duan, W. (2021). Optimization and H∞ performance
analysis for load frequency control of power systems with time-varying delays. Front.
Energy Res. 9, 762480. doi:10.3389/fenrg.2021.762480

Wang, Y., Delille, G., Bayem, H., Guillaud, X., and Francois, B. (2013). High wind power
penetration in isolated power systems—assessment of wind inertial and primary frequency
responses. IEEE Trans. Power Syst. 28, 2412–2420. doi:10.1109/TPWRS.2013.2240466

Wang, Y., Zhou, R., andWen, C. (1993). Robust load-frequency controller design for power
systems. IEE Proc. C-Generation, Transm. Distribution 140, 11–16. doi:10.1049/ip-c.1993.0003

Wang, Y., Zhou, R., andWen, C. (1994). New robust adaptive load-frequency control
with system parametric uncertainties. IEE Gener. Transm. Dis. 141, 184–190. doi:10.
1049/ip-gtd:19949757

Xi, L., Li, Y., Huang, Y., Lu, L., and Chen, J. (2018). A novel automatic generation
control method based on the ecological population cooperative control for the islanded
smart grid. Complexity 2018, 1–17. doi:10.1155/2018/2456963

Xi, L., Wu, J., Xu, Y., and Sun, H. (2021). Automatic generation control based on
multiple neural networks with actor-critic strategy. IEEE Trans. Neural Netw. Learn.
Syst. 32, 2483–2493. doi:10.1109/TNNLS.2020.3006080

Xi, L., Yu, T., Yang, B., Zhang, X., and Qiu, X. (2016a). A wolf pack hunting strategy
based virtual tribes control for automatic generation control of smart grid. Appl. Energy
178, 198–211. doi:10.1016/j.apenergy.2016.06.041

Xi, L., Zhang, L., Xu, Y., Wang, S., and Yang, C. (2022). Automatic generation control
based on multiple-step greedy attribute and multiple-level allocation strategy. CSEE
J. Power Energy Syst. 8, 281–292. doi:10.17775/CSEEJPES.2020.02650

Xi, L., Zhang, Z., Yang, B., Huang, L., and Yu, T. (2016b). Wolf pack hunting strategy
for automatic generation control of an islanding smart distribution network. Energy
Convers. manage. 122, 10–24. doi:10.1016/j.enconman.2016.05.039

Yan, C. H., Liu, B., Xiao, P., and Zhang, C. (2022). Stabilization of load frequency
control system via event-triggered intermittent control. IEEE T. Circuits-II 69,
4934–4938. doi:10.1109/TCSII.2022.3197460

Yousef, H. A., Kharusi, K. A.-, Albadi, M. H., and Hosseinzadeh, N. (2014). Load
frequency control of a multi-area power system: an adaptive fuzzy logic approach. IEEE
Trans. Power Syst. 29, 1822–1830. doi:10.1109/TPWRS.2013.2297432

Yu, T., Wang, H. Z., Zhou, B., Chan, K. W., and Tang, J. (2015). Multi-agent
correlated equilibrium Q(λ) learning for coordinated smart generation control of
interconnected power grids. IEEE Trans. Power Syst. 30, 1669–1679. doi:10.1109/
TPWRS.2014.2357079

Yu, T., Wang, Y. M., Ye, W. J., Zhou, B., and Chan, K. W. (2011). Stochastic optimal
generation command dispatch based on improved hierarchical reinforcement learning
approach. IET Gener. Transm. Dis. 5, 789–797. doi:10.1049/iet-gtd.2010.0600

Yu, T., Zhou, B., Chan, K. W., Yuan, Y., Yang, B., and Wu, Q. H. (2012). R (λ)
imitation learning for automatic generation control of interconnected power grids.
Automatica 48, 2130–2136. doi:10.1016/j.automatica.2012.05.043

Zhang, G., Li, J., Bamisile, O., Xing, Y., Cai, D., and Huang, Q. (2023a). An ${H_\infty
}$ load frequency control scheme for multi-area power system under cyber-attacks and
time-varying delays. IEEE Trans. Power Syst. 38, 1336–1349. doi:10.1109/TPWRS.2022.
3171101

Zhang, M., Dong, S., Wu, Z. G., Chen, G., and Guan, X. (2023b). Reliable event-
triggered load frequency control of uncertain multiarea power systems with actuator
failures. IEEE Trans. Autom. Sci. Eng. 20, 2516–2526. doi:10.1109/TASE.2022.3205176

Zhang, X., Tan, T., Zhou, B., Yu, T., Yang, B., and Huang, X. (2021). Adaptive
distributed auction-based algorithm for optimal mileage based AGC dispatch with high
participation of renewable energy. Int. J. Electr. Power Energy Syst. 124, 106371. doi:10.
1016/j.ijepes.2020.106371

Zhang, X., Xu, Z., Yu, T., Yang, B., andWang, H. (2020). Optimal mileage based AGC
dispatch of a GenCo. IEEE Trans. Power Syst. 35, 2516–2526. doi:10.1109/TPWRS.
2020.2966509

Frontiers in Energy Research frontiersin.org17

Wu et al. 10.3389/fenrg.2024.1384995

https://doi.org/10.35833/MPCE.2021.000546
https://doi.org/10.35833/MPCE.2021.000546
https://doi.org/10.1016/j.epsr.2007.10.007
https://doi.org/10.1016/j.epsr.2007.10.007
https://doi.org/10.3389/fenrg.2023.1235467
https://doi.org/10.3389/fenrg.2023.1235467
https://doi.org/10.1109/TPWRS.2019.2917632
https://doi.org/10.1016/j.apenergy.2020.116386
https://doi.org/10.1109/TSG.2021.3060780
https://doi.org/10.3389/fenrg.2022.902776
https://doi.org/10.1016/j.ijepes.2015.07.014
https://doi.org/10.1109/TPWRS.2013.2277131
https://doi.org/10.3389/fenrg.2022.1019464
https://doi.org/10.1109/TII.2020.3026336
https://doi.org/10.3389/fenrg.2021.762480
https://doi.org/10.1109/TPWRS.2013.2240466
https://doi.org/10.1049/ip-c.1993.0003
https://doi.org/10.1049/ip-gtd:19949757
https://doi.org/10.1049/ip-gtd:19949757
https://doi.org/10.1155/2018/2456963
https://doi.org/10.1109/TNNLS.2020.3006080
https://doi.org/10.1016/j.apenergy.2016.06.041
https://doi.org/10.17775/CSEEJPES.2020.02650
https://doi.org/10.1016/j.enconman.2016.05.039
https://doi.org/10.1109/TCSII.2022.3197460
https://doi.org/10.1109/TPWRS.2013.2297432
https://doi.org/10.1109/TPWRS.2014.2357079
https://doi.org/10.1109/TPWRS.2014.2357079
https://doi.org/10.1049/iet-gtd.2010.0600
https://doi.org/10.1016/j.automatica.2012.05.043
https://doi.org/10.1109/TPWRS.2022.3171101
https://doi.org/10.1109/TPWRS.2022.3171101
https://doi.org/10.1109/TASE.2022.3205176
https://doi.org/10.1016/j.ijepes.2020.106371
https://doi.org/10.1016/j.ijepes.2020.106371
https://doi.org/10.1109/TPWRS.2020.2966509
https://doi.org/10.1109/TPWRS.2020.2966509
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1384995

	Optimizing load frequency control in isolated island city microgrids: a deep graph reinforcement learning approach with dat ...
	1 Introduction
	1.1 Proportional-integral control
	1.2 Model predictive control and adaptive control
	1.3 Artificial intelligence control

	2 Islanded microgrids and DEO-LFC model
	2.1 DEO-LFC model
	2.2 Unit modelling
	2.2.1 Diesel engine modelling
	2.2.2 Micro gas turbines
	2.2.3 Fuel cells
	2.2.4 Distributed WT modelling
	2.2.5 Distributed PV modelling

	2.3 Generation costs
	2.4 Objective functions and constraints

	3 SGAC algorithm for DEO-LFC
	3.1 MDP modelling of DEO-LFCs
	3.1.1 Action space
	3.1.2 State space
	3.1.3 Reward functions

	3.2 SGAC algorithm-based DEO-LFC application
	3.2.1 Maximum entropy exploration strategy
	3.2.2 Actor networks
	3.2.3 Network of critics
	3.2.4 Graph neural networks


	4 Case studies
	4.1 Case 1: random disturbance
	4.2 Case 2: step disturbance and renewable disturbance

	5 Conclusion
	6 Declaration of conflicting interests
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


