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Combining green warehousing with wind-solar-storage systems can enhance
economic power consumption, energy saving, and emission reduction in green
warehousing. To achieve efficient and stable operation of the wind-solar-storage
microgrid, this paper proposes an optimal microgrid scheduling strategy based
on the Improved Sparrow Algorithm (ISSA). Firstly, a comprehensive benefit
model is established based on the economic and environmental benefits of
microgrid daily operation. Then, an innovative improved sparrow search
algorithm is proposed, which aims to improve the global search and local
search capability of the microgrid scheduling problem by introducing
improvements such as Logistic-Circle chaotic mapping, Bottle Sea Sheath
swarm optimization algorithm, dynamic inertia weights, water wave dynamic
factor, and Cauchy-Gaussian variational strategy. Finally, the microgrid optimal
scheduling model is solved by the improved sparrow search algorithm and
compared with other algorithms. In this paper, Matlab 2016b is used for
simulation, and the simulation results show that the ISSA algorithm
outperforms other algorithms in terms of solution stability and optimization
search capability. Under three modes of operation, ISSA improves the
microgrid operation revenue by 6.29%, 5.98%, and 6.31% at least. Therefore,
the optimal scheduling scheme obtained based on ISSA improves the daily
operating total revenue and the system operation stability of the microgrid.
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1 Introduction

With the construction of green warehousing and logistics system to promote the depth
of the exploration to create a zero-carbon warehouse and the study of warehouse energy
saving and emission reduction, carbon neutrality and the use of renewable energy and other
technologies to become an important part of the development of green warehousing (Gao
and Hou, 2022). Among all renewable energy sources, solar and wind energy are more
common (Gbadamosi and Nwulu, 2021; Kiani et al., 2021). At the same time, wind and solar
power generation has the characteristics of no pollution and low power generation cost,
which is especially in line with the future development of green warehousing. Therefore, the
combination of green warehousing and distributed wind-solar-storage systems can actively
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promote the development and construction of green warehousing
and help the logistics warehousing industry achieve the “double
carbon” goal (Liu et al., 2021). However, compared with traditional
power, the random characteristics of renewable energy technology
make it less reliable. This stochastic nature, especially the
intermittency of sunlight and the instability of wind, affects the
continuity and reliability of energy supply (Kumar et al., 2019; Vaziri
Rad et al., 2020). However, through the rational planning and
control of the wind-solar-storage microgrid, the wind-solar
power generation and energy storage system can achieve more
efficient, reliable, and economical energy utilization, to meet the
electricity demand of green warehousing (Thirunavukkarasu et al.,
2022). Therefore, using a more efficient microgrid power
optimization scheduling method is of far-reaching significance
for promoting clean energy applications, improving energy
efficiency, and developing green warehousing.

Microgrid scheduling strategies aim to optimize the operation of
microgrids to ensure the reliability, economy, and environmental
friendliness of energy supply (Xu et al., 2024). The basic structure of
the microgrid and the desired objectives of the microgrid need to be
considered when developing a microgrid dispatch strategy. The
objective of the literature (Li et al., 2021) is to improve economic
efficiency and environmental protection while meeting the basic
needs of power supply. Therefore, a multi-objective optimal
scheduling model in grid-connected mode that integrates the
operating costs of the microgrid system and environmental
protection costs is proposed. Literature (He et al., 2023) proposed
amicrogrid active power schedulingmodel considering demand side
response, which takes the microgrid economic and environmental
protection optimization as the objective function, and
comprehensively considers the system operation constraints,
battery operation constraints, and user satisfaction (introducing
load response compensation). Literature (Zeng et al., 2023)
studies a microgrid cluster containing two AC microgrids
operating off-grid and one DC microgrid and constructs a
microgrid cluster architecture containing a centralized energy
storage system. By taking the operating cost and environmental
impact cost as multi-objective functions, they are transformed into
single-objective functions by utilizing the binary contrast weighting
method. Literature (Song et al., 2023) proposes a novel scheduling
approach that achieves a balance between scheduling reliability and
flexibility, as well as model accuracy and complexity, by combining
the advantages of robust and stochastic optimization and applying
multi-granularity modeling techniques. Based on the background of
“fishery-photovoltaic complementary”, literature (Yang et al.,
2023a) established a light-storage-load microgrid system model
and proposed a multidimensional dynamic objective function
including economy, environmental protection, and
comprehensiveness. All the above literatures are devoted to
solving the problem of optimal scheduling in microgrids to
ensure the reliability, stability, and economy of microgrids.
However, the total objectives established are all operating costs,
the consideration of the microgrid’s revenue situation is not
comprehensive and cannot visualize the effect of the microgrid’s
revenue. Literature (Zhang et al., 2024) proposes a price-matching-
based market model for multi-energy trading to promote multi-
energy collaboration and improve energy utilization efficiency
through individual participation. Therefore, this paper will fully

consider the power market factors and build a comprehensive
microgrid revenue model (Cheng et al., 2022).

Due to the complex nonlinear, multi-constraint, and multi-
dimensional characteristics of microgrid scheduling model
solving, optimization algorithms are widely used in model
solving. Literature (Zhu et al., 2018) used the improved
Tennessee whisker search algorithm for microgrids scheduling
research, the results show that the algorithm has a fast search
speed, however, there are certain deficiencies in the search
accuracy. Literature (Jasim et al., 2022) utilizes the hybrid grey
wolf with cuckoo search optimization algorithm to optimize the
scale and performance of the hybrid grid-connected wind-solar
generation microgrid integrated with biomass and energy storage
systems. Literature (Yang et al., 2023b) presents an adaptive energy
management method based on hybrid policy reinforcement learning
(HPRL) for optimizing the operation of energy systems in island
groups with limited energy transmission. Literature (Wang et al.,
2023) improved the particle swarm algorithm (PSO) to effectively
improve the convergence speed of the algorithm and reduce the
comprehensive cost of the system. Literature (Lagouir et al., 2021)
utilized the ant-lion algorithm for microgrid scheduling problem
solving, which showed advantages in convergence speed compared
to the particle swarm algorithm. Literature (Luo and Yu, 2022)
proposed an improved cuckoo search algorithm based on
reinforcement learning, aiming to solve the economic scheduling
problem. Literature (Toopshekan et al., 2023) used a Teaching-
Learning-Based Optimization (TLBO) algorithm to determine the
optimal sizing of an integrated Combined Heat and Power (CHP)
system and developed a new scheduling strategy that takes into
account the future power demand, solar radiation, temperature, and
wind speed to reduce the cost and reduce the excess power.
Literature (Le et al., 2023) compares the Coati Optimization
Algorithm (COA) and War Strategy Optimization (WSO) in
various aspects and finally concludes that WSO performs better
in dealing with the optimal tidal current problem containing wind
turbines. Literature (Mishra and Shaik, 2024) presents the
Economic-Emission Load Distribution (EELD) problem using the
very efficient African Vulture Optimization Algorithm (AVOA) to
solve the EELD problem. The results of the study show that AVOA
significantly outperforms other optimization techniques in terms of
cost and emission reduction, making it the best approach to solving
the microgrid optimization problem. Although there have been
several papers on solving scheduling problems, there is an urgent
need to explore meta-heuristic optimization algorithms with strong
exploration and development capabilities to find globally optimal
solutions for such complex, large-scale, and nonlinear problems. In
addition, few papers have compared the improved algorithms with
other algorithms and applied them to complex scheduling problems.

Based on the above considerations, this paper proposes an
improved sparrow search algorithm. Firstly, Logistic-Circle
chaotic mapping is used to generate more complex and more
diversified populations to enhance the global search capability of
the sparrow search algorithm. Secondly, the bottleneck sea squirt
group optimization algorithm and dynamic inertia weights are
introduced to expand the retrieval range in the early iteration
period, accelerate the convergence speed in the late iteration
period, and improve the algorithm’s local search capability
greatly. Then, the water wave dynamic factor is introduced to
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improve the global search ability of the algorithm. Finally, the
Cauchy-Gauss variation strategy is adopted to make the
algorithm jump out of the local optimum. At the same time, this
paper develops a comprehensive target by combining the economic
and environmental benefits of the daily operation of the microgrid
system. By then, the optimized scheduling model is solved using the
improved sparrow search algorithm. By verifying the effectiveness of
the improved algorithm, the scheduling strategy based on the
revenue model is obtained. The strategy can facilitate the
transformation of traditional warehousing, as well as improve the
economy and reliability of electricity consumption in green
warehousing and reduce its carbon emissions.

2 Unit modeling of wind-solar-storage
systems for green warehousing

2.1 Modeling of photovoltaic power
generation

A photovoltaic (PV) power generation system is composed of
multiple solar cells connected in series and parallel. Due to the
influence of different environmental factors, the operating
characteristics of each PV module are different, and hence the
actual output power of the whole PV power generation system
varies. The two most influential factors are light intensity and
temperature so that the mathematical model of the PV cells
converted into output power can be expressed as Equation 1
(Guo et al., 2022):

PPV t( ) � PN−STC
Gsq t( )
Gm

1 + σ Tsw t( ) − Tew( )( ) (1)

Where: PPV(t) is the actual output power of the PV power
generation system; Gsq(t) indicates the actual light intensity;
Tsw(t) indicates the temperature of the PV panel at the moment
t; PPV(t) indicates the output power of the PV panel; Gm indicates
the light intensity under the standardized condition; PN−STC
indicates the maximum output power under the standardized
condition; Tew indicates the reference temperature of the PV cell;
and σ indicates the power temperature coefficient.

The operation and maintenance (O&M) costs of photovoltaic
power generation mainly include module cleaning, maintenance of
module racks and foundations, planned maintenance of equipment,
and preventive testing of equipment. By converting the above into
PV O&M cost coefficients, the O&M cost can be calculated with the
Equation 2:

Cpv
O t( ) � Mpv

O · PPV t( ) (2)
Where: Cpv

O (t) is the O&M cost of the PV system at time t; PPV(t)
denotes the output power of the turbine at time t; Mpv

O denotes the
O&M cost coefficient of the PV system.

2.2 Wind power generation model

As one of the important power generation modes in microgrids,
wind power generation is based on the principle that wind energy is

generated by rotating the blades of a wind turbine (WT) at different
wind speeds, and then the wind energy is converted into mechanical
energy through a gear system, which is then converted into
alternating current (AC) electricity by the wind turbine. The
output power and wind speed of the wind turbine can be
expressed by Equation 3 (Lacal-Arántegui, 2015):

PWT t( ) �
0 V<Vci

pV3 + qV2 + rV + z Vci <V<Vn

Pn Vn <V<Vco

0 Vco <V

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

Where: PWT(t) indicates the actual output power of the wind
turbine; V indicates the actual wind speed; Pn indicates the
rotational speed power of the wind turbine; Vci indicates the
starting wind speed; Vn indicates the rated wind speed; Vn

indicates the cut-off wind speed; p, q, r, and z are the turbine
parameters.

Wind power operation and maintenance costs mainly include
five aspects: routine maintenance costs, fault repair costs, spare parts
purchase costs, insurance costs, and management costs. By
converting the above into WT O&M cost coefficients, the O&M
costs can be calculated with the Equation 4:

Cwt
O t( ) � Mwt

O · PWT t( ) (4)
Where: Cwt

O (t) is the O&M cost of the turbine at time t; PWT(t)
denotes the output power of the turbine at time t; Mwt

O denotes the
O&M cost coefficient of the turbine.

2.3 Storage battery model

The storage battery as an energy storage device occupies an
important position in the microgrid. The storage battery can
supplement the demand when other equipment is underpowered.
When the load is low and generates too much power, it can store the
excess power for backup. It plays the role of peak shaving and valley
filling. The battery satisfies Equation 5 in the process of charging and
discharging (Yang, 2010).

SOC t( ) � 1 − θ( )SOC t − 1( ) − PED t( ) ×Δt
Sbess × ηcd

SOC t( ) � 1 − θ( )SOC t − 1( ) + PRCH t( ) × ηcd ×Δt
Sbess

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(5)

Where: SOC(t) is the charging state of the storage battery at time t;
PRCH(t) is the charging power of the storage battery at time t; PED is
the discharging power of the storage battery at time t; Sbess is the
rated capacity of the battery; Δt is the unit time; ηcd and θ represent
the charging/discharging and self-discharging efficiency of the
storage battery, respectively.

The operation and maintenance costs of storage batteries mainly
include labor costs, cleaning costs, overhaul costs, replacement costs,
plant electricity costs, and other related costs. These costs vary
according to the type, size, use of the battery environment, and other
factors, but they are all necessary inputs to ensure the normal
operation of the battery. Through reasonable maintenance and
management, the operation and maintenance cost of the battery
can be reduced, and its service life and economic benefits can be
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improved. Then the O&M cost of the energy storage system can be
expressed as Equation 6:

Cbess
O t( ) � Mbess

O · PED t( ) + PRCH t( )( ) (6)
Where: Cbess

O (t) is the O&M cost of the battery at time t; Mbess
O

represents the O&M cost coefficient of the battery.

3Optimized schedulingmodel of wind-
solar-storage system

The objective function of the wind-solar-storage microgrid
includes the daily operational economic and environmental
benefits under the consideration of grid-connected operation
conditions.

3.1 Economic benefits

This paper considers the economic returns of the microgrid
after it is integrated into the main grid. Its daily operating
economic returns include operation and maintenance costs,
tariff revenue (Chen et al., 2023), energy storage system
revenue, and government subsidy. Its formula can be
expressed as Equation 7:

f1 � ∑T
t�1

IEL t( ) + IBess t( ) + ISUB t( ) − CO t( )[ ] (7)

Where: f1 is the daily operating economic gain; CO(t) is the total
O&M cost; IEL(t) is the tariff revenue; IBess(t) is the revenue from
the sale of electricity from the battery to the larger grid at time t;
ISUB(t) is the government subsidy; and T is 24 h.

3.1.1 O&M costs
The formula for O&M costs is shown in Equation 8:

CO t( ) � ∑I
i

Ci
O t( ) (8)

Where: Ci
O(t) is the O&M cost of the ith distributed energy source

and I denote the type of distributed energy source.

3.1.2 Tariff revenue
The tariff revenue is essentially the revenue generated from

using new energy sources to generate electricity without the need to
purchase electricity from the larger grid. Based on real-time
electricity prices, the formula is as in Equation 9:

IEL t( ) � PL t( ) − PG t( )[ ] × cb t( ) ×Δt (9)
Where: PL(t) is the load of green warehousing at time t; PG(t) is the
power supplied by the main grid at time t, and PG(t) is greater than
0; cb(t) is the real-time tariff of power purchase at time t.

3.1.3 Energy storage system benefits
The energy storage system revenue is the revenue earned by the

energy storage system due to the difference in its price tariff by
storing electricity when the price of electricity is low and then using

it to supply electricity when the price of electricity is peak. The
formula can be expressed as Equation 10:

IBess t( ) � Pb t( ) × cmax − cb t( )( ) ×Δt (10)
Where: Pb(t) is the purchased power at time t; cmax is the real-time
price of purchased power at peak time.

3.1.4 Government subsidy
According to the national policy, the government will subsidize

a certain amount of money for every kilowatt of clean electricity
used. The formula is as in Equation 11:

ISUB t( ) � ∑2
m�1

λmPm t( ) (11)

Where: λm is the price subsidy factor of the mth distributed
generation system; Pm(t) is the output power of the mth
distributed generation system.

3.2 Environmental benefits

Wind-solar-storage systems use clean energy, so only microgrids
are considered to produce polluting gases during interaction with the
larger grid. At the same time, renewable energy (solar, wind) is used as
the main source of electricity in microgrids, thus reducing greenhouse
gas emissions. Therefore the environmental benefits include
environmental management costs and carbon reduction benefits.

In the wind-solar-storage system, wind-solar systems do not
produce pollutant gases, which are mainly generated by the main
grid. However, the CO2, generated by the main grid is eliminated
when considering the environmental management, so that the whole
microgrid and the main grid have no carbon emissions, then the
formula for calculating the environmental benefits is shown in
Equations 12, 13:

f2 � ∑T
t�1

ICR − CEG t( )[ ⎤⎦ (12)

ICR � ctpEC

CEG t( ) � ∑N
n�1

Pgrid t( )τnξn
⎧⎪⎪⎨⎪⎪⎩ (13)

Where: ICR is the carbon emission reduction benefit; CEG(t) is the
environmental management cost; EC is the allowed carbon emission;
ctp is the carbon trading price; Pgrid(t) is the interaction power with
the big grid at time t; N is the type of pollutant gas (pollutant refers to
SO2, NOx, CO2), and the number is 3; τn is the emission factor for
the pollutant; and ξn is the management coefficient.

3.3 Objective function

When oriented towards green warehousing, the overall
consideration of daily operational economic gain and
environmental gain is used to develop the integrated objective.
To reflect the impacts of economic operation and environmental
operations on the microgrid system, the impacts are visualized by
dynamically weighting the integrated objectives under the
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maximum economic gain and environmental gain of daily
operation, respectively. The function-defining equation is shown
in Equation 14:

I1 � max f1 + f2( )
I2 � max maxf1 + f2( )
I3 � max f1 + maxf2( )
I4 � αI2 + βI3( )

(14)

Where: I1 is the maximum comprehensive income of daily
operation; I2 indicates the maximum comprehensive income in
case of maximum economic income; I3 indicates the maximum
comprehensive income in case of maximum environmental income;
I4 indicates the comprehensive income under different weights; α
and β indicates the weighting coefficients and their sum is 1.

3.4 Constraints

To ensure that the microgrid system can operate safely, stably, and
efficiently, the above model also needs to satisfy the following
constraints. Moreover, these constraints also ensure that the
microgrid system achieves the desired performance level in all aspects
while meeting the multiple environmental and economic requirements.

3.4.1 Distributed power output constraints
The output power limit of the distributed power supply is shown

in Equation 15:

P j
min#Pj t( )#P j

max (15)

Where: Pj(t) is the output power of the ith distributed power supply
at time t; P j

min , P
j
max is the minimum and maximum power of the

jth distributed power supply.

3.4.2 Energy storage charge/discharge constraints
To prolong the life of the energy storage system and ensure its

continuous utilization, the charging and discharging power and the
state of charge of the energy storage system must be constrained.
The state of charge should be consistent at the beginning and end of
the day. The expressions are shown in Equations 16, 17:

PED
min#PED t( )#PED

max

PRCH
min #PRCH t( )#PRCH

max{ (16)

SOCmin#SOC t( )#SOCmax

SstaOC � SendOC
{ (17)

Where: PED
min, PED

max is the minimum and maximum power of the
battery; PRCH

min, PRCH
max is the minimum and maximum power of the

battery charging; SOCmin, SOCmax is the upper and lower limits of the
battery charging state. SstaOC, S

end
OC For the beginning and end of the

battery charging state.

3.4.3 Power balance constraints
The power balance equation is shown in Equation 18:

∑J
j�1
Pj t( ) + Pgrid t( ) + PRCH t( ) × ηcd −

PED t( )
ηcd

� PL t( ) (18)

Where: ∑J
j�1Pj(t) distribution is the total power of distributed

power at time t; L is the total number of distributed power.

4 ISSA for optimal scheduling of green
warehousing microgrids

The sparrow search algorithm (SSA) is a heuristic algorithm
inspired by the foraging behavior of the sparrow population (Xue
and Shen, 2020). SSA divides the population into three
subpopulations, namely, discoverers, followers, and watchers, and
searches for the optimal solution of the objective function by
continuously updating their positions. The microgrid scheduling
problem is a complex, large-scale, nonlinear problem, so there is a
need to explore meta-heuristic optimization algorithms with strong
exploratory and developmental capabilities to find the global
optimal solution for such problems. SSA searches for the optimal
solution through the positional updating formula, and it also has the
advantages of strong local optimization capability, simple structure,
and few optimization parameters. SSA has the advantages of high
convergence accuracy, fast convergence speed, and robustness in
function optimization problems. Therefore SSA can solve the
microgrid scheduling problem efficiently. However, the algorithm
has some challenges, such as poor diversity and low quality of the
population when initializing the population. In the preliminary stage
of the algorithm, the sparrow search range is small, the global search
ability is relatively poor, and the lack of mutation sparrow
perturbation mechanism makes it easy to fall into the local
optimal solution. Consequently, this paper improves the
traditional SSA by introducing improvements such as Logistic-
Circle chaotic mapping, Bottle Sea Sheath Swarm optimization
algorithm, dynamic inertia weights, water wave dynamics factor,
and Cauchy-Gaussian variable strategy.

4.1 Improved sparrow search algorithm

4.1.1 Logistic-circle chaos mapping
Sparrow search algorithms usually require an initial population

as the starting point of the search space. Seeds generated by
traditional pseudo-random number generators tend to have fixed
characteristics, leading to insufficient diversity in the initial
population, which in turn affects the algorithm’s global search
capability. On the contrary, chaotic sequences can provide better
initial diversity due to their traversal and randomness, thus helping
the algorithm to explore the search space more comprehensively. In
order to improve the performance and global search capability of the
Sparrow algorithm, this paper proposes a Logistic-Circle chaotic
mapping method. This method combines the classical Logistic
mapping and Circle mapping to generate more complex and
diverse chaotic sequences by utilizing the nonlinear
properties of both.

Logistic mapping is a classical chaotic system that generates
sequences with complex dynamic behavior, but may not be sufficient
to provide enough diversity in some cases. Circular mapping is
another classical chaotic system that can produce rich chaotic
sequences by modulating the initial angle. Combining these two
mappings to form the Logistic-Circle chaotic mapping can enhance
the complexity and diversity of chaotic sequences. Specifically,
Logistic-Circle chaotic mapping generates more complex and
diverse chaotic sequences by combining the nonlinear properties
of Logistic mapping with the periodic and nonlinear properties of
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Circle mapping. This approach is more effective in initializing the
population of a sparrow search algorithm than a traditional pseudo-
random number generator or a single chaotic mapping. In this way,
the algorithm can cover the search space more comprehensively and
avoid falling into local optima, thus improving the chances of
finding a globally optimal solution. The expression of Logistic-
Circle chaotic mapping is as in Equation 19:

xt+1 � mod r · xt · 1 − xt( ) + 4 − r( ) · mod xt + 0.4 − 0.5
2π

sin 2πxt( ), 1( ), 1( )
(19)

Where: xt is the position of the sparrow in the t-th iteration, t is the
number of iterations, r is the control parameter, and mod (,1) is
the residual.

When t = 1,000, and r takes 0.51, the distribution and
histogram of the Logistic-Circle chaotic sequence are shown in
Figure 1. In Figure 1A, as the number of iterations increases the
mapping values are randomly averaged over [0,1]. In Figure 1B,
the frequency of occurrence of the mapped values is counted up
and it is found that the difference in the frequency of occurrence
of each value is very small. Therefore, at the beginning of the
algorithm iteration, the initial population is randomly
distributed, and the Logistic-Circle chaotic mapping randomly
and evenly disperses the originally inhomogeneous population,
avoiding letting the population concentrated in a certain narrow
space, which enables the sparrow algorithm to explore the search
space more efficiently and improves its performance and global
search capability.

4.1.2 Discoverer formula improvements
In the sparrow population, the role of the discoverer is to guide

the search direction and scope of the whole population. The search
strategy of the discoverer directly affects the optimal solution result
of the algorithm. However, the defects of the sparrow search
algorithm itself during the search process of the discoverer may
cause the population to search only in the local range and thus fall
into the local optimal solution. Therefore, this paper introduces the
Bottle Sea Sheath swarm optimization algorithm with nonlinear

inertia weights ω. Bottle Sea Sheath Swarm Optimization
Algorithm is a group intelligence optimization algorithm that
mimics the group behavior of bottle sea sheaths. Bottle sea
squirt is a marine organism whose group behavior demonstrates
a high degree of coordination and adaptability. With the
introduction of the Bottlenose Sea Sheath Swarm Optimization
Algorithm, the position update of the discoverer will be combined
with a nonlinear inertia weight. This nonlinear inertia weight
changes dynamically as the number of iterations increases,
which makes the algorithm have a strong exploration ability in
the early stage, and more inclined to develop potential optimal
solution regions in the later stage. Specifically, the nonlinear inertia
weights are initially larger to allow for extensive exploration of the
search space and to prevent prematurely falling into a local
optimum; as the iterations proceed, the inertia weights are
gradually reduced to enhance the ability to finely search the
region around the current optimal solution. The position of the
founder is improved and expressed in Equation 20:

Xt+1
i,j �

Xt
i,j ·

c1 ub − lb( )c2 + lb( )
2 − c3( )ub , R2 < ST

Xt
i,j · Z, R2PST

⎧⎪⎪⎨⎪⎪⎩ (20)

Where: Xt
i,j is the value of the j-th (j � 1, 2, 3,/, D) dimension of

the i-th (i � 1, 2, 3,/, n) sparrow at the t-th iteration; ST is a
random number between [0.5,1]; R2 is a random number
between [0,1]; c2, c3 are random between [0, 1]; c1 is the
convergence factor for exploring and developing the global; ub, lb
is the upper and lower bounds; each element of Z obeys a normal
distribution, denoted asZ ~ N(1,ω2). Where the expressions c1 and
ω are Equations 21, 22, respectively:

c1 � 2e− 4t/Tmax( ) (21)

ω � ωmax + ωmin

2
+ ωmax − ωmin( ) exp −20 tan t

Tmax
( )2[ ] (22)

Where: ωmax,ωmin is the maximum and minimum value of inertia
weights; Tmax is the maximum number of iterations.

FIGURE 1
Distribution of initial values of the algorithm: (A) Chaotic sequence distribution map (B) Histogram of chaotic sequences.
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4.1.3 Follower formula improvement
Due to the fast convergence property of the Sparrow Search

Algorithm (SSA), it results in followers with lower adaptation values
being farther away from the food relative to individuals with higher
adaptation values, and thus having less access to the food. To solve
this problem, a water wave dynamic factor is introduced to improve
the follower’s position update formula. By taking advantage of the
fact that water waves are periodic and fluctuating, the follower can
respond more flexibly to the dynamic changes of water waves during
the search process, thus avoiding following the discoverer too
blindly. This flexibility helps the follower to explore the search
space more broadly and not just limited to the region where the
discoverer is located. The introduction of the water wave dynamics
factor allows the follower to simulate the fluctuating behavior of
water waves when updating their position. The fluctuating nature of
the water waves makes the follower’s position update more diverse,
no longer simply following the discoverer, but adjusting its position
according to the periodic changes of the water waves. This
mechanism allows the follower to have more degrees of freedom
in the whole search space to explore more potential optimal solution
regions and avoid premature convergence to local optimal solutions.

By guiding the follower to move to a wider region, the global
search capability of the algorithm is significantly improved. Instead
of just focusing on the vicinity of the discoverer, the follower can
search over a wider area, thus increasing the probability of finding a
globally optimal solution. This improvement not only increases the
search efficiency of the algorithm but also enhances its adaptability
and robustness in complex optimization problems. Its improved
formula is shown in Equation 23:

Xt+1
i,j �

Q · exp Xt
w,j −Xt

i,j

i2
( ) i> n

2

Xt+1
p,j + λ · Xt+1

p,j −Xt
i,j( ) i#

n

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(23)

Where: Xt+1
p,j denotes the current global best position; Xt

w,j denotes
the global worst position; Q denotes a random number from a
normal distribution; the water wave dynamic factor λ is expressed as
Equation 24:

λ � 1 − θ*
t

Tmax
( ) cos

πt

2Tmax
+ π( ) (24)

Where: θ is the control factor and is a random number between
[0.09, 0.14]. Figure 2 shows a schematic diagram of the water
wave dynamics.

4.1.4 Cauchy-Gauss variation strategy
In the late iteration, the diversity of sparrow populations

observed by traditional sparrow algorithms is weakened, and it is
easy to fall into local optimal solutions. To cope with this
problem, this paper introduces the Cauchy-Gaussian mutation
strategy (Yue et al., 2023). The Gaussian distribution performs
well in local search because it generates variances that are mostly
concentrated around the mean value, which helps in the careful
optimization of the current solution. At the same time, the
Gaussian distribution has good stability with moderate
variances to avoid excessive jumps. On the other hand, the
Cauchy distribution has a long tail and can generate large
variance values, which can help the algorithm to jump out of
the dilemma of local optimal solutions and increase the chance of
exploring the global optimal solution. By combining these two
distributions, the Cauchy-Gaussian variational strategy can
perform both fine search locally and effective exploration
globally, thus improving the overall performance of the
algorithm. The specific implementation of this strategy is to
select the individual with the best current fitness for mutation,
compare its position after mutation, and then select the superior
position for the next iteration. The Cauchy-Gaussian mutation
strategy can be expressed as Equations 25, 26:

X′t+1best � Xt+1
best + ϕ1Cauchy 0, 1( ) + ϕ2Gauss 0, 1( ) (25)

ϕ1 � 1 − t2

Tmax
2

ϕ2 �
t2

Tmax
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(26)

Where: X′t+1best is the global optimal position after the Cauchy-
Gaussian mutation; Xt+1

best is the global optimal position before the
mutation; Cauchy(0, 1) is a random variable satisfying the Cauchy
distribution; Gauss(0, 1) is a random variable satisfying the
Gaussian distribution ϕ1 and ϕ2 are the adaptive dynamic
parameters.

The mutation strategy generates a mutated candidate
position after each iteration based on the optimal sparrow
position in the current iteration. The algorithm is initialized
with a small t-value, which gives the Cauchy mutation a larger
weight. This results in a larger step size and helps to prevent the
algorithm from falling into a locally optimal solution. As the
value of t gradually increases, the weight of the Gaussian
variation slowly dominates. Because of the excellent local
search ability of the Gaussian variant, the algorithm’s
optimization accuracy is greatly improved.

FIGURE 2
Dynamic diagram of water waves.
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4.2 Optimization process of green
warehousing microgrid based on ISSA

The optimal scheduling process of a wind-solar-storage
microgrid based on an improved sparrow search algorithm is
shown in Figure 3.

Optimization Steps for Improved Sparrow Search Algorithm:

1) Input algorithm and microgrid parameters.
2) Generate a diverse population using Logistic-Circle

chaotic mapping.

3) Calculate the initial fitness value of individual sparrows
and sort them.

4) Update the positions of discoverer, follower, and alert
according to the improved formula.

5) Calculate the fitness value of the updated individual sparrows
and apply the Cauchy-Gaussian mutation to them.

6) Judge whether the mutated After the sparrow is better than the
original, if yes, replace the original position, otherwise no change.

7) Judge whether the termination condition is reached, if yes,
output the optimal position, otherwise return to 3).

8) End. Output the optimal fitness value and position.

FIGURE 3
Flowchart of the improved sparrow search algorithm.
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5 Analysis of example results

5.1 Parameters of the algorithm

The microgrid system studied in this paper focuses on green
warehousing applications. Based on the green warehousing in
Liaoning Province, the daily load and wind-solar forecast output of
its green warehousing wind-solar-storage system in July are analyzed.
The system includes a variety of distributed power sources, including
photovoltaic, wind turbine, and energy storage systems. The operating
parameters and associated costs of individual distributed generation
(DG) devices in themicrogrid are detailed in Table 1. In addition, Table 2
provides the pollutant emission factors and corresponding costs for each
DG (Shen et al., 2019). The energy storage battery has a turnaround
capacity of 400 kW-h, an initial capacity of 200 kW-h, a maximum
capacity of 300 kW-h, and a minimum capacity of 100 kW-h. The data
for real-time electricity prices is shown in Table 3. The carbon trading
price is taken as 150 Yuan/t, then the government subsidized electricity
price is taken as 0.08 Yuan/(kW-h), and finally the carbon emission
allowance per unit of electricity supplied is taken as 0.03467/(MW-h).

The 24-hour monthly average wind speed, solar irradiance, and
electrical load data for the month of July for the area were used in the
study. Hourly data on wind speed, ambient temperature, and solar
irradiance for the location were obtained from the National
Meteorological Administration of China. The cut-in wind speed was
taken as 3m/s, the cut-out wind speedwas taken as 25m/s and the rated
wind speed was taken as 12m/s. Therefore, the daily load and wind and
light output data used in this paper are shown in Figure 4.

5.2 Analysis and comparison of results

Firstly, the improved sparrow search algorithm is compared
with the PSO, SSA, Whale optimization algorithms (WOA)
(Tahmasebi et al., 2021) and improved particle swarm algorithm
(IPSO) to analyze the superiority of the improved sparrow algorithm
in terms of convergence speed, stability, and optimal value. Then,
based on the improved sparrow algorithm, the optimal scheduling
strategy for wind-solar-storage is derived. Finally, the scheduling
strategy is derived under another wind-solar forecasting model.

5.2.1 Comparative analysis of optimization results
These 5 algorithms have the same parameters, a population size

of 100, and amaximum number of iterations of 500. In the improved
SSA algorithm, a and b are 0.9 and 0.4, respectively, with a 30% share
of the discoverer, a 70% share of the follower, and a 15% share of the
initial vigilant. After setting the parameters, four algorithms are used
to solve for the maximum daily operational gain of the microgrid in
three cases. Finally, the total benefit value in the case of maximum
daily operation economic benefit, maximum environmental benefit,
and maximum comprehensive objective is obtained. And compare
the convergence number of ISSA with the other four algorithms and
the optimal values in the three modes. Different comparison metrics
represent the algorithm’s other capabilities. Among them, the fact
that the algorithm converges with a smaller number of iterations
indicates the better convergence performance of the algorithm; the
larger objective value derived at the end of the algorithm represents
the better optimization ability of the function; and the better the first
two metrics of the algorithm indicate the better stability of the
algorithm in different modes. The algorithm optimization results are
shown below.

When considering the maximum daily economic operation of
the microgrid from Figure 5, it can be seen that the traditional
particle swarm algorithm converges at 175 iterations, and its
integrated maximum value is 1,480.08 yuan; the sparrow
algorithm converges at 189 iterations, and its integrated
maximum value is 1,639.73 yuan; the whale optimization

TABLE 1 Parameters of the unit.

Parameter name WT PV Storage battery Grid

Power limit/kW 500 250 200 100

Power lower limit/kW 0 0 −200 −100

O&M costs (yuan/W) 0.045 0.009 0.045 0

TABLE 2 Pollution emission factors for the unit.

Pollutants typology Governance factor/(yuan/kg) Pollutant emission factor/(g/kW·h)

WT PV Grid

CO2 0.21 0 0 890

SO2 14.84 0 0 1.8

NOx 62.96 0 0 1.6

TABLE 3 Real-time electricity price.

Time slot division Particular time frame Electricity purchase prices/
[yuan/(kW·h)]

Electricity selling price/
[yuan/(kW·h)]

Peak time tariff 9:00–12:00, 17:00–22:00 1.26 0.59

Valley time tariff 23:00–8:00 the following day 0.32 0.26

Weekday tariffs 8:00–9:00, 12:00–17:00, 22:
00–23:00

0.71 0.35
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algorithm converged in 181 iterations, with a comprehensive
maximum of 1,614.62 yuan; the improved particle swarm
algorithm converges at 151 iterations, and its integrated
maximum value is 1,765.76 yuan; the improved sparrow
algorithm converges at iterations The improved sparrow
algorithm converges at 137 iterations, and the comprehensive
maximum value is 1,876.89 yuan. In terms of optimization
results, compared to PSO, SSA, and IPSO, ISSA yields maximum
gains of 26.81%, 14.46%, 16.24%, and 6.29% respectively. It can be
seen that the improved sparrow algorithm is optimal in terms of

convergence speed as well as optimization results when solving for
the maximum economic gain.

When considering the microgrid environment with the
maximum benefit from Figure 6, it can be seen that the
traditional particle swarm algorithm converges at 164 iterations,
and its integrated maximum value is 1,200.42 yuan; the sparrow
algorithm converges at 181 iterations, and its integrated maximum
value is 1,356.62 yuan; the whale optimization algorithm converged
in 175 iterations, with a comprehensive maximum of 1,308.56 yuan;
the improved particle swarm algorithm converges at 143 iterations,
and its integrated maximum value is 1,476.39 yuan; the improved
sparrow algorithm converges at iterations The improved sparrow
algorithm converges at 126 iterations, and the integrated maximum
value is 1,564.63 yuan. It can be seen that in the optimization results,
compared to PSO, SSA, and IPSO, ISSA optimization yields a
maximum gain of 30.34%, 15.33%, 19.56%, and 5.98%
respectively. Therefore, the improved sparrow algorithm is better
than the other algorithms in terms of convergence speed as well as
optimization results when environmental benefits are the objective.

When considering the maximum total microgrid revenue from
Figure 7, it can be seen that the traditional particle swarm algorithm
converges at 169 iterations with a combined maximum value of
1,368.17 yuan; the sparrow algorithm converges at 179 iterations
with a combined maximum value of 1,493.86 yuan; the whale
optimization algorithm converges at 170 iterations with a combined
maximum value of 1,463.85 yuan; the improved particle swarm
algorithm converges at 145 iterations with a combined maximum
value of 1,571.49 yuan; and the improved sparrow algorithm at
123 iterations The improved sparrow algorithm converges at
123 iterations with a combined maximum value of 1,670.64 yuan.
Based on the above optimization results, it can be seen that ISSA
improves the daily combined maximum gain by 20.52%, 11.83%,
14.12%, and 6.31% compared to PSO, SSA, and IPSO respectively.
Therefore, the stability, convergence speed, and optimization value of the

FIGURE 5
Optimal value results with maximum economic benefits.

FIGURE 6
Optimal value results with maximum environmental benefits.

FIGURE 4
Photovoltaic, wind, and load power.
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improved sparrow search algorithm are better than the other algorithms
in the three cases, which verifies the superiority of the improved sparrow
algorithm and the optimization results are more reliable.

The above three scenarios are considered in more specific
scenarios. The first considers only economic gains and ignores
environmental impacts. The second focuses on environmental
impacts and discards some of the benefits. The third is a
combination of economic and environmental impacts. In all
three cases, the iteration speed of ISSA is significantly faster than
the other algorithms, and the convergence stability is better in all
cases. In the three modes, ISSA increased the optimal value by at
least 6.29%, 5.98%, and 6.31% compared to the other algorithms. In
conclusion, ISSA has strong space exploration and searching ability,
and its solution results are stable and reliable.

5.2.2 Scheduling strategy analysis
The feasibility of the improved sparrow algorithm has been

verified above, and the following section derives the optimal
scheduling strategy for wind-solar-storage microgrids based on
the improved sparrow algorithm. The scheduling strategy is
divided into a total of three cases, which are the scheduling
strategy under the maximum economic benefit, the maximum
environmental benefit, and the maximum comprehensive
objective, the scheduling results are shown below.

Considering the maximum economic gain scenario in Figure 8, the
following conclusions can be drawn. During the phase of cheap
electricity price from 23:00 to 8:00 the next day, when the output of
the wind power generation system is insufficient, the microgrid system
first buys electricity from the main grid for power supply. If the battery
power is insufficient, it is charged. Therefore, the power of the big grid is
larger and the battery power is negative. During 9:00–20:00, the peak
electricity price time, the system will first supply power to the load
through the energy storage device. When the wind and photovoltaic
power output exceeds the needs of the load, the excess power will be

stored preferentially in the battery bank. After the battery bank has been
fully recharged, the surplus power can be sold to the grid. As a result, the
power of the main grid goes negative. Subsequently, the batteries are
continuously supplied with power because they are at peak electricity
prices. This operating strategy aims to maximize the use of renewable
energy sources while ensuring the reliability and economy of the system
under different operating conditions. In addition, the battery is charged
at a low price and discharged at a high price to maximize the
economic return.

With the consideration of maximizing the environmental benefits,
the following conclusions can be drawn from Figure 9. The

FIGURE 8
Scheduling results with maximum economic returns.

FIGURE 9
Scheduling results under maximum environmental benefits.

FIGURE 7
Optimal value results with maximum total benefits.
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environmental benefit is mainly considered in terms of the electrical
energy interacting with the main grid, and the more interaction there is
the higher the environmental impact. Therefore, from 23:00 to 8:00 the
next day, the battery is charged first, and in the case of insufficient
output from the wind and PV systems, the system first obtains power
from the battery to supply the loads tominimize the polluting emissions
from the main grid. At 9:00–20:00, when the remaining power in the
battery bank is below a certain threshold value, the system neither
supplies nor purchases power from the main grid. Instead, when the
output of the wind and photovoltaic power generation systems is
sufficient to meet the load demand, the excess power is used to
recharge the system. Subsequently, the main grid continues to
supply power and charge the batteries. The above scheduling
strategy minimizes the power interaction with the main grid to
reach the environmental protection requirements.

Considering the economic and environmental benefits in
Figure 10, the following conclusions can be drawn. In case of
insufficient output from the wind and PV systems, the system’s
operation strategy is adjusted according to the characteristics of
the current period. During the low tariff hours, battery power is
supplied and the power deficit is compensated by purchasing

power from the main grid. From 8:00 to 16:00 when the wind and
PV power output can meet the load demand, the system
prioritizes the use of the wind and PV power systems to
supply power to the load and stores the excess power in the
battery bank. When the batteries are fully charged, the surplus
power can be sold on the larger grid. At 17:00–22:00, the batteries
and the main grid work together to meet the power demand. This
strategy aims to make full use of renewable energy and
environmental protection and to use flexible power supply
methods at different times of the day to improve the economy
and reliability of the system.

To summarize, this paper designs three scheduling strategies for
wind-photovoltaic-storage microgrids using an improved sparrow
search algorithm: maximum economic efficiency, maximum
environmental efficiency, and combined economic and
environmental efficiency. The maximum economic efficiency
strategy optimizes costs by charging when electricity prices are low
and discharging when they are high while prioritizing the use of
renewable energy. The maximum environmental benefit strategy, on
the other hand, focuses on reducing power interactions with the main
grid to reduce pollution emissions. The integrated benefit strategy
combines the advantages of the first two, flexibly adapts to the
period, maximizes the use of renewable energy, and improves the
economy and reliability of the system. To further improve the stability
of microgrids, more accurate forecasting of wind turbines and
photovoltaic output will be used in the future, and the economics of
microgrids will be improved (Cui et al., 2019; Sun et al., 2020).
Furthermore, the scheduling strategy based on the improved
sparrow search algorithm can effectively optimize the operation of
wind-solar-storage microgrids to meet the dual goals of economy and
environmental protection.

5.2.3 Integrated target analysis
The application of wind-solar-storage microgrids in green

warehousing will develop scheduling strategies according to different
needs. In this paper, the scheduling strategy is mainly affected by
economic and environmental benefits, so the weighting coefficients are
set to adjust the impact of the two benefits on the maximum
comprehensive benefit. In other words, whether the microgrid
focuses more on the economic gain or the impact on the
environment when developing the scheduling strategy. The results of
the different weighted integrated returns are shown in Table 4.

As can be seen from Table 4, when the coefficients, β increase,
the comprehensive gain increases, indicating that the system emits
more pollution, the cost of pollutant treatment becomes more, and

FIGURE 10
Scheduling results under the maximum total return.

TABLE 4 Comprehensive income with different weights.

α β Consolidated income/yuan α β Consolidated income/yuan

0 1 1564.63 0.4 0.6 1751.99

0.1 0.9 1595.856 0.3 0.7 1783.21

0.2 0.8 1627.082 0.2 0.8 1814.44

0.3 0.7 1658.308 0.1 0.9 1845.66

0.4 0.6 1689.534 0 1 1876.89

0.5 0.5 1720.76 - - -
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the carbon trading gain decreases. Therefore, the optimal scheduling
strategy can be formulated according to the actual demand, taking
into account the economic and environmental impacts, to balance
the economic gains and environmental impacts.

6 Conclusion

In this paper, an improved sparrow search algorithm is proposed for
solving the green warehousing microgrid scheduling problem. The
comparative analysis of ISSA and other algorithms is completed in
three different cases. The results show that the improved sparrow
algorithm exhibits the advantages of a high-quality initial population,
strong global optimization capability, excellent iteration speed, and better
optimization results. The combined gains derived using ISSA compared
to IPSO, SSA, WOA, and PSO methods are improved by 20.52%,
11.83%, 14.12%, and 6.31% respectively. Then a dynamic weighting
strategy is adopted to balance the impacts of economic operation and
environmental protection on the microgrid. Finally, based on the ISSA
algorithm, the scheduling strategy for different cases is derived, which
improves the energy utilization of green warehousing.

This paper solves the practical problems of microgrids and
provides a new idea for the development of green warehousing.
In addition, this study is also informative for factories transitioning
to greening. To solve the load instability problem, techniques such as
artificial intelligence (AI) and evolutionary gaming are further
applied to optimize load forecasting and dispatching strategies.
With the continuous development and application of these
technologies, more accurate and efficient microgrid operation
management can be expected. Therefore, the next step of this
paper will focus on the power market and user side, and use
more advanced machine learning algorithms or deep learning
models to improve the accuracy of load forecasting.
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