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Load frequency control of new
energy power system based on
adaptive global sliding mode
control

Yang Liang, Qian Jiaming and Lv Xinxin*

School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China

Owing to the challenges of unstable generation and random load disturbance
in new energy power system, this paper integrates the battery energy
storage model into the traditional load frequency control (LFC) framework,
and proposes a LFC scheme based on adaptive global sliding mode
control to stabilize the frequency of power systems amid unpredictable
load frequency deviation. First of all, the nonlinear time-varying function
is added to the sliding mode surface to make the system globally robust.
Then, an adaptive sliding mode control law is crafted to dynamically adjust
the frequency variations caused by random load disturbance. Moreover, by
utilizing the improved Lyapunov function and Bessel-Legendre inequality,
the stabilization criteria of multi-area interconnected power system are
built. Finally, the efficacy of the proposed method is demonstrated through
single and double area LFC simulation experiments with the common
system parameters.
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adaptive global sliding mode control, multi-area power system, LFC, random
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1 Introduction

With the increasingly severe global energy crisis and the sharp decline in non-
renewable resources, new energy generation will become a major trend of power system
(Tan et al., 2023). The reliability of power systems that integrate wind, solar photovoltaic
(SPV) and battery energy storage (BES) is also improved (Kundu et al., 2021; Kundu et al.,
2023). However, the output uncertainty of new energy generation is large, bringing
challenges to the frequency stability of power system (Wang et al., 2022a; Zhang et al.,
2023a; Ojha and Maddela, 2023). When the frequency of the power system fluctuates
prominently, the equipment of power system is likely to fail to work properly. In severe
cases, the power system may collapse, triggering large-scale power outages. In order to
avoid the above circumstances, it is particularly vital to maintain the frequency stability
of the power system. And LFC is a vital method to confine the frequency deviations
of power system within certain pre-specified limits (Ranjitha et al., 2022; Khokhar and
Parmar, 2023; Singh and Ramesh, 2024). Therefore, LFC is critical for ensuring the
stable operation of power system, which is of great significance and research value for
further study.

In order to control the load frequency, numerous researchers and scholars have
conducted in-depth studies on LFC, and a number of LFC method strategies have
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FIGURE 1
The model of i-th area in a multi-area LFC scheme.

TABLE 1 Explanation of symbols for multi-area power system LFC.

Symbol Description

ΔPdi Load deviation

ΔPmi Generator mechanical output deviation

ΔPvi Valve position deviation

ΔPBi Battery output power deviation

ΔPtie−i Tie-line active power deviation

Δfi Frequency deviation

Mi Moment of inertia of the generator

Di Generator damping coefficient

Tgi Time constant of the governor

Tchi Time constant of the turbine

TESi Time constant of the energy storage module

Ri Speed drop

βi Frequency bias factor

Tij Tie-line synchronizing coefficient

been proposed, such as proportion integration differentiation
(PID) control, predictive control, fuzzy control, and so on. In
Veerendar et al. (2023), a dual-loop control method was proposed
by using teaching-learning optimization (TLO) for the LFC of
a multi-area non-heating thermal power system (NRTPS), which
prominently improved the response of the system. In Sharma et al.
(2022), a proportion integration (PI) controller was designed to
determine the parametric uncertainty margin (PUM) to cope
with problems caused by the changes of parameters. From

Tang et al. (2023), a model predictive control (MPC) technique
was presented, and a state feedback MPC controller was designed
to deal with wind interference, communication delay, and denial-
of-service (DoS) attacks. In Naderipour et al. (2023), based on
the fuzzy logic, through a novel meta-heuristic whale algorithm,
a self-tuning controller was designed to enable the proposed
controller to operate better. In Hasen et al. (2023), a frequency-
domain exact method was presented to increase the LFC system
stability delaymargin. For active/reactive power (AP/RP) regulation
and energy storage management of an independent microgrid
(MG), a new type-2 fuzzy logic control (T2FLC) was proposed
to reduce voltage oscillation created by variation of output
power in Mohammadi Moghadam et al. (2022). From Li and Ye
(2022), for nonlinear interconnected power systems under a
switching topology, a new event-based distributed fuzzy LFC
approach was presented to ensure the asymptotic stability of the
system. In Zhang et al. (2023b), for large-scale wind farm control,
through introducing a multivariate power model, a communication
based reinforcement learning method was presented to achieve
satisfactory output power and stable performance. Although the
above approaches enhance the performance of LFC, they are more
demanding in terms of system and more difficult to implement
physically. Besides, they are not robust to system uncertainties.
Compared with these methods, sliding mode control (SMC) boasts
numerous advantages. Firstly, the stability of it is high. When facing
external disturbances in power system, appropriate control laws can
be chosen to cope with the external disturbances, thus keeping the
system frequency within the expected range. Secondly, the response
is swift, enabling quick restoration of power system frequency
through state transitions on the slidingmode surface. In addition, its
physical implementation is simple and does not need a high standard
of structure for the system, which can be applied in practice in a
short time. So, the SMC is a promisingmethod for LFC and deserves
further study.

Therefore, an increasing number of researchers and scholars
have studied LFC methods based on SMC. For example, an
area-based event-triggered (ET) sliding mode control scheme
was presented to suppress rapid fluctuations caused by load
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and wind power generation in Xu et al. (2022). From Guo
(2021), a novel sliding mode control approach was presented
to reduce the frequency deviation. In Yang et al. (2021), a
generalized extended state observer and fractional-order theory
based integral sliding mode control strategy were presented
to relieve the chattering of frequency deviation and tie-line
power deviation. For multiarea interconnected power systems
under deception attack, an observer-based event-triggered
transmission scheme was proposed to ensure the attacked power
system can reach a stable position in Qiao et al. (2021). In
Ansari et al. (2023), for two-area thermal interconnected power
system, a novel sliding-mode LFC strategy was designed to
achieve better tracking performance. From Ge et al. (2021), for a
microgrid with hybrid energy storage system (HESS), based on
sliding mode method, a frequency coordinated control strategy
was designed to avoid unreasonable power output. In Deng
and Xu (2022), for multi-area interconnected power systems
integrated with wind farms, a derivative and integral terminal
sliding-mode-based controller was proposed to eliminate the
frequency deviation in each area. However, there are still some
drawbacks to these methods. For instance, the variation of some
parameters in power system may lead to the degradation of its
performance and the phenomenon of oscillation. For the problem
of system parameter variation, more scholars have studied the
adaptive controller (Mazinan, 2013; Li et al., 2019; Zou, 2020;
Wang et al., 2022b).

In order to solve the above problems better, LFC based on
adaptive global sliding mode control (AGSMC) is studied in
this article. Through this approach, the advantages of adaptive
control, global control, and SMC are combined, significantly
improving the control capability of LFC. When the external
load disturbances occur or the parameters of rhe system change,
through this method, the parameters of controller can be
adjusted to adapt to the changes of external disturbance. And
the specified characteristics can be maintained under certain
conditions. This method demonstrates excellent anti-disturbance
ability, strong robustness, rapid response, and high fault tolerance
of the model. Therefore, this method can play a crucial role
in achieving better control performance, which is worthy of
in-depth study.

2 Problem statement

2.1 Describe of LFC model

Consider a multi-area power systems, the LFC system model
of the i-th area can be depicted in Figure 1. The parameters of i-th
control area are presented in Table 1.

The multi-area power system LFC model studied in this paper
can be described as Eq. 1:

{
{
{

ẋ (t) = Ax (t) +Bu (t) + Jω (t)

y (t) = Cx (t)
(1)

where:

xi (t) = [Δ fi ΔPmi ΔPvi ΔPBi ∫ACEi ΔPtie−i]
T

x (t) = [xT1 (t) x
T
2 (t) x

T
3 (t) … xTn (t)]

T

ωi (t) = [ΔPdi]
T, Aij = [(6,1) = −2πTij]

u (t) = [uT1 (t) u
T
2 (t) u

T
3 (t) … uTn (t)]

T

yi (t) = [ACEi ∫ACEi]
T, B = diag{B1,…,Bn}

ω (t) = [ωT
1 (t) ω

T
2 (t) ω

T
3 (t) … ωT

n (t)]
T

y (t) = [yT1 (t) y
T
2 (t) y

T
3 (t) … yTn (t)]

T

Aii =

[[[[[[[[[[[[[[[[[[

[

− DMi

1
Mi

0 1
Mi

0 − 1
Mi

0 − 1
Tchi

1
Tchi

0 0 0

− 1
RTgi

0 − 1
Tgi

0 0 0

1
TESi

0 0 − 1
TESi

0 0

βi 0 0 0 1 0

2π∑n
j=1,j≠i

Tij 0 0 0 0 0

]]]]]]]]]]]]]]]]]]

]

A =
[[[[

[

A11 … A1n

⋮ ⋱ ⋮

An1 … Ann

]]]]

]

Bi = [0 0 1
Tgi

0 0 0]

Ci = [

[

βi 0 0 0 0 1

0 0 0 0 1 0
]

]

Ji = [−
1
Mi

0 0 0 0 0]
T

C = diag{C1,…,Cn} , J = diag {J1}

The Area Control Error (ACE) is a crucial parameter for each
control area in a power system, comprising frequency deviation
and tie-line active power deviation. It is defined by the following
Eq. 2:

ACEi = βiΔ fi +ΔPtie−i (2)

2.2 Design of adaptive global sliding mode
control

The power system model with parameter uncertainty is
set as follows:

ẋ (t) = Ax (t) +Bu (t) +ψ (t) (3)

where ψ(t) = Jω(t).
To maintain the stability of LFC system and ensure

the power quality, an AGSMC is proposed to control the
frequency of load disturbance. Based on global sliding mode
control (GSMC), this controller combines the adaptive law
that designed under unknown disturbance fluctuation range to
realize the rapid response of the system frequency. To prove
that the system based on AGSMC is stable, the following
assumptions hold.
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Assumption 1: A and B are completely controllable matrices,
and defining ψ(t) = Bψ̂(t).

Assumption 2: The unknown disturbance ψ̂(t) is bounded,
setting ‖ψ̂(t)‖ ≤ D.

First, based on the above equation of state model, the sliding
mode surface is selected as:

s (t) = Gx (t) −∫
t

0
G (A−BL)x (υ)dυ (4)

where G and L are constant matrices, and meet the following
requirements: 1) GB is a nonsingular matrix; 2)A−BL < 0, when
s(t) = 0 and ̇s(t) = 0 are met, the power system described by Eq. 3
reaches sliding mode surface.

Due to the initial state of the system is unknown, in order
to make the whole system possesses global robustness, allowing
the system to reach a stable state more quickly. A nonlinear
time-varying function f (t) is added to the Eq. 4 designed
above. The improved sliding mode surface is redesigned to the
following form:

s (t) = Gx (t) −∫
t

0
G (A−BL)x (υ)dυ+ f (t) (5)

where f(t) meet the following requirements: 1) The function f(t)
possesses a first-order derivative; 2)When t = 0, s(t) = 0 are satisfied;
3) When t→∞, f(t) can converge to zero.

Considering the above conditions, f(t) is designed as a
monotonically decreasing exponential function in Eq. 6.

f (t) = λe−kt (6)

where λ = −Gx(0). It can be calculated from the following equation:
Gx (0) + λe−k⋅0 = 0, when t = 0.

Combining Eq. 3 and Eq. 5 yields the following result:

̇s (t) = Gẋ (t) −G (A−BL)x (t) + ̇f (t)

= G (Ax (t) +Bu (t) +ψ (t) −Ax (t) +BLx (t)) − λke−kt

= G (Bu (t) +BLx (t) +ψ (t)) − λke−kt (7)

When the system state reaches the sliding mode surface, it slides
along this surface, and this sliding motion helps the system to
remain in the desired operating state.Thus, the equivalent controller
is derived as:

ueq (t) = −(GB)−1 [GBLx (t) +Gψ (t)] (8)

WhenAssumption 1 is satisfied, Eq. 8 can be rewritten as follows:

ueq (t) = −(GB)−1 [GBLx (t) +GBψ̂ (t)] − Lx (t) − ψ̂ (t) (9)

Substituting Eq. 9 into Eq. 3, we obtain Eq. 10.

ẋ (t) = Ax (t) +B {−Lx (t) − ψ̂ (t)} +ψ (t) = (A−BL)x (t) (10)

Due to A−BL < 0, this means that all eigenvalues of the matrix
A−BL have negative real parts, thus proving Eq. 3 is exponentially
stable under the action of Eq. 9.

Remark 1: Based on the preceding analysis, it has been
established that SMC demonstrates insensitivity to disturbances.
It is worth noting that system 3 is exponentially stable. To
make the system globally robust, a time-varying function f(t) is

proposed. The global sliding mode controller drives the system’s
initial movement along the slidingmode surface, thereby enhancing
the response speed of the LFC system. To ensure the stable
operation of each area in an area-interconnected power system
and to deal with the influence of unknown load disturbances, the
following adaptive laws are designed to estimate the unknown upper
bound.

̇̂D (t) = ‖GB‖‖s (t)‖ (11)

where D̂(t) is the estimate of D(t), D̃(t) = D̂(t) −D(t) is the
evaluated error.

Theorem 1: Under the action of the following Eq. 12, the
sliding mode Eq. 5 is asymptotically stable.

u (t) = −Lx (t) − D̂ (t) (GB)−1 ‖GB‖ sgns (t)

−m(GB)−1sgns (t) − ns (t) + (CB)−1λke−kt (12)

wherem and n are the controller parameters to be set,m > 0,n > 0.
In the exponential reaching law, n determines the reaching rate, and
m guarantees that the system reaches stability in a limited time. To
reduce buffeting while ensuring fast stability, n should be greater
thanm.

Proof: Define the Lyapunov function can be expressed as
follows in Eq. 13.

V0 (t) =
1
2
s(t)Ts (t) + 1

2
D̃2 (t) (13)

Taking the derivative of V0(t), the result is given below:

V̇0 (t) = s(t)T ̇s (t) + D̃ (t) ̇D̃ (t) (14)

Substituting Eq. 7 and Eq. 11 into Eq. 14 gives the
following result:

V̇0 (t) = s (t)[GBu (t) +GBLx (t) +GBψ̂ (t) − λke−kt] + D̃ (t)‖s (t)‖
(15)

Inserting the Eq. 12 into the above Eq. 15, the expression is
shown in Eq. 16:

V̇0 (t) = s (t)[−GBLx (t) −msgns (t) − ns (t) + λke−kt

−D̂ (t)‖GB‖sgns (t) +GBLx (t) +GBψ̂ (t) − λke−kt]

+ D̃ (t)‖s (t)‖ (16)

According to −s(t)sgns(t) ≤ ‖s(t)‖, the following inequality can
be derived.

V̇0 (t) ≤ −m‖s (t)‖ − n‖s (t)‖2 + ‖s (t)‖‖GB‖D

− D̂ (t)‖GB‖‖s (t)‖ + (D̂ (t) −D)‖GB‖‖s (t)‖ (17)

Considering that controller parameters m and n in Eq. 17 are
real positive, the result of Eq. 18 can be obtained:

V̇0 (t) ≤ −m‖s (t)‖ − n‖s (t)‖
2 ≤ 0 (18)

Therefore, the above analysis proves that system expressed in Eq. 3
is stable under the action of the proposed controller.
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3 Stability analysis of multi-area LFC

In this section, an improved Lyapunov function and the Bessel-
Legendre (B-L) inequality are applied to study the stability criteria
for the multi-area LFC.
Lemma 1 (Lu et al., 2021): For an integer N > 0, and there exists
[α,β] → Rn, where α,β are given real scalars with α < β. For any
symmetric matrices R > 0, the following Eq. 19 holds:

∫
β

α
υ̇T (s)Rυ̇ (s) ds ≥ 1

β− α
̃υTNς

T
NΨ

T
NR̃NΨNςN ̃υN (19)

where:

ςN =

[[[[[[[[[[

[

I −I 0 0 ⋯ 0

0 −I I 0 ⋯ 0

0 −I 0 2I ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 −I 0 0 ⋯ NI

]]]]]]]]]]

]

ΨN =

[[[[[[[[[[

[

I 0 0 ⋯ 0

(−1)1I (−1)1q11I 0 ⋯ 0

(−1)2I (−1)2q21I (−1)
2q22I ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

(−1)NI (−1)NqN1 I (−1)
NqN2 I ⋯ (−1)

NqNNI

]]]]]]]]]]

]

R̃N = diag {R,3R,⋯ ,(2N+ 1)R}

̃υN = col {υ (β) ,υ (α) ,ε1,⋯ ,εN} ,

εi =
1
(β− α)i
∫βα(β− s)

i−1υ (s)ds, i = 1,2,⋯ ,N

qij = (−1)
j( ij)(

i+ j
j ), (

i
j) =

i!
(i− j)!j!

Lemma 2: For a given positive matrix R > 0, and differentiable
function {φ(u)|u ∈ [a,b]}, the following Eq. 20 and Eq. 21
can be hold as:

b

∫
a

b

∫
β

φ̇T (α)Rφ̇ (α)dαdβ ≥ 2ΩT
1RΩ1 + 4ΩT

2RΩ2 (20)

b

∫
a

β

∫
a

φ̇T (α)Rφ̇ (α)dαdβ ≥ 2ΩT
3RΩ3 + 4ΩT

4RΩ4 (21)

where:

Ω1 = φ (b) −
1

b− a∫
b
aφ (α)dα

Ω2 = φ (b) +
2

b− a∫
b
aφ (α)dα−

6
(b− a)2
∫ba∫

b
βφ (α)dαdβ

Ω3 = φ (a) −
1

b− a∫
b
aφ (α)dα

Ω4 = φ (a) −
4

b− a∫
b
aφ (α)dα+

6
(b− a)2
∫ba∫

b
βφ (α)dαdβ

Lemma 3: For a real scalar α ∈ (0,1), symmetric matrices
γ1 > 0,γ2 > 0 and arbitrary matrices ϑ1 > 0,ϑ2 > 0, the
following matrix inequality holds:

[

[

1
αγ1 0

0 1
1− αγ2

]

]
≥ [

[

γ1 + (1− α)Γ1 (1− α)ϑ1 + αϑ2
∗ γ2 + αΓ2

]

]
(22)

where: Γ1 = γ1 − ϑ2γ2
−1ϑ2, Γ2 = γ2 − ϑ1γ1

−1ϑ1
Theorem 2: For given positive integers N ∈ {1,2,3,⋯}, scalars

d2 > d1 > 0, disturbance attenuation level γ > 0, the closed-loop
system is asymptotically stable under the event-triggering scheme.
If there exist positive definite matrices P,Q,R,S and real matrices
SN ,UN , such the following inequalities holds:

Θ (d (t) = d1|α = 0) =
[[

[

5
∑
k=1

Φk +Π
T
3Π3 ΨT

1NUN

∗ −(R1N +R4N)

]]

]

< 0

Θ(d (t) = dm|α = 1) =
[[

[

5
∑
k=1

Φk +ΠT
3Π3 ΨT

2NS
T
N

∗ −(R1N +R3N)

]]

]

< 0

(23)

where:

Π1 = e1υ1e
T
1 − e2Q2e

T
2 − e3υ3e

T
3

Π2 =
4

∑
k=1

Φk + (1− α)ΨT
1NUN(R1N +R4N)−1UT

NΨ1N

+ αΨT
2NS

T
N(R1N +R3N)

−1SNΨ2N

Π3 = Ce1
υ1 = Q2 +Q3 + dmR2

υ2 = d2mR1 +
d2m
2
S1 +

d2m
2
S2

υ3 = (1− ḋ (t))Q3 − λ(tk)hΩ

Ψ1N = ΨNςNcol{e1,e3,H2e9,…,H2eN+8}

Ψ2N = ΨNςNcol{e3,e2,H3e9,…,H3eN+8}

R1N = diag {R1,3R1,…,(2N+ 1)R1}

R3N = diag {S1,3S1,…,(2N+ 1)S1}

R4N = diag {S2,3S2,…,(2N+ 1)S2}

h3 = [e1 − e4,e1 + 2e4 − 3e6,e3 − e5,e3 + 2e5 − 3e7]

φ3 = diag {−2S1,−4S1,−2S1,−4S1}

h4 = [e3 − e4,e3 − 4e4 + 3e6,e2 − e5,e2 − 4e5 + 3e7]

φ4 = diag {−2S2,−4S2,−2S2,−4S2}

Φ1 = −(2− α)ΨT
1N (R1N +R3N)Ψ1N − (1+ α)ΨT

2N

× (R1N +R4N)Ψ2N − Sym{ΨT
1N [(1− α)SN + αUN]Ψ2N}

+ΨT
1NR3NΨ1N +ΨT

2NR4NΨ2N

Φ2 = −h3φ3h
T
3 , Φ3 = −h4φ4h

T
4

Φ4 = Π1 + 2Pχ1 + χ1υ2χ
T
1

Φ5 = −γ2eT9 e9
χ1 = Ae1 +BKCe3

Proof: Defining the Lyapunov function as:

V (t) = V1 (t) +V2 (t) +V3 (t) +V4 (t) (24)
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FIGURE 2
Single area power system model diagram.

where:

V1 (t) = xT (t)Px (t)

V2 (t) = ∫
t
t−τM

xT (s)Q2x (s)ds+∫
t
t−d(t)x

T (s)Q3x (s)ds

V3 (t) = dM∫
0
−dM
∫tt+αẋ

T (s)R1ẋ (s)dsdα

+∫0−dM∫
t
t+αx

T (s)R2x (s)dsdα

V4 (t) = ∫
0
−dM
∫0β∫

t
t+αẋ

T (s)S1ẋ (s)dsdαdβ

+∫0−dM∫
β
−dM
∫tt+αẋ

T (s)S2ẋ (s)dsdαdβ

P, Q, R, S are positive de finite matrices.

Calculating the derivation of V(t) obtains the following Eq. 25:

ΔV (t) = ΔV1 (t) +ΔV2 (t) +ΔV3 (t) +ΔV4 (t) (25)

where:

ΔV1 (t) = 2ẋT (t)Px (t)

ΔV2 (t) = xT (t)Q2x (t) − xT (t− dM)Q2x (t− dM) + xT (t)

×Q3x (t) − (1− ḋ (t))xT (t− d (t))Q3x (t− d (t))

ΔV3 (t) = d2Mẋ
T (t)R1ẋ (t) − dM∫

t

t−dM
ẋT (α)R1ẋ (α)dα

+ dMxT (t)R2x (t) −∫
t

t−d(t)
xT (α)R2x (α)dα

ΔV4 (t) =
d2M
2
ẋT (t)S1ẋ (t) −∫

0

−d(t)
∫
t

t+α
ẋT (s)S1ẋ (s)dsdα

−∫
−d(t)

−dM
∫
t−d(t)

t+α
ẋT (s)S1ẋ (s)dsdα

− (dM − d (t))∫
t

t−d(t)
ẋT (α)S1ẋ (α)dα+

d2M
2
ẋT (t)

× S2ẋ (t) −∫
0

−d(t)
∫
t+α

t−d(t)
ẋT (s)S2ẋ (s)dsdα

−∫
−d(t)

−dM
∫
t+α

t−dM
ẋT (s)S2ẋ (s)dsdα

− d (t)∫
t−d(t)

t−dM
ẋT (s)S2ẋ (s)ds

In Eq. 26, we define the following augmenting state variable ξ(t):

TABLE 2 Parameters of the single area power system model.

Parameters Values

M 10

Tch 0.3

Tg 0.08

TES 0.0352

R 2

β 0.204

ξ (t) = col{x (t) ,e (t) ,x(t− dm) ,x (t− d (t)) ,

1
d (t)
∫
t

t−d(t)
x (α)dα, 1

dm − d (t)
∫
t−d(t)

t−dm
x (α)dα,

2
(d (t))2
∫
0

−d(t)
∫
t

t+β
x (α)dαdβ, 2

(dm − d (t))
2∫
−d(t)

−dm

×∫
t−d(t)

t+β
x (α)dαdβ,w (t) ,ψ1 (t) ,…,ψN (t)}

ψi (t) = col{∫
t

t−d1

(t− s)i−1

d1
i x (s)ds,∫

t−d1

t−d(t)

(t− d1 − s)i−1

(d (t) − d1)
i

× x (s)ds,∫
t−d(t)

t−d2

(t− d (t) − s)i−1

(d2 − d (t))i
x (s)ds},

i = 1,2,…,N

θi (t) = ∫
t−d1

t−d2

(t− d1 − s)
i−1

(d12)i
x (s)ds

(26)

Thus, the following inequality can be yielded:

ΔV (t) ≤ ξT (t)Π1ξ (t) + 2ẋ (t)PxT (t) + ẋ (t)υ2ẋT (t)

+ΔṼ1 (t) +ΔṼ2 (t) +ΔṼ3 (t) (27)

where:
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FIGURE 3
Comparison of controller performance under normal disturbances for a single area system.

FIGURE 4
Comparison of controller performance under random disturbances for a single area system.
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FIGURE 5
Double area power system model diagram.

ΔṼ1 (t) = −dm∫
t

t−dm
ẋ (s)R1ẋ

T (s)ds− (dm − d (t))

×∫
t

t−d(t)
ẋ (s)S1ẋ

T (s)ds

− ḋ (t)∫
t−d(t)

t−dm
ẋ (s)S2ẋT (s)ds

ΔṼ2 (t) = −∫
0

−d(t)
∫
t

t+α
ẋ (s)S1ẋ

T (s)dsdα

−∫
−d(t)

−dm
∫
t−d(t)

t+α
ẋ (s)S1ẋT (s)dsdα

ΔṼ3 (t) = −∫
0

−d(t)
∫
t+α

t−d(t)
ẋ (s)S2ẋT (s)dsdα

−∫
−d(t)

−dm
∫
t+α

t−dm
ẋT (s)S2ẋ (s)dsdα

where: ΔṼ1(t) can be rewritten. The item −dm∫
t
t−dm

ẋ(s)R1ẋ
T(s)ds

in the Equation will be decomposed into the following
form:

−dm∫
t

t−dm
ẋ (s)R1ẋ

T (s)ds = −dm∫
t

t−d(t)
ẋ (s)R1ẋ

T (s)ds

− dm∫
t−d(t)

t−dm
ẋ (s)R1ẋ

T (s)ds (28)

Applying Lemma 1 and assuming α = d(t)
dm
,β = dm−d(t)

dm
= 1−

α, then Eq. 28 is less than the following
Equation:

− 1
α
ξT (t)ΨT

1NR1NΨ1Nξ (t) −
1

1− α
ξT (t)ΨT

2NR1NΨ2Nξ (t) (29)

Rewrite the relevant items in Eq. 29 into the following form:

−[

[

Ψ1N

Ψ2N

]

]

T

M1
[

[

Ψ1N

Ψ2N

]

]
≤ −[

[

Ψ1N

Ψ2N

]

]

T

M2
[

[

Ψ1N

Ψ2N

]

]
+ (1− α)ΨT

1N

×UNR
−1
1NU

T
NΨ1N + αΨT

2NS
T
NR
−1
1N

× SNΨ2N (30)

where:

M1 = [

[

1
αR1N 0

0 1
1− αR1N

]

]

M2 = [

[

(2− α)R1N (1− α)SN + αUN

∗ (1+ α)R1N

]

]

Applying Lemma 1 to the other two terms of ΔṼ1(t) yields the
following inequality:

− (dm − d (t))∫
t

t−d(t)
ẋ (s)S1ẋT (s)ds

≤ (1− 1
α
)ξT (t)ΨT

1NR3NΨ1Nξ (t) ,

− d (t)∫
t−d(t)

t−dm
ẋ (s)S2ẋT (s)ds

≤ (1− 1
β
)ξT (t)ΨT

2NR4NΨ2Nξ (t)

(31)

Combine the items involving 1
α
and 1

β
from Eq. 31 with Eq. 30

to obtain the Eq. 32:
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−[

[

Ψ1N

Ψ2N

]

]

T

M3
[

[

Ψ1N

Ψ2N

]

]
≤ −[

[

Ψ1N

Ψ2N

]

]

T

M4
[

[

Ψ1N

Ψ2N

]

]
+ (1− α)ΨT

1NUN(R1N +R4N)−1UT
N

×Ψ1N + αΨT
2NS

T
N(R1N +R3N)

−1SN
×Ψ2N (32)

where:

M3 = [

[

1
α (R1N +R3N) 0

0 1
1− α (R1N +R4N)

]

]
,

M4 = [

[

(2− α) (R1N +R3N) (1− α)SN + αUN

∗ (1+ α) (R1N +R4N)
]

]

Thus, the result is given by Eq. 33.

ΔṼ1 (t) ≤ ξT (t){Φ1 + (1− α)ΨT
1NUN(R1N +R4N)−1UT

NΨ1N

+ αΨT
2NS

T
N(R1N +R3N)

−1SNΨ2N} (33)

Applying Lemma 2 to scale ΔṼ2(t) and ΔṼ3(t), the result is
shown in Eqs. 34, 35.

ΔṼ2 (t) ≤ −ξT (t)h3φ3h
T
3 ξ (t) = ξ

T (t)Φ2ξ (t)

ΔṼ3 (t) ≤ −ξT (t)h4φ4h
T
4 ξ (t) = ξ

T (t)Φ3ξ (t)
(34)

ΔV (t) ≤ ξT (t)Π1ξ (t) + 2ẋ (t)PxT (t) + ẋ (t)υ2ẋT (t) +ΔṼ1 (t)

+ΔṼ2 (t) +ΔṼ3 (t) ≤ ξT (t)Π2ξ (t) (35)

Consider the event-triggering condition shown in Eqs. 36, 37:

ΔV (t) ≤ ξT (t)Ξξ (t) − yT (t)y (t) + γ2wT (t)w (t) (36)

Ξ =
5

∑
k=1

Φk +ΠT
3Π3 + (1− α)ΨT

1NUN(R1N +R4N)−1UT
NΨ1N

+ αΨT
2NS

T
N(R1N +R3N)

−1SNΨ2N (37)

Applying the Schur complement theorem, it can be seen that
Ξ < 0 is equivalent to:

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

Θ = [

[

Θ11 Θ12

∗ Θ22

]

]
< 0

Θ11 =
5

∑
k=1

Φk +Π
T
3Π3

Θ12 = [√1− αΨT
1NUN√αΨT

2NS
T
N]

Θ22 = diag{−(R1N +R4N) ,−(R1N +R3N)}

(38)

Therefore, if the conditions listed in Theorem 2 are satisfied,
then under zero initial conditions, when w(t) = 0 and ‖y(t)‖2 ≤
γ‖w(t)‖2, the closed-loop system is asymptotically stable, thereby
provingTheorem 2.

4 Simulation and analysis

Toverify the performance of the designedLFCwithAGSMC, the
models of single area LFC with AGSMC and double area LFC with
AGSMC, which include battery energy storage, are established using

TABLE 3 Parameters of the double area power system model.

Parameters Area 1 values Area 2 values

Mi 10 10

Tchi 0.3 0.3

Tgi 0.1 0.08

TESi 0.0352 0.0352

Ri 0.05 2

βi 24 0.204

MATLAB/Simulink toolbox. For the above two LFC system models
under load disturbances, the frequency deviations are analyzed
based on their response curves. To demonstrate the effectiveness of
the proposed scheme, the results are compared with the controllers
in the existing literature, such as GSMC (Radosevic et al., 2008),
SMC (Lv et al., 2020), PID control (Fu et al., 2022).

4.1 Case study 1

The LFC model of a single area power system is shown in
Figure 2, and the system parameters are listed in Table 2.

In this subsection, a single area LFC system with battery energy
storage is taken as an example to separately examine the impact of
normal disturbances and random disturbances on the performance
of the LFC system. On the one hand, the first normal disturbance is
set to 0.01Hz at t = 5s, the second normal disturbance is set to 0.03Hz
at t = 30s, and the final normal disturbance is set to 0.02Hz at t = 55s.
Moreover, amplitude-limited random disturbances with their upper
limit are set to 0.01Hz, which occurs at t = 0s,20s,40s,60s,80s. The
simulation results are depicted in Figures 3, 4, respectively.

As can be seen from Figure 3, all existing control technologies
are capable of stabilizing the single area LFC system. Investigating
the normal disturbance ψ = 0.03Hz which happened at t = 30s, the
overshoot is 5.89% and the response time is 13.4s for the single area
systembased onPID control.Meanwhile, considering the single area
system under SMC and GSMC, the overshoot is 4.33% and 3.02%
respectively, and the response time is 8.75s and 6.49s approximately.
Compared with the preceding three control schemes, adopting the
AGSMC approach significantly reduces the overshoot to just 1.60%,
while the stabilization time dramatically decreases to roughly 1.47s.
It is worth noting that upon reaching the system’s frequency stability
state, the oscillation amplitude of the system based on AGSMC is
notably minimal. In contrast, the proposed control method has the
characteristics of fast response and low overshoot. The single area
LFC system can quickly move to a stable state under the action of
this controller.

From the curve in Figure 4, for these controllers, when facing
random disturbance, the single area LFC system will be stabilized
within 15s. Under PID control, the single area system exhibits the
highest overshoot and the longest response time. By comparing with
GSMC, SMC, and PID control schemes, the AGSMC achieves a
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FIGURE 6
Comparison of controller performance under normal disturbances for a double area system. (A) The load frequency deviation of area 1, (B) the load
frequency deviation of area 2, and (C) the tie-line power deviation between the two areas.

stable state within 1.63s, and the average overshoot was controlled
within 1.72% even in the presence of random load disturbances.
It can be seen that adaptive law effectively counters random
disturbances, ensuring the stability of system performance.

4.2 Case study 2

The double area LFC system can be seen in Figure 5, and the
parameter values are presented in Table 3.

In this subsection, examining the double area interconnected
power system equipped with battery energy storage as an example,
the simulation time is set to 100s, and normal or random
disturbances are applied simultaneously to both areas. Firstly, the
normal disturbances of area 1 are set to 0.01Hz at t = 0s and 0.02Hz
at t = 50s, the disturbances of area 2 are set to 0.02Hz at t = 0s and
0.04Hz at t = 50s, respectively. Secondly, two random disturbances

happened at t = 0s while the upper limits are established as follows:
ψ1max = 0.08Hz,ψ2max = 0.04Hz.The simulation results are shown in
Figures 6, 7, respectively. Δf1 is the load frequency deviation of area
1, Δf2 is the load frequency of area 2, and ΔP12 presents the tie-line
power between the two areas.

From the curves in Figure 6A, it can be seen that, with a
frequency deviation ψ11 = 0.01Hz happened in area 1, no control
scheme can maintain the overshoot in area 1 within 1%, and
the power system will stabilize at t = 20s. Compared to PID
control, the double area system governed by SMC and GSMC
shows faster response speed and larger overshoot from the curves
of Δf1 and Δf2. But the more significant overshoot amounts
are still acceptable. While the proposed controller has a small
superiority over the other three controllers by comparing the
overshoot and the degree of oscillation. The ΔP12 curve in Figure 6
indicates that these control schemes can effectively eliminate system
fluctuations caused by normal load disturbances. Simultaneously,
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FIGURE 7
Comparison of controller performance under random disturbances for a double area system. (A) The load frequency deviation of area 1, (B) the load
frequency deviation of area 2, and (C) the tie-line power deviation between the two areas.

upon the occurrence of disturbances, the AGSMC technology can
suppress the disturbance rapidly, resulting in the double area system
exhibiting the smallest overshoot and swiftly returning to a stable
state, and the tie-line power deviation decrease to zero within 4.23s.
Based on the above simulation results and analysis, GSMC, SMC
and PID controller have a good performance in dealing with the
frequency deviation, but the control effect has not yet reached
optimal level.

In Figure 7, when load disturbances occur randomly,
one aspect illustrates the double area interconnected power
system employing AGSMC maintains stable frequency deviation
responses and possesses robust dynamic performance. In the
case of unknown disturbance, the overshoot of the system Δf1,
Δf2, Δf3 is 75.1%,74.3%,12.1% of the overshoot of the PID
control system, and the response time is 5.47s,5.54s and 5.77s
respectively. Conversely, from Figure 7C, it is expected that
the system operated by other controllers will eventually not

continue to remain stable as time increases due to ΔP12 long
response time. By comparing Figure 4 with Figure 7, it can
be seen that under the control of AGSMC, both single area
power system and double area power system show excellent
control performance under random load frequency disturbance.
Therefore, from the above analysis, it can be concluded that,
due to its superior response efficiency and control precision,
AGSMC can replace existing control technologies, whether in
handling normal disturbances or uncertain system frequency
deviations.

5 Conclusion

This paper introduces new energy sources into the conventional
power system, establishing a LFC model that includes a battery
energy storage module. The AGSMC scheme is crafted to
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effectively tackle the challenge of normal or random load frequency
disturbances. Based on this model, by utilizing an enhanced
Lyapunov function and B-L inequalities, the stability criteria for
themulti-area LFC have been successfully established. Furthermore,
simulations of single and double area LFC power systems were
conducted to validate the proposed method, which incorporates
a nonlinear time-varying function and an adaptive sliding mode
control law designed to estimate the upper bounds of external
disturbances. In comparison to existing control strategies, the
mentioned controller is superior in terms of overshoot and response
speed, presenting excellent disturbance rejection capabilities and
improved robustness while ensuring the consistency of system
parameters. This research not only addresses the integration
challenges of new energy sources into the power grid but also
advances a robust framework for maintaining system stability and
reliability under randomly variable load conditions.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

YL: Conceptualization, Data curation, Formal Analysis,
Writing–original draft. QJ: Methodology, Resources, Supervision,
Writing–original draft. LX: Funding acquisition, Methodology,
Resources, Visualization, Writing–review and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this article.
This work is supported by Zhejiang Provincial Natural
Science Foundation of China under Grant 21022311-Y, in
part by General Projects of Zhejiang Provincial Department
of Education under Grant Y202250499, in part by Science
Foundation of Zhejiang Sci-Tech University under Grant
21022311-Y.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Ansari, J., Homayounzade, M., and Abbasi, A. R. (2023). Load frequency control in
power systems by a robust backstepping slidingmode controller design. Energy Rep. 10,
1287–1298. doi:10.1016/j.egyr.2023.08.008

Deng, Z., and Xu, C. (2022). Frequency regulation of power systems with a wind
farm by sliding-mode-based design. IEEE/CAA J. Automatica Sinica 9, 1980–1989.
doi:10.1109/jas.2022.105407

Fu, Q. J., Zhang, Y., and Zhang, C. (2022). “Load frequency control of the two
regions interconnected power system with wind and photovoltaic based on improved
differential evolution algorithm,” in 2022 41st Chinese Control Conference (CCC),
USA, 25-27 July 2022 (IEEE), 6036–6040.

Ge, S., He, X., Liu, H., Mi, Y., and Wang, C. (2021). Frequency coordinated
control strategy based on sliding mode method for a microgrid with hybrid energy
storage system. IET Generation, Transm. Distribution 15, 1962–1971. doi:10.1049/
gtd2.12148

Guo, J. (2021). Application of a novel adaptive sliding mode control method
to the load frequency control. Eur. J. Control 57, 172–178. doi:10.1016/j.ejcon.
2020.03.007

Hasen, S. A., Aydın, Ö., Ayasun, S., and Sönmez, Ş. (2023). Impact of virtual
inertia and damping control on stability delay margins of load frequency
control systems with renewable energy sources. Electr. Eng. 106, 323–341.
doi:10.1007/s00202-023-01984-3

Khokhar, B., and Parmar, K. S. (2023). Utilizing diverse mix of energy storage for
lfc performance enhancement of a microgrid: a novel mpc approach. Appl. Energy 333,
120639. doi:10.1016/j.apenergy.2023.120639

Kundu, S., Singh, M., and Giri, A. K. (2021). “Design and control of a standalone
wind–solar system with seig feeding linear/nonlinear loads,” in Proceedings of
Symposium on Power Electronic and Renewable Energy Systems Control: PERESC
2020, China, January 2021 (IEEE), 317–327.

Kundu, S., Singh, M., and Giri, A. K. (2023). Spv-wind-bes-based islanded electrical
supply system for remote applicationswith power quality enhancement.Electr. Eng. 106,
279–294. doi:10.1007/s00202-023-01979-0

Li, G., Lu, W., Bian, J., Qin, F., Wu, J., Song, J., et al. (2019). Development and
validation of a CIMP-associated prognostic model for hepatocellular carcinoma. Front.
Energy Res. 7, 128–141. doi:10.1016/j.ebiom.2019.08.064

Li, X., and Ye, D. (2022). Event-based distributed fuzzy load frequency control for
multiarea nonlinear power systems with switching topology. IEEE Trans. Fuzzy Syst.
30, 4262–4272. doi:10.1109/tfuzz.2022.3146981

Lu, H., Deng, Y., and Zhou, W. (2021). Hierarchical type stability and
stabilization of networked control systems with event-triggered mechanism
via canonical bessel–legendre inequalities. J. Frankl. Inst. 358, 6592–6611.
doi:10.1016/j.jfranklin.2021.06.024

Lv, X., Sun, Y., Cao, S., and Dinavahi, V. (2020). Event-triggered load frequency
control for multi-area power systems based on markov model: a global sliding mode
control approach. IETGeneration, Transm.Distribution 14, 4878–4887. doi:10.1049/iet-
gtd.2020.0186

Mazinan, A. (2013). Applying an intelligence-based adaptivemulti-predictive control
strategy to a two-area interconnected power system. Trans. Inst. Meas. Control 35,
464–475. doi:10.1177/0142331212451993

Mohammadi Moghadam, H., Mohammadzadeh, A., Hadjiaghaie Vafaie, R., Tavoosi,
J., and Khooban, M.-H. (2022). A type-2 fuzzy control for active/reactive power
control and energy storage management. Trans. Inst. Meas. Control 44, 1014–1028.
doi:10.1177/01423312211048038

Naderipour, A., Abdul-Malek, Z., Davoodkhani, I. F., Kamyab, H., and Ali, R. R.
(2023). Load-frequency control in an islanded microgrid pv/wt/fc/ess using an optimal
self-tuning fractional-order fuzzy controller. Environ. Sci. Pollut. Res. 30, 71677–71688.
doi:10.1007/s11356-021-14799-1

Ojha, S. K., and Maddela, C. O. (2023). Load frequency control of a two-area power
systemwith renewable energy sources using brown bear optimization technique. Electr.
Eng., 1–25. doi:10.1007/s00202-023-02143-4

Qiao, S., Liu, X., Xiao, G., and Ge, S. S. (2021). Observer-based sliding mode load
frequency control of power systems under deception attack. Complexity 2021, 1–11.
doi:10.1155/2021/8092206

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1383511
https://doi.org/10.1016/j.egyr.2023.08.008
https://doi.org/10.1109/jas.2022.105407
https://doi.org/10.1049/gtd2.12148
https://doi.org/10.1049/gtd2.12148
https://doi.org/10.1016/j.ejcon.2020.03.007
https://doi.org/10.1016/j.ejcon.2020.03.007
https://doi.org/10.1007/s00202-023-01984-3
https://doi.org/10.1016/j.apenergy.2023.120639
https://doi.org/10.1007/s00202-023-01979-0
https://doi.org/10.1016/j.ebiom.2019.08.064
https://doi.org/10.1109/tfuzz.2022.3146981
https://doi.org/10.1016/j.jfranklin.2021.06.024
https://doi.org/10.1049/iet-gtd.2020.0186
https://doi.org/10.1049/iet-gtd.2020.0186
https://doi.org/10.1177/0142331212451993
https://doi.org/10.1177/01423312211048038
https://doi.org/10.1007/s11356-021-14799-1
https://doi.org/10.1007/s00202-023-02143-4
https://doi.org/10.1155/2021/8092206
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liang et al. 10.3389/fenrg.2024.1383511

Radosevic, T., Vrdoljak, K., and Peric, N. (2008). “Optimal sliding mode
controller for power system’s load-frequency control,” in 2008 43rd International
Universities Power Engineering Conference, USA, 1-4 Sept. 2008 (IEEE),
1–5.

Ranjitha, K., Sivakumar, P., andMonica, M. (2022). Load frequency control based on
an improved chimp optimization algorithm using adaptive weight strategy. COMPEL-
The Int. J. Comput. Math. Electr. Electron. Eng. 41, 1618–1648. doi:10.1108/compel-07-
2021-0231

Sharma, J., Hote, Y. V., and Prasad, R. (2022). Computation of parametric
uncertainty margin using stability boundary locus: an application to load frequency
control. Trans. Inst. Meas. Control 44, 2308–2322. doi:10.1177/01423312221
083762

Singh, R., and Ramesh, L. (2024). Comparison between pid and pso-pid
controllers in analysing the load frequency control in interconnected microgrids in a
deregulated environment. Int. J. Glob. Energy Issues 46, 1–136. doi:10.1504/ijgei.2023.
10053492

Tan, C., Tan, Z., Yin, Z., Wang, Y., Geng, S., and Pu, L. (2023). Study on grid price
mechanism of new energy power stations considering market environment. Renew.
Energy 203, 177–193. doi:10.1016/j.renene.2022.12.065

Tang, X., Wu, Y., Li, Y., and Wen, Y. (2023). Load frequency predictive control for
power systems concerning wind turbine and communication delay. Optim. Control
Appl. Methods 44, 205–222. doi:10.1002/oca.2955

Veerendar, T., Kumar, D., and Sreeram, V. (2023). Fractional-order pid and
internalmodel control-based dual-loop load frequency control using teaching–learning
optimization. Asian J. Control 25, 2482–2497. doi:10.1002/asjc.3022

Wang, X., Cui, J., Ren, B., Liu, Y., and Huang, Y. (2022a). Integrated energy
system scheduling optimization considering vertical axis wind turbines and
thermal inertia in oilfield management areas. Front. Energy Res. 12, 1340580.
doi:10.3389/fenrg.2024.1340580

Wang, Y., Liu, D., Shen, Y., Tang, Y., Chen, Y., and Zhang, J. (2022b). Adaptive
balancing control of cell voltage in the charging/discharging mode for battery
energy storage systems. Front. Energy Res. 10, 794191. doi:10.3389/fenrg.2022.
794191

Xu, K., Niu, Y., and Yang, Y. (2022). Load frequency control for wind-integrated
multi-area power systems: an area-based event-triggered sliding mode scheme. J.
Frankl. Inst. 359, 9451–9472. doi:10.1016/j.jfranklin.2022.10.010

Yang, F., Shao, X., Muyeen, S., Li, D., Lin, S., and Fang, C. (2021). Disturbance
observer based fractional-order integral sliding mode frequency control strategy
for interconnected power system. IEEE Trans. Power Syst. 36, 5922–5932.
doi:10.1109/tpwrs.2021.3081737

Zhang, G., Khan, I. A., Daraz, A., Basit, A., and Khan, M. I. (2023a). Load frequency
control of marine microgrid system integrated with renewable energy sources. J. Mar.
Sci. Eng. 11, 844. doi:10.3390/jmse11040844

Zhang, Y., Chen, X., Gong, S., and Chen, J. (2023b). Collective large-
scale wind farm multivariate power output control based on hierarchical
communication multi-agent proximal policy optimization. Renew. Energy 219,
119479. doi:10.1016/j.renene.2023.119479

Zou, Q. (2020). Adaptive sliding mode control for chain driving system with
disturbance observer. Proc. Institution Mech. Eng. Part I J. Syst. Control Eng. 234,
1050–1059. doi:10.1177/0959651819895693

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1383511
https://doi.org/10.1108/compel-07-2021-0231
https://doi.org/10.1108/compel-07-2021-0231
https://doi.org/10.1177/01423312221083762
https://doi.org/10.1177/01423312221083762
https://doi.org/10.1504/ijgei.2023.10053492
https://doi.org/10.1504/ijgei.2023.10053492
https://doi.org/10.1016/j.renene.2022.12.065
https://doi.org/10.1002/oca.2955
https://doi.org/10.1002/asjc.3022
https://doi.org/10.3389/fenrg.2024.1340580
https://doi.org/10.3389/fenrg.2022.794191
https://doi.org/10.3389/fenrg.2022.794191
https://doi.org/10.1016/j.jfranklin.2022.10.010
https://doi.org/10.1109/tpwrs.2021.3081737
https://doi.org/10.3390/jmse11040844
https://doi.org/10.1016/j.renene.2023.119479
https://doi.org/10.1177/0959651819895693
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 Problem statement
	2.1 Describe of LFC model
	2.2 Design of adaptive global sliding mode control

	3 Stability analysis of multi-area LFC
	4 Simulation and analysis
	4.1 Case study 1
	4.2 Case study 2

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

