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The enhancement of economic sustainability and the reduction of greenhouse
gas (GHG) emissions are becoming more relevant in power system planning.
Thus, renewable energy sources (RESs) have beenwidely used as clean energy for
their lower generation costs and environmentally friendly characteristics.
However, the strong random uncertainties from both the demand and
generation sides make planning an economic, reliable, and ecological power
system more complicated. Thus, this paper considers a variety of resources and
technologies and presents a coordinated planning model including energy
storage systems (ESSs) and grid network expansion, considering the
trustworthiness of demand-side response (DR). First, the size of a single ESS
was considered as its size has a close effect on maintenance costs and ultimately
affects the total operating cost of the system. Second, it evaluates the influence of
the trustworthiness of DR. Third, multiple resources and technologies were
included in this high-penetration renewable energy integrated power system,
such as ESSs, networks, DR technology, and GHG reduction technology. Finally,
this model optimizes the decision variables such as the single size and location of
ESSs and the operation parameters such as thermal generation costs, loss load
costs, renewable energy curtailment costs, and GHG emission costs. Since the
problem scale is very large not only due to the presence of various devices but
also both binary and continuous variables considered simultaneously, we
reformulate this model by decomposition. Then, we transform it into a master
problem (MP) and a dual sub-problem (SP). Finally, the proposed method is
applied to a modified IEEE 24-bus test system. The results show computational
effectiveness and provide a helpful method in planning low-carbon electricity
power systems.

KEYWORDS

generation and network expansion planning, energy storage systems, demand-side
response, greenhouse gas emissions, trustworthiness

1 Introduction

The fuels used to power conventional power plants cause unsustainable and
environmentally unfriendly impacts, especially during peak load-carrying hours and
critical weather conditions. Therefore, the global common goal is to mitigate
dependence on fossil fuels and reduce greenhouse gas (GHG) emissions. Renewable
energy sources (RESs) (wind and photovoltaic power are the leading alternatives) have
become the main focus of many recent energy policies (Paris agreement, 2015; Summary for
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policymakers, 2021). According to the Energy Roadmap 2050
(European Commission and Energy Roadmap, 2050, 2011), the
European Commission is moving toward a low GHG emission
economic entity. Under this blueprint, the de-carbonization
target will be possible with an even higher RES penetration level
(Zappa et al., 2019). However, higher RES penetration faces greater
volatility, resulting in the power grids having more fragile, less
flexible, and low reliable characteristics. Then, under the
circumstance of multiple resources and technologies, how to get
a more flexible, reliable, environmentally friendly, and cost-efficient
power system has gained increasing attention (Al-Shetwi, 2022).
This paper presents a coordinated planning model for a high-
penetration renewable energy integrated power system including
energy storage systems (ESSs) and network expansion, considering
the trustworthiness of DR).

To cope with fundamental challenges, a vast range of literature
focuses on DR and its effects on the optimal performance of power
grids. Qi et al. (2021) proposed a smart energy hub in which an
analytical framework containing several DR programs is adopted.
Results show that DR has a positive impact on long-term resource
planning. Mansouri et al. (2022) showed a two-stage stochastic
model based on DR and integrated DR programs. Many
uncertainties are included in this model, such as electrical,
heating, cooling loads, and the wind turbine’s output power.
According to Aghajani et al. (2017), with the consideration of
suitable DR, the uncertainties caused by wind and photovoltaic
power can be handled appropriately. Thus, optimal operation
optimization to decrease costs and minimize GHG emissions has
been presented. In a word, appropriate DR in a smart grid helps
resist volatility. However, the trustworthiness of DR has a deep
internal influence on power system planning, which is seldom
included and needs to be further studied in the future.

Previous studies (Liu et al., 2018; Zhang et al., 2020; Jafari et al.,
2022; Liu et al., 2022) focused on optimally utilizing novel resources
or technologies to respond to any uncertain variation (it usually
comes from RESs, demand, and equipment failures). It is well
known that installing ESSs may enhance power system flexibility
by providing higher ramp rates or ramp ranges for power grids.
Therefore, fast-response ESSs are considered promising resources.
Li Z. et al. (2021) applied a bilayer model with heterogeneous ESSs to
alleviate the adverse effects of diverse uncertainties and obtain the
economic multi-energy building microgrid operation. Ramos-Real
et al. (2018) followed another approach to obtain a promising
alternative from an economic and environmental perspective
through a high deployment of RESs and ESSs in the Canary
Islands. Shi et al. (2022) proposed a hierarchical optimization
planning model, with its objective function including the cost of
ESSs and renewable energy. To minimize the system’s total expected
cost, voltage deviation, and power loss mitigation, ALAhmad (2023)
proposed a novel probabilistic optimization model by optimally
placing and sizing ESSs to alleviate the negative impact of the high
penetration of RESs and enhance grid stability.

Based on the above literature, the flexibility and reliability that
ESSs brought to the system were expounded. However, how to
effectively incorporate these ESSs into the power grids still needs to
be investigated. Li et al. (2023) proposed a bi-level optimization
model to minimize net load fluctuation, voltage deviation, and total
costs by determining the optimal location, power rating, capacity,

and hourly charging/discharging profile in a multiple-ESS-
containing system. Jiang et al. (2020) simultaneously considered
the location, capacity, and power rating of ESSs. The optimal
deployment of ESSs provided benefits such as power curtailment
reduction, power loss mitigation, and arbitrage profit maximization.
Li J. et al. (2021) proposed a bi-level optimization problem that was
decomposed by the decomposition–coordination algorithm into two
sub-systems. The model determines the optimal location, power
rating, and capacity of ESSs to maximize the system’s net profit and
minimize the system’s total operation cost. Li Z. et al. (2020)
presented a risk-averse method for heterogeneous ESS
deployment in a residential multi-energy microgrid where a
multistage adaptive stochastic optimization approach is utilized
to deal with various uncertainties. However, these existing
research studies have not fully addressed the single size, location,
and degradation of ESSs simultaneously, all of which have a true
existence in practical applications. Moreover, because of the
geographical and labor management issues, the size of a single
ESS will closely affect its maintenance costs and ultimately affect
the total operating cost of the system. Thus, the optimal single size,
location, and operation of ESSs to enhance system flexibility and
reduce GHG emissions in power grids is an important ongoing
research area that is worthy of further study.

Although there have been many researchers working on
investigating the influence of multiple resources and technologies in
photovoltaic or wind-integrated power systems, the need for
comprehensive research considering not only ESSs and DR but also
further CO2 reduction still remains. Many carbon financing policies
(e.g., carbon emission tax and building committed carbon emission
operation regions) have been proven to be exceedingly effective
methods to encourage participators toward emission reduction. For
instance, carbon emission tax is utilized in Olsen et al. (2018) for
achieving emission targets in the electricity market. Jiang et al. (2024)
proposed the committed carbon emission operation region to
characterize the low-carbon feasible space. Results show that it can
achieve integrated energy system decarbonization. Hu et al. (2024)
presented a bi-level carbon-oriented planning method containing
shared ESSs for integrated energy systems. Simulation results show
that it is more environmentally friendly and economical compared to
the model without shared ESSs. Cheng et al. (2019) proposed a bi-level
multi-energy system planning model, in which carbon emission flow
was included. These decentralized approaches are employed to calculate
the emission amount but fail to involve active DR simultaneously.

According to all the above, countries all around the world are
pursuing a low-carbon power system to achieve sustainable
development. Achieving this requires the coordination of a
variety of electricity technologies. First, the vast emergence of
RESs provides alternative generations, while traditional coal-fired
generations are being phased out. However, high RES penetration
causes huge challenges in the stability of voltage, frequency, and the
balance between supply and demand. Second, various forms of ESSs,
including electrochemical ESSs, are regarded as important sources
that cut the peaks and fill the valleys to provide flexibility effectively.
However, their size, location, and inherent degradation should be
considered in the planning stage. Third, DR, as an active response on
the demand side, helps resist system volatility. However, few
researchers consider the trustworthiness of DR and reveal their
deep internal impact on the system. Moreover, these latest
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technologies are usually expensive and eco-friendly in the early
stages, which is contrary to the goal of minimizing total costs.
However, the control of carbon emissions is the basis of sustainable
development. Thus, this contradictory factor needs to be considered
in the planning stage. In a word, this paper aims to provide a more
practical method for power system planning under the background
of a high proportion of renewable energy by comprehensively
utilizing various types of latest technologies and taking carbon
reduction into account. The comparison with related studies is
presented in Table 1.

In response, we aim to bridge the gaps mentioned above and
propose a novel model that optimizes local network reinforcement
along with investment decisions on ESSs. The size, location, and
degradation of ESSs and the trustworthiness of DR technology are
included because they represent some promising options to provide
flexibility in power grids. In addition, the presented expansion
approach takes conventional generation costs, investment costs
(including ESSs and transmission lines), loss load costs, energy
curtailment costs, and GHG emission costs into account.
However, the problem scale is very large not only due to various
devices but also both binary and continuous variables considered
simultaneously. To deal with this, we reformulate this model by
decomposition and transform it into an MP and a dual SP. Then, it
can be solved efficiently without falling into a poor, sub-optimal
solution. Using this new framework, power systems can take a
comprehensive methodology to better handle the inherent
resources to get a more flexible, reliable, environmentally
friendly, and cost-efficient power system. The proposed solution
technique is tested in a modified 24-bus system. The results show the
superiority of this method in terms of solution optimality and
computational efficiency. To sum up, this model can help all
agents who participate in power grids make their cost-effective
plans in a carbon-constrained environment.

The main contributions of this paper are as follows:

1. To evaluate what the influences of multiple resources and
technologies that act on power system planning are, we
proposed a coordinated planning model that considers not
only the effects of ESSs but also the trustworthiness of DR and
CO2 emissions.

2. Moreover, the size, location, and degradation of ESSs are
included in this model and reveal how the deep internal
influence of different trustworthiness of DR acts on
power grids.

3. Our model can comprehensively investigate the goals between
environmental benefits and cost-effectiveness. Thus, it can
provide guidance for policymakers on how to formulate
policy interventions for participants to achieve
emission targets.

4. This framework was decomposed by the dual theory to reduce
the computational burden without falling into a poor, sub-
optimal solution.

The remainder of this paper is organized as follows: the detailed
mathematical model is formulated in Section 2. Its compact vector
form and its dual decomposition are presented in Section 3. Section
4 introduces the overall solution structure. The performance of the
presented method is evaluated on a modified IEEE 24-bus test
system, which is shown in Section 5. Finally, the main
conclusions are summarized in Section 6.

2 Problem formulation

This section introduces the research framework and modeling
process of this article. As shown in Figure 1, to consider the

TABLE 1 Comparison between the proposed model of this work and previous studies.

Reference ESS
capacity

ESS
degradation

Carbon
emissions

Considering DR Optimization target

Qi et al. (2021) √ √ × √ Energy hub

Mansouri et al. (2022) √ × × √ Energy hub

Aghajani et al. (2017) × × √ √ Microgrid

Li et al. (2021a) √ √ × √ Multi-energy building microgrid

Ramos-Real et al. (2018) √ × √ × Canary Islands

Shi et al., 2022; ALAhmad (2023) √ × × × Power system

Li et al. (2023) √ × × √ Electric and hydrogen systems

Jiang et al. (2020), Li et al. (2021b) √ × × × Transmission/distribution
system

Li et al. (2020a) √ × × √ Residential multi-energy
microgrid

Jiang et al. (2024) √ × √ × Integrated energy system

Hu et al. (2024) √ × √ × Integrated energy system

Cheng et al. (2019) × × √ × Multiple energy system

This paper √ √ √ √ Transmission system
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environmental, economic, and reliability factors simultaneously
during the planning phase, we conducted a planning study on a
power systemwith a high penetration rate of renewable energy. First,
coal-fired power plants emit GHGs, which may be advantageous for
maximizing economic benefits but detrimental to the current
sustainable development purport. This contradictory factor needs
to be considered in the planning stage. Second, ESSs can perform
peak shaving and valley filling and provide flexibility to the system.
However, their size, location, and inherent degradation should be
considered in the planning stage. Finally, DR, as an active response
on the demand side, helps resist system volatility. However, the
trustworthiness of DR is influenced by various factors and can
ultimately affect the planning results of this system. Thus, this article
presents a more practical method for power system planning from
ecological, economic, and reliability perspectives with a high
penetration rate of renewable energy.

2.1 Objective function

The objective function shown in Equation 1 (which contains
four parts) seeks to make a tradeoff between minimizing the costs
and CO2 emissions. The first part refers to the total investment costs
of new transmission lines and ESSs, which is indicated in Equation 2;
the second part refers to the total operation costs, including
conventional generation costs (PGope), ESSs maintenance costs

(PSope), DR costs (DRope), and renewable energy curtailment
costs (QWVope). The details of these compact forms are shown
in Equations 4–7. It should be noted that the maintenance costs of
per-unit ESSs decrease as their node-installed capacity increases.
The third part (Creli), as indicated in Equation 8, refers to the total
costs of loss of demands. The last part (Cem) that is shown in
Equation 9 is GHG emission costs for every time point in every
representative day. If environmental considerations are not taken
into account, the objective function only contains the first three
costs. Note that GHG emission cost is closely related to traditional
generations, which is shown in Equation 10 in detail.

minCinv + Cope + Creli + Cem, (1)

Cinv � r 1 + r( )y
1 + r( )y − 1

∑
i

CLi · xli +∑
s

CSs · xss⎡⎣ ⎤⎦, (2)

Cope � ∑
k

ρk ·∑
y,h

· PGope + PSope +DRope + QWVope[ ], (3)

PGope � ∑
g

αg,y,h · PGg,y,h,k, (4)

PSope � ∑
s

βy,h −
Ey,h − E0 ,y,h

Ey,h
*Z( ) · Ey,h, (5)

DRope � − ∑
l

γy,h ·DRl,y,h,k, (6)

QWVope � ∑
w

CWw,h · QWw,y,h,k +∑
v

CVv,h · QVv,y,h,k, (7)

FIGURE 1
Framework of this article
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Creli � VOLL · ∑
i,y,h,k

ρk · LPi,y,h,k, (8)

Cem � ∑
k

ρk · ∑
g,y,h

EMg,y,h · CGem
g,y,h · eg,y,h,k, (9)

eg,y,h,k � PGg,y,h,k · h,∀g, y, h, k. (10)

2.2 Constraints

Various expansion and operation constraints are presented
as follows:

The constraints of Equations 11–15 are introduced for
conventional generators’ operation limits. Considering the
upward and downward reserve, constraints of Equations 11, 12
limit the active power production of each conventional generator
between its minimum and maximum capacities. The ramp-up and
ramp-down limits of traditional generator units are shown in
Equations 13, 14. In Equation 15, the reactive power production
was limited.

PGg,y,h,k + RUg,y,h,k ≤PGmax
g ,∀g, y, h, k, (11)

RDg,y,h,k ≤PGmin
g ,∀g, y, h, k, (12)

PGg,y,h,k − PGg,y,h−1,k + RUg,y,h,k ≤RUWg,∀g, y, h, k, (13)
PGg,y,h−1,k − PGg,y,h,k + RDg,y,h,k ≤RDWg,∀g, y, h, k, (14)

QGmin
g ≤QGg,y,h,k ≤QGmax

g ,∀g, y, h, k. (15)

The upward and downward spinning reserves are modeled to
resist the inevitable uncertainties due to renewable energy and
demand, which are bounded from Equations 16–19. Wfh and
Vfh are the hourly representative factors of the wind and
photovoltaic farms’ output. It affects the final output of these
generations. Load forecasting is almost patterned, and its
prediction is relatively easy. However, the trustworthiness of DR
is complicated because it is affected by several factors. Moreover, as
RESs are highly penetrated, their outputs are affected by the weather,
causing larger forecast errors. Thus, we assume the lower bound for
the upward and downward spinning reserves at every time
resolution as 3% for the load and 5% for renewable energy (see
in Equations 16, 17). The hourly total upper bounds of the upward
and downward reserves are presented in Equations 18, 19.

3% · 1 + LGk( )k ·∑
h

Lfh · PDPK
i,k + 5%

· ∑
h

Wfh ·∑
w,k

PWw,k +∑
h

Vfh ·∑
v,k

PVv,k
⎛⎝ ⎞⎠ ≤ ∑

g,h

RUg,y,h,k,∀y, k,

(16)
3% · 1 + LGk( )k ·∑

h

Lfh · PDPK
i,k + 5%

· ∑
h

Wfh ·∑
w,k

PWw,k +∑
h

Vfh ·∑
v,k

PVv,k
⎛⎝ ⎞⎠ ≤ ∑

g,h

RDg,y,h,k,∀y, k,

(17)
∑
g,h

RUg,y,h,k ≤ RUWg,∀g, y, h, k, (18)

∑
g,h

RDg,y,h,k ≤ RDWg,∀g, y, h, k. (19)

Constraints related to renewable energy are presented in
Equations 20–22. Constraints of Equations 20, 21 limit the power
production of RESs (including wind farms and photovoltaic
generations) from zero to their maximum capacity. The
constraint of Equation 22 ensures the penetration of renewable
energy; in other words, it guarantees the percentage of the total load
supplied by renewable energy. The parameter χ represents the
expected contributions of RESs in supplying the total demand.

0≤ PWw,y,h,k ≤ PWmax
w,y,h,∀w, y, h, k, (20)

0≤ PVv,y,h,k ≤ PVmax
v,y,h,∀v, y, h, k, (21)

xww,y−1,h,k ≤ xww,y,h,k,∀w, y, h, k, (22)
xvv,y−1,h,k ≤ xvv,y,h,k,∀v, y, h, k, (23)

χ · 1 + LGk( )k ·∑
h

Lfh·PDPK
i,y,h,k ≤ ∑

h

Wfh ·∑
w,k

PWw,k − QWw,k( )
+∑

h

Vfh ·∑
v,k

PVv,k − QVv,k( ),∀k.
(24)

Due to wind and photovoltaic power intermittency and
transmission line congestion, renewable energy spillage occurs. Wind
and photovoltaic power curtailment constraints were bounded by
Equations 25, 26. Based on Equation 27, the load shedding in each
bus is specified. κ is themaximumallowable load shedding at each stage.

0 ≤ QWw,h,k ≤ Wfh · PWw,k,∀w, h, k, (25)
0≤ QVv,h,k ≤Vfh · PVv,k,∀v, h, k, (26)

0≤ LPi,h,k ≤ κ · 1 + LGk( )k · Lfh · PDPK
i,k ,∀i, h, k. (27)

Constraints related to DR are proposed from Equations 28–30.
The first equation denotes the actual proportion of the available load
participating in DR. The latter shows the relationship between the
actual participating DR and its trustworthiness. Equation 30
guarantees that total energy consumption remains constant. In
other words, the effect of DR is cutting the peak and filling the valley.

−CF H( ) · PDi,y,h,k ≤ DRi,y,h,k ≤ CF H( ) · PDi,y,h,k,∀i, y, h, k, (28)
CF H( ) � CF H, E( )*max 0, CF E( ){ }, (29)

∑
h

DRi,y,h,k � 0,∀i, y, h, k. (30)

Constraints related to ESSs are presented in Equations 31–40.
Constraints of Equation 31 and Equation 32 guarantee the charging
and discharging rates, respectively. The constraint of Eq. 33 limits the
storage energy of each ESS. The stored energy value at the beginning is
set to be the same as that at the end, which is shown in the former part of
Equation 34.Moreover, the second half of this equation is to prevent the
model from choosing the maximum state of charge (SOC) at the initial
time and fully discharging at the end to increase revenue. The constraint
of Equation 35 is used to avoid simultaneous charging and discharging
of constructed ESSs. The minimum and maximum allowable changes
are limited by Equation 36. The constraint of Equation 37 states that the
maximum allowable change in SOC is a fraction of Es,y,h,k. Taking
batteries for example, the theoretical degradation function of ESSs is
proposed in Equations 38, 39. Constraints of Equation 40 guarantee that
the installed ESSs at each stage will remain at the next stages.

0≤ PSchs,y,h,k ≤BSchs,y,h,k · PSmax
s ,∀s, y, h, k, (31)
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0≤PSdchs,y,h,k ≤BS
dch
s,y,h,k · PSmax

s ,∀s, y, h, k, (32)

xss · Emin
s,y,h,k ≤ SOCs,y,h−1,k +∑t

h�1
ηch · PSchs,y,h,k −

1
ηdch

· PSdchs,y,h,k( )
≤ xss · Emax

s,y,h,k,∀s, y, h, k,

(33)
SOCs,y,1,k � SOCs,y,48,k � 0.14 · Es,y,h,k,∀s, y, h, k, (34)

BSchs,y,h,k + BSdchs,y,h,k ≤xss,∀s, y, h, k, (35)
−ΔSOCs,y,h,k ≤ SOCs,y,h,k − SOCs,y,h−1,k ≤ΔSOCs,y,h,k,∀s, y, h, k,

(36)
ΔSOCs,y,h,k � π · Es,y,h,k,∀s, y, h, k, (37)

Es,y,h,k � SoHs,y,h,k · ERate
s,y,h,k,∀s, y, h, k, (38)

SoHs,y,h,k � 1 − αseie
−fsei − 1 − αsei( )e−fd , (39)

xss,y−1,h,k ≤ xss,y,h,k,∀s, y, h, k. (40)

The hourly power flow limits of the transmission lines are
modeled in Equations 41–44. In Equations 41, 42, the active and
reactive power flow from node i to node j is guaranteed. Constraints
of Equation 43 enforce line nominal capacity at an hour h for every
scenario s in one representative year y. The constraint of Equation
44 confirms that the constructed line at a certain stage will remain
until the end of the planning horizon.

PLi,j,y,h,k � V2
i,y,h,k · Gi − Vi,y,h,k · Vj,y,h,k

· Gi cos θi,y,h,k − θj,y,h,k( ) + Bi sin θi,y,h,k − θj,y,h,k( )︷��������������������︸︸��������������������︷Ai,y,h,k

] · xli, ∀i, y, h, k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(41)

QLi,j,y,h,k � −V2
i,y,h,k · Bi + Bc

i

2
( ) − Vi,y,h,k · Vj,y,h,k

· Bi cos θi,y,h,k − θj,y,h,k( ) − Gi sin θi,y,h,k − θj,y,h,k( )︷��������������������︸︸��������������������︷Bi,y,h,k

] · xli,∀i, y, h, k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(42)

PLi,j,y,h,k( )2 + QLi,j,y,h,k( )2 ≤ SLi,j
max( )2,∀i, j, y, h, k. (43)

xli,y−1,h,k ≤ xli,y,h,k,∀i, y, h, k. (44)

The voltage magnitude deviation must be kept between the
operation limits shown in the constraint of Equation 45. The
constraint of Equation 46 bounds the variation ranges of the
phase angle.

Vmin
i ≤Vi,y,h,k ≤Vmax

i ,∀i, y, h, k, (45)
−θmin

i ≤ θi,y,h,k ≤ θmax
i ,∀i, y, h, k. (46)

In Equations 47, 48, the hourly nodal active and reactive power
production–consumption balance including conventional
generation units, renewable energy sources, ESS devices, DR,
renewable energy curtailment, and load shedding is formulated.

∑
g

AGi,g · PGg,y,h,k +∑
w

AWi,w · PWw,y,h,k +∑
v

AVi,v · PVv,y,h,k

−∑
s

ASi,s · PSchs,y,h,k − PSdchs,y,h,k( ) + ∑
i∈Ωe

l

PLi,y,h,k − ∑
j∈Ωs

l

PLj,y,h,k

� ∑
l

ADi,l · PDi,y,h,k −∑
l

ADi,l ·DRi,y,h,k

−∑
i

LPi,y,h,k,∀i, y, h, k, . (47)

∑
g

AGi,g · QGg,y,h,k + ∑
i∈Ωe

l

QLi,y,h,k − ∑
j∈Ωs

l

QLj,y,h,k

� ∑
l

ADi,l · QDi,y,h,k −∑
i

LQi,y,h,k,∀i, y, h, k. (48)

2.3 Uncertainties

The load and renewable energy (including wind and
photovoltaic power) are subject to uncertainties shown in
Equation 49 (i.e., PDi,y,h,k; PWw,y,h,k; PVv,y,h,k). Polyhedral
uncertainty sets shown in Equations 50–52 are used in this paper
to deal with this inherent uncertainty (Dehghan et al., 2017; Li et al.,
2018; Dehghan et al., 2020; Velloso et al., 2020; Hamzehkolaei et al.,
2021; Zheng et al., 2021).

ΩΓ � ΩD,ΩW,ΩV{ }. (49)

Here,

ΩD � ~PDi,y,h,k − ΓDP̂Di,y,h,k ≤ PDi,y,h,k ≤ ~PDi,y,h,k + ΓDP̂Di,y,h,k{ },
(50)

ΩW � ~PWw,y,h,k − ΓWP̂Ww,y,h,k ≤ PWw,y,h,k ≤ ~PWw,y,h,k + ΓWP̂Ww,y,h,k{ },
(51)

ΩV � ~PVv,y,h,k − ΓVP̂Vv,y,h,k ≤PVv,y,h,k ≤ ~PVv,y,h,k + ΓVP̂Vv,y,h,k{ }.
(52)

Here, ΓD controls the conservativeness of DR, ~PDi,y,h,k is the
nominal value of DR, P̂Di,y,h,k is the variability of DR, and PDi,y,h,k is
the probable value for DR. Accordingly, symbols PWw,y,h,k,
P̂Ww,y,h,k, and ~PWw,y,h,k stand for wind generation and PVv,y,h,k,
P̂Vv,y,h,k, and ~PVv,y,h,k relate to photovoltaic power.

2.4 Linearization

The model presented above is a MINLP optimization
problem because of non-linear constraints of Equations 39,
41–43. It takes more time to solve this model without
guaranteeing its global optimality. According to Xu et al.
(2018), ESS’ aging consists of calendar aging and cycle aging.
Assuming that the average temperature Tc and the average SOC ∂
of all cycles are the same, then, these are linear degradation
processes concerning the number of cycles. Equation 39 can be
rewritten as accumulated cycling life, as shown in Equation 53.
According to the literature (Pirouzi et al., 2018; Pirouzi and
Aghaei, 2019), constraints of Equations 41, 42 can be recast into
Equations 54, 55 through the big-M linearization technique
without reducing the solution accuracy. Constraints of
Equation 43 can be transformed into Equation 56 through
piecewise linearization. According to Pirouzi et al. (2017), the
constraints of Equation 56 can be seen as expressions for the
circles centered at (0,0). The circle is divided into n equal parts,
and when n is large enough, that is, Δα is small enough, the inner
regular polygon of a circle approximates the circle infinitely. In
other words, Equation 56 is transformed into Equation 57
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approximately. Thus, the MILP optimization model was obtained
(see Eqs 1–38, 40, 44–48, 53–55, 57).

SoHs,y,h,k � N · fd t, ς, ∂, Tc, 1( ), (53)
−M 1 − xli( )≤PLi,j,m,y,h,k

− 2Vi,y,h,k − 1( ) · Gi − ∂Ai,m,y,h,k

∂δ
δi,y,h,k − �δi,m,y,h,k( )[

−Ai,m,y,h,k

δ
Vi,y,h,k + Vj,y,h,k − 1( )]≤ M 1 − xli( ),∀i, m, y, h, k,

(54)
−M 1 − xli( ) ≤QLi,j,m,y,h,k − − 2Vi,y,h,k − 1( ) · Bi + Bc

i

2
( )[

−∂Bi,m,y,h,k

∂δ
δi,y,h,k − �δi,m,y,h,k( )

−Bi,m,y,h,k

δ
Vi,y,h,k + Vj,y,h,k − 1( )]

≤ M 1 − xli( ),∀i, m, y, h, k,

(55)

∑
m

PLi,j,m,y,h,k
⎛⎝ ⎞⎠2

+ ∑
m

QLi,j,m,y,h,k
⎛⎝ ⎞⎠2

≤ xli

· SLi,j
max( )2,∀i, j, m, y, h, k. (56)

cos nΔα( ) ·∑
m

PLi,j,m,y,h,k + sin nΔα( ) ·∑
m

QLi,j,m,y,h,k

≤ xli · SLi,j
max,∀i, j, n,m, y, h, k.

(57)

3 Compact form and dual
decomposition

3.1 Compact form

For brevity’s sake, the above MILP model can be compactly
rewritten in an epigraph form. Specifically, the objective
functions of Equations 1–10 are compacted by Equation 58.
Constraints only related to binary variables (i.e., Eqs 22, 23,
40, 44) are recast by Equation 59. Equality constraints related to
not only binary variables but also continuous variables (i.e., Eqs
29, 30, 34, 37, 38, 53) are presented in Equation 60. The inequality
constraint of Equation 61 corresponds to Equations 11–21,
24–28, 31–33, 35, 36, 45, 46, 54, 55, 57. The constraint of
Equation 62 represents the equality that was independent of
continuous variables (i.e., Eqs 47, 48).

min ITY +HTP + JTξ, (58)

s.t.

AY≥B, (59)
C1Y + E1P + F1 · Z +D1 · ξ � G1: λ, (60)
C2Y + E2P + F2 · Z +D2 · ξ ≥G2: μ, (61)

KP + LZ +Nξ � M: σ, (62)
P≥ 0, Y ∈ 0, 1{ }. (63)

Here, vector Y stands for binary variables such as xss, xli,
BSchs,y,h,k, and BSdchs,y,h,k. Vector P stands for positive continuous
operational variables (i.e., PGg,y,h,k; RUg,y,h,k; RDg,y,h,k; PSchs,y,h,k;

PSdchs,y,h,k; QWw,y,h,k; QVv,y,h,k; and LPi,y,h,k). Z represents free
continuous variables (i.e., PLi,j,y,h,k; QLi,j,y,h,k; Vi,y,h,k; and θi,y,h,k).
The letter ξ represents uncertain vectors (i.e., PDi,y,h,k; PWw,y,h,k;
and PVv,y,h,k). The compact dual variables λ, μ, and σ are
introduced for Equations 60–62, respectively. Letters
A,C1, C2, E1, E2, F1, F2, D1, D2, K, L, andN are the coefficient
matrices of the power network. B, G1, G2, andM are the
constant matrices.

3.2 Dual decomposition in compact form

Since the binary variables (i.e., new lines and ESSs) and the
continuous variables (i.e., conventional generation units, renewable
energy spillage, and loss of load) are optimized simultaneously, the
above robust MILP optimization model has higher computation
complexity. To improve the computation efficiency, we reformulate
this model by decomposition. Then, it can be transformed into a
master problem (MP) and a dual sub-problem (SP). In the MP, the
binary investment variables are optimized, and then, they are fixed in
the SP. On the contrary, the continuous variables are optimized in the
SP, and the feasibility of its MP solution is also examined. Then, the
feasibility cuts are generated and returns to MP. By introducing an
auxiliary constraint ISPYSP � �Y: η (η is the compact dual variable), the
formulation of the MP is presented in Equations 59, 64–67. The lower
bound (LB) value of theMP is presented in Equation 65. Constraints of
Equations 66, 67 define the optimality and feasibility cuts. The
superscript •̂ shows that the variables are obtained and fixed in the
SP. The letter p is the number of iterations.

minLB, (64)
s.t.

LB≥ IT · Y, (65)
LB≥ ITY + GT

1 λ̂ + GT
2 μ̂ +MTσ̂[ ] P( ) + η̂ p( ) Y − Ŷ

P−1( )( ), (66)

GT
1 λ̂ + GT

2 μ̂ +MTσ̂[ ] P( ) + η̂ p( ) Y − Ŷ
P−1( )( ) ≤ 0. (67)

After the optimization of the MP, the binary variables are
obtained and assumed as constant parameters in the SP. Then,
the SP is introduced from Equations 68–72.

maxGT
1 λ + GT

2 μ +MTσ + Ŷ
T
η. (68)

s.t.

CT
1 λ + CT

2 μ + ISP
Tη≤ 0, (69)

ET
1 λ + ET

2 μ +KTσ ≤H, (70)
FT
1 λ + FT

2 μ + LTσ � 0, (71)
DT

1 λ +DT
2 μ +NTσ ≤ J. (72)

If the solution is bounded, after solving the SP, the upper bound
(UB) value can be obtained through the function
UB � GT

1 λ + GT
2 μ +MTσ + Ŷ

T
η + ITŶ, which then generates the

optimality cut. Otherwise, if the solution is unbounded, then we
generate the feasibility cut and go to the MP. Finally, if the
formulation (see in Eq. 73) is satisfied, the iteration ends;
otherwise, the next iteration starts.
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UB − LB( )
UB

≤ τ. (73)

4 Overall solution structure

According to the above, the decomposed optimization model
can be solved effectively. This section proposes the holistic solution
structure (Tan et al., 2021; Velloso and Van Hentenryck, 2021)
See Figure 2.

Step 1: Set the loop parameter p = 1 and the initial value of the
parameters.

Step 2: Solve the MP and get the optimal solution of binary
variables Ŷ

(P)
. Update the lower bound through LB �

max LB, ITŶ
(P){ }.

Step 3: Solve the robust dual SP by fixing the condition Y � Ŷ
(P)

and obtaining the optimal solution λ̂
(P)

, μ̂(P), σ̂(P), η̂(P). Then, update
UB � min UB, ITŶ

(P) + GT
1 λ + GT

2 μ +MTσ + Ŷ
T(P)

η{ }, and UB is
the upper bound of the solution.

Step 4: Check (UB − LB)/UB ≤ τ. If satisfied, output Y(P),
λ(P), μ(P), σ(P), η(P) and exit the loop. Otherwise, go to Step 5.

Step 5: Check the optimal solution of the dual SP; in other words,
GT
1 λ

(P) + GT
2 μ

(P) +MTσ(P) + Ŷ
T(P)

η(P) < +∞. If satisfied, go to
Step 6. Otherwise, go to Step 7.

Step 6: Generate the optimal cut plane LB ≥ ITY(P) + GT
1 λ̂

(P) +
GT
2 μ̂

(P) +MTσ̂(P) + η̂(P)(Y − Ŷ
(P−1)) and P = P + 1, and then, go

to Step 2.

Step 7:Generate the feasible cut plane GT
1 λ̂

(P) + GT
2 μ̂

(P) +MTσ̂(P) +
η̂(P)(Y − Ŷ

(P−1)) ≤ 0 and P = P + 1, and then, go to Step 2.

5 Case study

5.1 Description of the test system

The modified IEEE 24-node system (Probability Methods
Subcommittee, 1979) includes 38 existing lines, 9 traditional
generator units, 6 wind farms, and 3 photovoltaic power stations, as
seen in Figure 3. Compared to the standard IEEE 24-bus system, its grid
structure is the same. The difference is that we added photovoltaic and
wind farms, with their specific location shown in Figure 3. To reveal
how the deep internal influence acts on power grids with different
trustworthiness of DR, we set it to vary from 0.0 to 1.0. The value
0.0 means no trust, and 1.0 represents full trust. In other words, as the

FIGURE 2
Solution flowchart.
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value increases, the level of trust increases. The time series (e.g., wind,
photovoltaic power output, and electricity loads) were extracted from
the practical cases obtained in Li H. et al. (2020). In addition, the
penetration level of RESs is assumed to be 60% of their installed
capacity. The decreased rate of ESS maintenance costs Z is set to
5%. To make a trade-off between computational efficiency and
accuracy, the k-medoids clustering technique (Park and Jun, 2009)
is used instead of solving 8,760 h for the whole year. Each representative
period is considered as one scenario, and the scenario probability is
obtained from the clustering process. It should be noted that besides
several special days, natural days during 1 year can be mainly clustered
into working days splicing weekends. Therefore, it is more conducive to
the system solution based on the week consisting of two consecutive
days. Moreover, ensuring the consideration of the data’s sequential

nature and making the benefits of ESSs more obvious, we showed the
state for 48 consecutive periods. During these 48 consecutive periods,
there is a difference in renewable energy and load.

On the other hand, the economic data, namely, investment cost,
operation cost (i.e., fuel costs, O&M costs, renewable energy spillage
costs, and loss load costs, ), and environmental parameters (i.e., CO2

emission costs), are presented in Table 2. Note that linear
generation-cost functions were used for traditional generation
units due to their acceptable accuracy and the already complex
nature of the optimization problem.

The simulations have been solved by using Gurobi9.1.1 as the
solver. We considered a convergence tolerance of 0.01%. All studies
were operated on an Intel-Core i7 (64-bit) 3.4-GHz individual
laptop with 16GB RAM.

FIGURE 3
Modified IEEE 24-node system.
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5.2 Simulation results and discussions

To understand what the impact of varied resources and
technologies on power system planning is, three different
experiments were conducted: 1) case 1 ignores the
trustworthiness of DR, that is, all available DR responses, only

considering the difference of one single ESS capacity, in which
whether to install and where to construct are both considered. In this
case, we find a suitable size for one single ESS capacity because it
affects the maintenance costs in this system. 2) It is fixed according
to the suitable size of each single ESS. Case 2 only considers the
impact of different trustworthiness of DR. It should be noted that in

TABLE 2 Values of several parameters used in the optimization problem.

Parameter Value Unit

Variable Description

cx1 Cost per kilometer of building transmission lines (138 kV) 50*10∧4 $/km

cx2 Cost per kilometer of building transmission lines (230 kV) 80*10∧4 $/km

cxs Cost of installing a new storage 20.08*10∧4 $/MWh

cg Fuel and O&M cost of traditional generations 83 $/MWh

cw Wind curtailment cost 28.6 $/MWh

cv Photovoltaic curtailment cost 20 $/MWh

cr Cost of lost loads 1,350 $/MWh

cdr Demand response cost 30 $/MWh

CG CO2 emission license costs 80 $/ton

EM CO2 emitted per kWh 650 g/kWh

Z Decreased rate of ESS maintenance costs 5% -

η ESS charge and discharge efficiencies 0.9 -

Base MVA Base power of the system 100 MVA

TABLE 3 Simulation results of the power system with different ESS sizes.

Single
ESS size

Position New
lines

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Renewable
energy

curtailment

Loss
load
cost
(10∧5)

CO2

emission
cost (10∧9)

50 All 1–5
7–8
14–16
16–17
17–18

1.5512 3.1897 4.7409 55.6680 7.1629 1.1257

100 1
2
3
5–12
14–24

1–5
7–8
14–16
16–17
17–18

1.7393 2.9164 4.6557 50.0168 1.9189 1.1414

300 2
3
9
11
14
18
23

1–5
7–8
14–16
16–17
17–18

1.7461 2.9145 4.6606 58.8060 2.2554 1.1484

600 1
9
16
19

1–5
7–8
14–16
16–17
17–18

1.8458 2.9155 4.7613 144.7932 1.9369 1.1488
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this case, the objective function does not contain Equations 9, 10. 3)
Based on case 2, besides minimizing total costs, CO2 emissions are
considered simultaneously, and a trade-off is made between them.
Here, cost-savings and reducing CO2 emissions are of equal
importance.

5.2.1 Ignoring the trustworthiness of DR
In this experiment, to select an appropriate size of ESSs, we

only consider single-size changes, which includes all available DR
responses. Table 3 demonstrates the expansion planning results
of this optimization model. The location, degradation of ESSs,
and whole-system CO2 emission costs were included. In addition,
the decreased amount of ESS maintenance costs has been
contained in operation costs. It is clear that with different
sizes of each ESS, their optimal location changes. The new
energy storage stations need to be installed more when their
single size is small because the investment cost is proportional to
its capacity, and the system needs more storage to improve its
flexibility.

Specifically, first of all, we compared the first two rows.
Although the single capacity of the first row is small and its
investment cost is low, however, its operation cost is higher. This
is partly due to the surge of renewable energy curtailment, loss of
load, and ESS maintenance costs. Moreover, the high flexibility
requirements of some nodes are not fully met. Afterward, the last
three lines are compared. As the individual ESS capacity
increases, the investment cost increases, but the operation cost
changes slightly. This is because renewable energy curtailment
and loss of load increases, while ESS maintenance costs decrease.
In other words, the number of ESSs is lessened so that the labor
cost is reduced, which is related to the maintenance cost. Overall,
the total cost increases as the individual ESS capacity increases. In
other words, the capacity of ESSs has a close impact on power
system expansion planning.

What needs to be illustrated is that when the single ESS capacity
is larger, CO2 emission costs change very slightly. This is because the
penetration of renewable energy is not very high. So when the
individual size is larger, the number that should be newly installed
will be reduced. It is worth mentioning that the degradation of ESSs
was taken into account, so the storage investment cost was more
grounded in reality. In addition, renewable energy curtailment and
loss load were the lowest when the single storage capacity was
100MWh. Finally, taking renewable energy curtailment, loss of load,
and total costs into account, individual ESS capacity will be
appropriate at 100 MWh in this system.

Figure 4 shows the details of charge–discharge energy and the
SOC of a newly installed ESS connected to bus 9 in a
representative period. The initial value of ESSs is 0.14 p.u.,
and it needs to stay the same at the beginning and at the end
of one period. As can be seen, the charging time always appears at
low load hours and vice versa on the contrary. Because the RES
output changed significantly in two consecutive periods, the
charging and discharging behavior changed as well. Note that
the experiments we performed in this section with available DR
are fixed at 0.02, and their trustworthiness is 1.0.

Figure 5 shows the operating points of the source and demand
status under the condition that the ESS capacity is 100 MWh and
its actual DR is set at 0.02 in one representative period. As can be
seen, at the beginning of 1–6 h, its load is relatively small, and
charging occurs (see the yellow bar below the x-axis). When time
goes to 8–11, due to load increases, the system preferentially
discharges from ESSs to meet the demand (see the blue bars in
this figure). In 13–16 h, the whole output of renewable energy
surges. On one hand, the output of traditional generations is
reduced because of their high operating costs and emissions
costs. On the other hand, the power system charges ESSs in
preparation for evening peak load hours (also see the yellow bar
below the x-axis). Then, the system enters the night charging

FIGURE 4
Details of a newly installed ESS in one representative period.
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period. The next day is much the same, except for the decrease in
photovoltaic power output, and there is a slight loss of load in
41–45. This is in line with the discussion presented above.

5.2.2 Different trustworthiness of DR
To compare what impacts act on the expansion planning

optimization problem with different trustworthiness of DR, we
performed the following experiments. In this section, the
individual ESS capacity is set at 100 MWh, as discussed before.
Simulation results are shown in Table 4. It should be noted that the
second row in Table 4 should be the same as in Table 3. This is
because the available DR is fixed at 0.2 with its trustworthiness

setting at 0.1, which equals the actual DR being set at 0.02. As shown
in each column, the expanded transmission line changes slightly
with different trustworthiness of DR. However, the number of newly
installed ESSs decreases when the trustworthiness of DR increases. It
also causes little change in CO2 emission costs when the actual DR
increases. This is because DR plays the role of peak cutting and valley
filling, and the total load remains constant.

The investment cost narrows down due to new ESSs that need to
be installed being reduced when the trustworthiness of DR increases.
So, even though the unavoidable DR subsidy cost grows, the value of
both loss energy and loss load decreases, which leads to the
operation cost increasing slightly. Thus, in a word, the total cost

FIGURE 5
Sources and demand status in one representative period.

TABLE 4 Simulation results of the system with different DR without considering the impact of CO2 emissions.

Trustworthiness
of DR

New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2

emission
cost (*10∧9)

0.0 1–5
7–8
14–16
16–17
17–18

All 1.8381 2.9033 4.7414 129.5827 2.0898 1.1503

0.1 1–5
7–8
14–16
16–17
17–18

1–3
5–12
14–24

1.7393 2.9164 4.6557 50.0168 1.9189 1.1414

0.5 1–5
7–8
14–16
16–17
17–18

1–6
9–14
17–19
21
23

1.5925 2.9527 4.5452 0 1.4571 1.1516

1.0 1–2
7–8
14–16
16–17
17–18

1 1.1610 3.0283 4.1893 16.9379 1.2909 1.1545
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of this expansion-planning problem is reduced because of the higher
trustworthiness of DR. In other words, the appropriate application
of DR can help reduce expansion costs and lessen loss load and RES
curtailment. Note that the experiments we performed in this section
with available DR are fixed at 0.2.

Figure 6 shows the participation situation of different
trustworthiness of the available DR at bus18. In general, the
higher the trustworthiness of DR, the more actual DR participates
in the system. As can be seen, the positive value of participating
DR equals the negative one in 48 h. Moreover, when
the electricity demand is high, DR is mostly positive. While
the electricity demand is low, and vice on the contrary.

However, the symbol of DR is not always positive in peak
load hours due to its abundant flexibility resources and
renewable energy volatility. See hours 13, 14, 15, and 16.
Therefore, DR can improve the flexibility of the system. In
hours 18 and 21, the actual participating DR is not at its
maximum. This illustrates the need for precise control of DR
rather than crude subsidies.

5.2.3 A trade-off between minimizing total costs
and reducing CO2 emissions

Since GHG emissions have a heavy influence on our
environment, obtaining a sustainable and environmentally

FIGURE 6
Different trustworthiness of DR at bus18.

TABLE 5 Simulation results with different trustworthiness of DR considering the impact of CO2 emissions.

Trustworthiness
of DR

New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2

emission
cost (*10∧9)

0.0 1–5
7–8
14–16
16–17

All 1.9791 2.8861 4.8652 468.7139 2.0846 1.1414

0.1 1–5
7–8
14–16
16–17
17–18

1–6
8–24

1.9670 2.8789 4.8459 309.5893 1.4518 1.1341

0.5 1–5
7–8
14–16
15–16

1–6
8–15
17–20
23
24

1.89396 2.8805 4.7745 78.0662 0.7631 1.1449

1.0 1–5
7–8
14–16

3
11
14
16

1.5631 2.9490 4.5121 83.4359 0.6330 1.1312
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friendly power system became the global common goal. It is not
appropriate to aim only at cost minimization because new
technology is generally expensive at the beginning stage but are
environmentally friendly. Therefore, this study makes a trade-off
between minimizing total costs and reducing CO2 emissions. We
assume these two goals are of equal importance in this paper. In
other words, Equations 9, 10 are included in the objective function.
As shown in each column of Table 5, the number of newly installed
ESSs also decreases as the trustworthiness of DR increases. However,
the newly installed number should be more compared with that of
the previous experiment (case 2), which only focuses on cost
minimization (shown in Table 4). The most important factor is
that CO2 emission costs decreased with each different
trustworthiness of DR, as compared to the cost minimization
experiment. Specifically, the data on CO2 emission cost reduced
from 1.1545$ to 1.1312$, which reduced by 2.1%, when the
trustworthiness of DR was 1.0.

Figure 7 presents an intuitive comparison of case 2 (only
considering cost minimization) and case 3 (a trade-off between
minimizing total costs and reducing CO2 emissions). On equal
terms compared to the previous case, although fewer new lines

need to be constructed to strengthen the transmission network,
however, more ESSs need to be installed. Thus, the investment
cost increased considerably as it went up from 1.7393*10̂9$ (the
second row and fourth column in Table 4) to 1.9670*10̂9$ (the
second row and fourth column in Table 5). Moreover, the
operation cost decreased slightly in case 3, with its value
decreasing from 2.9164*10̂9$ to 2.8789*10̂9$. Thus, in a word,
the total cost is larger than the condition without considering
CO2 emissions. Specifically, statistics of total cost rose from
4.6557*10̂9$ to 4.8459*10̂9$, an increase of 3.9%, when the
trustworthiness of DR was 0.1. To maximize renewable energy
consumption, the system takes priority utilization of all newly
installed ESSs rather than conventional generations. In case 3, the
loss load costs were reduced for each different trustworthiness of
the DR condition. It indicated that the power supply reliability
was improved.

To sum up, case 3 is a more appropriate strategy for the
following reasons: 1) it can help reduce GHG emissions, which is
consistent with the current environmental protection concept; 2) it
improves power system reliability because it uses flexible resources
preferentially and lessens the value of loss load; 3) it defers

FIGURE 7
Comparison of considering only cost minimization and considering both minimizing costs and reducing CO2 emissions.

TABLE 6 Simulation results using different solving methods when the trustworthiness of DR is 1.0

Method New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2 emission
cost (*10∧9)

Centralized 1–5
7–8
14–16

3
11
14
16

1.5631 2.9484 4.5115 83.0662 0.6301 1.1312

Dual
decomposition

1–5
7–8
14–16

3
11
14
16

1.5631 2.9490 4.5121 83.4359 0.6330 1.1312
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transmission expansion due to abundant flexible resources. Thus, it
alleviated the bottleneck of unbalanced development of the short-
term renewable energy expansion period and the long-term
transmission expansion period.

5.2.4 Analysis of the effectiveness of the dual-
decomposition method

To verify the effectiveness of the dual-decomposition
algorithm, we compared the simulation results of case 3,
where the trustworthiness of DR is set to 1.0, using both
the centralized algorithm and the dual-decomposition
algorithm. As shown in Table 6, it can be observed
that regardless of the solving algorithm, the newly
constructed lines and ESSs are identical, resulting in the same
investment cost for both algorithms. Moreover, the two
algorithms yield the same cost for GHG emissions.
Additionally, the centralized algorithm produces slightly
different RES curtailment and loss-load costs compared to the
decomposition algorithm. This leads to a small difference in
total costs. This discrepancy is due to the convergence tolerance
being set at 0.01% during program design, but it does not affect
the final results.

6 Conclusion

This paper proposed a robust coordinated planning model for
power systems, in which large shares of variable renewable energy
are integrated. For the sake of accuracy and efficiency, piecewise
linearization, big-M method, and dual decomposition were
introduced due to the already complex nature of the
optimization problem. The inevitable uncertainty
(variable RESs and demand) is described by polyhedral
sets. To understand the impact of varied resources and
technologies (such as wind power, photovoltaic resources,
ESSs, and the trustworthiness of DR) on the development of
power system planning, several computational experiments are
presented. First, the capacity, location, and degradation of
ESSs have a close impact on power system expansion
planning. It is necessary to select an appropriate capacity
and location for every single energy storage station in the
planning stage. Second, higher trustworthiness of DR can help
reduce the total expansion costs. However, it has little impact on
GHG emissions if we consider cost minimization only. The last
study makes a trade-off between minimizing total costs and
reducing CO2 emissions. According to this, a more sustainable
and environmentally friendly power system was obtained.
Moreover, it improves power system reliability and alleviates

the unbalanced development of the short-term renewable
energy expansion period and the long-term transmission
expansion period.
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Nomenclature

A. Variables

xrr Binary variable represents the installation status of new RESs

xli Binary variable represents the installation status of
transmission lines

xss Binary variable represents the installation status of ESSs

PGg,y,h,k and QGg ,y,h,k Active and reactive power output of traditional generations

PGope, PSope,
and DRope

Operation cost of conventional generations, ESSs
maintenance costs, and DR costs

QWVope Renewable energy curtailment costs

eg ,y,h,k Energy of traditional generations

LPi,y,h,k and LQi,y,h,k Active and reactive power loss of the system

QWw,y,h,k

and QVv,y,h,k

Wind and photovoltaic farm curtailment power

PSchs,y,h,k ,PS
dch
s,y,h,k

Charge and discharge power of ESSs

DRi,y,h,k Power participated in DR

PWw,k and PVv,k Active power of wind and photovoltaic farms

PDi,y,h,k ,QDi,y,h,k Active and reactive power of loads

PLi,j,y,h,k ,QLi,j,y,h,k Active and reactive power flow in transmission lines

BSchs,y,h,k ,BS
dch
s,y,h,k

Binary value representing the charging and discharging
status of ESSs

SOCs,y,h,k

and SOCs,y,h,k

State of charge (SOC) of ESSs; the maximum allowable
change in SOC

Vi,y,h,k and θi,y,h,k Voltage and angle in the power system

Es,y,h,k Actual energy capacity of ESSs

B. Parameters

CLi Investment costs for candidate transmission lines

CSs Investment costs for new ESSs

CRr Investment costs for variable RESs. Note that CRr includes
investment costs for wind power generations and
photovoltaic generations with different coefficients

αg ,y,h Operation-related conventional generator fuel costs

βy,h Maintenance costs of a single ESS

γy,h Operation-related DR costs

- Decreased rate of ESS maintenance costs

E0 ,y,h,Ey,h Single energy capacity and the node-installed capacity of
ESSs

CWw,h ,CVv,h Cost of wind and photovoltaic power curtailments

Creli and Cem Costs of loss of demands and GHG emissions

χ Expected contributions of renewable energy sources in
supplying the total demand

Lf h ,Wf h ,Vf h Hourly representative factors of load demand, wind, and
photovoltaic farm outputs

LGk Load growth factor at scenario k

PDPK
i,k Peak load at bus i

RDWg ,RUWg Total hourly upper bound of upward and downward
reserves

RDg ,y,h,k ,RUg,y,h,k Ramp-down and ramp-up limits of traditional generation
units

κ Maximum allowable load shedding at each stage

π Maximum allowable change in SOC

CWw,h and CVv,h Wind farms and photovoltaic generation curtailment costs

EMg ,y,h GHG emissions per kWh

CGem
g ,y,h Costs of GHG emission licenses per ton

VOLL Value of the lost load

ρk Probability of scenarios

AGi,g Bus-generation incidence matrices

AWi,w and AVi,v Bus-wind and bus-photovoltaic farm incidence matrices

ASi,s Bus-ESS incidence matrices

ADi,l Bus-load incidence matrices

SLi,j max Capacity of transmission lines

V Voltage magnitude (p.u.)

θ Phase angle (rad)

G,B Conductance and susceptance of transmission lines

ηch , ηdch Charging and discharging efficiencies of ESSs

δ Phase angle difference in transmission lines

αsei , f sei Coefficients for the solid electrolyte interphase model

SoHs,y,h,k State of health of ESSs

ERate
s,y,h,k Installed capacity of ESSs

N Number of cycles

f d General form of the linearized degradation model

ς Cycle depth of charge

∂ Average SOC of all cycles

Tc Average operation temperature of ESSs

M Large enough constant

Y Binary variable vectors

P Positive continuous operational variable vectors

Z Free continuous variable vectors

λ, μ, σ Compact dual variable vectors

ξ Uncertain vectors

I Constant vector

ΓD , ΓW , ΓV Conservative parameters of DR, wind, and photovoltaic
power

CF(H, E) Intensity with which condition E supports conclusion H

CF(E), CF(H) Trustworthiness of condition E and conclusion H

C. Sets

r Index for counting renewable sources

i, j Index for buses
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g Index for counting conventional generations

w, v Index for wind and photovoltaic farms

s Index for counting energy storage systems

n,m Indexes for linearization segments

l Index for load

k Index for scenarios

h Index for the planning hour

y Index for the representative year
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