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Nowadays, electricity theft is a major issue in many countries and poses a
significant financial loss for global power utilities. Conventional Electricity
Theft Detection (ETD) models face challenges such as the curse of
dimensionality and highly imbalanced electricity consumption data
distribution. To overcome these problems, a hybrid system Multi-Layer
Perceptron (MLP) approach with Gated Recurrent Units (GRU) is proposed in
this work. The proposed hybrid system is applied to analyze and solve electricity
theft using data from the Chinese National Grid Corporation (CNGC). In the
proposed hybrid system, first, preprocess the data; second, balance the data
using the k-means Synthetic Minority Oversampling Technique (SMOTE)
technique; third, apply the GTU model to the extracted purified data; fourth,
apply the MLP model to the extracted purified data; and finally, evaluate the
performance of the proposed systemusing different performancemeasures such
as graphical analysis and a statistical test. To verify the consistency of our
proposed hybrid system, we use three different ratios for training and testing
the dataset. The outcomes show that the proposed hybrid system for ETD is
highly accurate and efficient compared to the other models like Alexnet, GRU,
Bidirectional Gated Recurrent Unit (BGRU) and Recurrent Neural Network (RNN).
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1 Introduction

Electric energy is a fundamental requirement for daily life activities and processes in the
modern world. Using energy resources is essential for the economic development and
growth of every country worldwide (Lowitzsch et al., 2020). However, crises can arise when
energy consumption exceeds production, leading to a shortfall and interruption in energy
supplies (Ren et al., 2021). Many underdeveloped and economically unstable countries,
including the India, Indonesia, Malaysia, Pakistan, Nigeria, Ethopia and China, are
currently facing energy crises (Østergaard et al., 2021). Electricity is one of the primary
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forms of energy used globally, and the demand for it is rapidly
increasing. However, many developed and developing countries face
electricity crises due to Technical Losses (TL) and Non-Technical
Losses (NTLs) (Kumar et al., 2019). NTLs are caused by fraud,
electricity theft, tampering with the recording process, and non-
billing of electricity (Rahman et al., 2020). To mitigate NTLs,
modern methods for detecting fraud and electricity theft are
required. NTLs are the primary cause of revenue loss in smart
grids (Stracqualursi et al., 2023). Recent studies have revealed that
NTLs result in global annual losses of USD 89.3 billion in the utility
sector of electrical energy (de Souza et al., 2020). The problem of
NTLs is still relevant in both developed and developing countries.
Normally, energy losses in developed countries range between 0.5%
and 3% yearly in revenue collection (Park and Kim, 2020; Kumar
et al., 2020). In developing countries, the losses are approximately
4.5 billion USD annually, accounting for about 50% of electricity
produced (Quasim et al., 2023). Developed countries like the
United Kingdom (UK) and the United States of America
(United States of America) face annual losses ranging from 1 to
6 billion USD (Duarte Soares et al., 2022). Pakistan also faces NTLs
of 0.89 billion USD per annum due to non-billing and electricity
theft (Rehan et al., 2023). NTLs can be intentional or unintentional,
and many power supply companies try to detect and reduce them
efficiently (Zhang et al., 2020). Due to the rise in electricity fraud,
several methods have been adopted to automatically detect
electricity theft, like assessing electricity consumption records
(Kocaman and Tümen, 2020). Hardware and data-driven
solutions are implemented to mitigate NTLs. Hardware solutions
commonly use grid system variables, including power, voltage, and
current, while data-driven solutions analyze and mine consumers’
load profiling and other information to detect NTLs (Muzumdar
et al., 2022). However, it faces many obstacles in ETD and fraudulent
consumers due to its technical theft strategies, including line
tapping, meter tempering, etc., and needs extra devices for
implementation (Chandrasekhar et al., 2020). Hence, it is costly,
Furthermore, to tackle the NTLs and ETD in smart grids, Advanced
Metering Infrastructure (AMI) is better than old mechanical
metering (Saxena et al., 2021).

Due to the increase in the number of electricity thieves, the
electric utilities are facing problems in providing electricity to their
consumers in an efficient way (Xie, 2023). An accurate ETD is quite
challenging due to the inaccurate classification on the imbalance
electricity consumption data, the overfitting issues and the high false
positive rate of the existing techniques (Blazakis et al., 2020).
Therefore, intensified research is needed to accurately detect the
electricity thieves and to recover a huge revenue loss for utility
companies. To address the above limitations, this paper presents a
new model, which is based on the supervised machine learning
techniques and real electricity consumption data.

In this study, we propose a new hybrid system based on deep
learning models that accurately detect electricity theft in smart grids
while also being efficient. The first step involves preprocessing the
data and replacing the missing values using a simple imputer
method. Next, we use the standard-scalar approach to execute a
min-max operation for data normalization. After data preparation is
finished, we obtain samples for typical users. We then balance the
data using k-means SMOTE to create samples for fraudulent users
by altering honest samples with current theft attacks. In the third

step, the balanced data from the previous stage is used for
classification purposes. The MLP and GRU modules were created
in Python® using balanced smart meter data and supplementary data
as input for prediction. We apply efficient performance criteria in
the final phase to investigate the results. To validate the proposed
model’s performance using various performance measures,
including accuracy, F1-score, precision, and recall. In addition,
we also test the consistency and efficiency of the trained model
on new samples in the second phase to identify whether the new
sample belongs to the honest class or the malicious. The main
applications of this paper are: the proposed approach provides the
solution for the problem present in the power sector, such as to
wastage of electrical power due to electricity theft. This model can
efficiently be applied by the utility companies using the real
electricity consumption data to identify the electricity thieves and
reduce the energy wastage and finally, the proposed approach can be
used against the all types of consumers who steal the electricity.

The key contributions of this paper: A comprehensive data pre-
processing is performed using interpolation, three sigma rule, and
normalization methods to deal with missing values and outliers in
the dataset. The data pre-processing step gives the refined input,
which improves the performance of the classifier. A class balancing
technique, K-means SMOOTHE, is proposed to address the
problem of imbalance data. MLP is applied to predict final
misclassification, which improves the performance along with
MLP, GRU technique is utilized for efficient parameter
optimization of the classifier. The complete procedure of the
proposed hybrid system (MLP-GRU) for ETD is: first, preprocess
the data; second, balance the data; third, apply the GRUmodel to the
extracted purified data; fourth, apply theMLPmodel to the extracted
purified data; and finally, evaluate the performance of the proposed
system using different performance measures like a graphical
analysis and a statistical test. We conduct extensive simulations
on real electricity consumption data set and for comparative
analysis, precision, recall, F1-score, Matthews Correlation
Coefficient (MCC), Receiving Operating Characteristics Area
Under Curve (ROC-AUC), and Precision Recall Area Under
Curve (PR-AUC) are used as performance metrics.

The rest of the article is organized as follows: Section 2 contains
the existing literature and Section 3 consists of a proposed hybrid
system. Section 4 discusses the results and compared the results with
the best studies available in literature. Finally, Section 5 presents a
conclusion and directions for future research work.

2 Review of existing literature

The problem of ETD and NTLs is rising quickly at global scale,
and researchers are developing techniques to tackle this problem by
applying statistical, machine learning, and deep learning models
(Jaiswal et al., 2020). The machine learning models, including
Random Forest (RF), Decision trees (DT), Bagging Ensemble
(BE), Artificial Neural Networks (ANN), and K-Nearest
Neighbors (KNN), were comparatively evaluated for automated
ETD in smart grid environments and found RF yields 10% more
improved accuracy in ETD compared to other used methods (Zidi
et al., 2023). The rapid growth in NTLs and electricity thefts are the
major challenges for distribution network operators. In (Fei et al.,
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2022) neural network model based on Neural Architecture Search
(NAS) is developed to analyze and detect electricity theft in missing
value scenarios through density-based spatial clustering of
application and noise clustering technique and achieved an
excellent result of AUC of 0.926 in the NTLs and ETD. The
authors in (Banga et al., 2022) used different deep learning
models for NTLs and ETD, including GRU, Long Short-Term
Memory (LSTM) models, MLP, and Convolutional Neural
Networks (CNN). However, these models lack efficient hyper
parameter tuning, which leads to poor generalization for tackling
these issues.

The researchers in (Asif et al., 2022) proposed hybrid deep learn
ing models based on Bidirectional Long Short-Term Memory (Bi-
LSTM) networks and Two-Dimensional Convolutional Neural
Networks (2D-CNN) to detect NTLs in smart meters, and they
outperformed other methods with ROC 0.97 and AUC 0.98 in smart
meters data. In detecting NTLs and ETD, the problem of class
imbalance, the curse of dimensionality reduction, and inappropriate
tuning of hyper parameters arise in commonly used machine
learning and deep learning models. Therefore, to cope with these
problems, the authors in (Ullah et al., 2022) proposed a hybrid deep
learning method based on Alexnet and Adaboost for ETD in smart
grids. They achieved the best performance results compared to other
methods used, and the problem of class imbalance and the curse of
dimensionality is being tackled by under-sampling techniques and
tuning hyper parameters by the Artificial bee Colony (ABC)
optimization algorithm. Furthermore, the authors in (Kumar
et al., 2022) proposed a hybrid method based on CNN and RF to
predict ETD in power grids accurately. The RF is employed for
classification, while CNN efficiently extracts the potential features. A
deep learning-based hybrid model is designed by (Hasan et al.,
2019), which uses the pros of both CNN and LSTM models and
efficiently extracted the hidden patterns and temporal correlation in
ETD of consumers in smart grid systems, respectively. The
researchers in (Gupta et al., 2022) proposed a Deep Neural
Network (DNN) model, first they resolved the dimensionality
problem, and then important features were selected for the
detection of fraud in the electricity consumption of the smart
grid. The ETD results show the proposed method’s best
performance over the other used models. The problem of diverse
theft patterns in electricity consumption due to a significant class
imbalance in data leads to higher false positive rates, and ensemble
models fail to detect NTLs. Hence, the authors in (Alameady et al.,
2022) tried to overcome this issue by proposing hybrid neural
networks named MLP-GRU for detecting electricity thefts in
smart meter data by analyzing the auxiliary information of
the consumers.

With the advent of smart meters, different types of electricity
theft techniques have been adopted, and their detection is very
difficult using conventional methods. The researchers in (Li et al.,
2019) designed a statistical and machine learning-based Internet of
Things (IoT) system to identify and notify electricity consumers
about electricity thefts. Many studies based on data-driven
techniques have been used for NTLs identification in the
literature. Most studies have focused on boosting approaches,
and less attention is given to bagging approaches like Extra Trees
(ET) and RF (Siu et al., 2022). Furthermore, commonly used
machine learning models such as Support Vector Machine

(SVM) and neural networks yield a higher false positive rate and
a lower detection rate in ETD (Ahir and Chakraborty, 2022). The
authors in (Gong et al., 2020) have explored a Conditional Variation
Auto-Encoder (CVAE) combined with CNN for extracting relevant
features from high-dimensional data and presented a solution to the
problem of data augmentation. Furthermore, many studies and
experiments have been conducted on ETD in AMI through
machine learning techniques (Aziz et al., 2020). The researchers
in (Jokar et al., 2015) implemented a pattern recognition technique
based on unsupervised learning models for ETD in the data set of
smart meters.

The deployment of advanced sensors has strengthened the
monitoring capability of power plants. In the context of the
cogeneration process, the plant cooling is performed by the
cooling towers using the condensation process on exhaust steam.
However, the computer networks and industrial control systems
built on this sensor-based digital layer may become vulnerable to
cyber attacks. This may eventually raise a concern on the
performance and security of these energy utilities. To resolve this
issue, an inoculated subobserver-based fusion filter is proposed. It
improves the resilience against malicious attacks in combined cycle
power plants with desalination units, which are usually functioning
in a closed-loop environment and infected with injected attacks. A
time-delay-based state representation is considered for the system
(Khalid et al., 2019).

IoT is a developing technology that provides the simplicity and
benefits of exchanging data with other devices using the cloud or
wireless networks. However, the changes and developments in the
Internet of Things (IoT) environment are making IoT systems
susceptible to cyber attacks which could possibly lead to
malicious intrusions. The impacts of these intrusions could lead
to physical and economical damages. This article primarily focuses
on the IoT system/framework, the IoT, learning-based methods, and
the difficulties faced by the IoT devices or systems after the
occurrence of an attack. Learning-based methods are reviewed
using different types of cyber attacks, such as denial-of-service
(DoS), distributed denial-of-service (DDoS), probing, user-to-root
(U2R), remote-to-local (R2L), botnet attack, spoofing, and man-in-
the-middle (MITM) attacks (Inayat et al., 2022).

Synchrophasor-based wide-area monitoring system (WAMS)
applications are vital for acquiring the real-time grid information
under ambient and nonlinear conditions. The high dependence on
sensor data and signal-processing software for daily grid operation is
becoming a concern in an era prone to cyberattacks. To resolve this
issue, a mixture density-based maximum likelihood (MDML)
estimation was proposed to detect attack vectors. The algorithm
was deployed at each monitoring node using a track-level fusion
(TLF)-based architecture. A parallelized message passing interface
(MPI)-based computing was processed to reduce its computational
burden. This work adopted a mature application known as
oscillation detection as an example of a monitoring candidate to
demonstrate the proposed method (Khalid et al., 2023).

This paper introduces the theft detection method which uses
comprehensive features in time and frequency domains in a deep
neural network-based classification approach. We address dataset
weaknesses such as missing data and class imbalance problems
through data interpolation and synthetic data generation processes.
We analyze and compare the contribution of features from both
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time and frequency domains, run experiments in combined and
reduced feature space using principal component analysis and
finally incorporate minimum redundancy maximum relevance
scheme for validating the most important features. We improve
the electricity theft detection performance by optimizing hyper-
parameters using a Bayesian optimizer and we employ an adaptive
moment estimation optimizer to carry out experiments using
different values of key parameters to determine the optimal
settings that achieve the best accuracy (Lepolesa et al., 2022).

This work proposes two novel methods to resolve the above-
mentioned issues: Tomek Link Borderline Synthetic Minority
Oversampling Technique with Support Vector Machine
(TBSSVM) and Temporal Convolutional Network with Enhanced
Multi-Layer Perceptron (TCN-EMLP). The former resamples the
data by balancing the majority and minority class instances.
Whereas, the latter classifies normal and fraudulent consumers.
Moreover, deep learning models suffer from high variance in their
final results due to the assignment of different weights. Therefore, an

averaging ensemble strategy is applied in this work to reduce the
high variance (Arif et al., 2022).

In previous literature, most research focused on non-malicious
electricity consumption patterns and showed low detection rates for
NTLs. In (Ding et al., 2019), the authors proposed a hybrid approach
based on the enhanced internal structure of the LSTM model with a
combination of the Gaussian Mixture Model (GMM). However, it
only applies to low-dimensional data and is not robust to outliers. In
further studies (Jindal et al., 2016), a hybrid method based on SVM
has been proposed for detecting fraudulent consumers but has not
shown an effective performance in the overall technical evaluation.
The authors (Kabir et al., 2022; Kumari et al., 2022) proposed a
hybrid deep learning model based on Multi-Layer Perceptron
(MLP) and Gated Recurrent Unit (GRU) for the detection of
electricity thefts and NTLs in smart meter data. The MLP
network is used for analyzing non-malicious factors on auxiliary
information in the daily consumption of electricity data, while the
GRU network is used for analyzing smart meter data. Furthermore, a
random search algorithm turns hyper-parameters and performs
better than other methods.

3 Research method

In this section, we discuss in detail the complete procedure of the
proposed hybrid system for ETD. To do this, first, preprocess the
data; second, balance the data; third, apply the GRU model to the
extracted purified data; fourth, apply theMLPmodel to the extracted
purified data; and finally, evaluate the performance of the proposed
system using different performance measures like a graphical
analysis and a statistical test. The framework of proposed method
is given in Figure 1.

3.1 Preprocessing of raw data

In this work, the proposed hybrid system is applied to the
electricity consumption data from the CNGC dataset, which is both
authentic and accessible. The dataset contains 42,372 records of total
consumer, of which 38,752 are honest and share information on
regular basis, and 3615 are records of theft consumers. The dataset’s
sample interval is set to once per day. The entire electricity
consumption value is represented in the dataset as rows, while
the electricity consumption value for a certain day is provided as a
column. Moreover, statistics are gathered during onsite inspections.
However, the electricity consumption dataset comprises outliers,
missing values, and extremely dispersed data. These irregularities
must be corrected before developing the ETD model. Preprocessing
is necessary in this case to recover the missing values, reduce the
outliers, and normalize the data within a certain range. The entire
amount of consumer data was 42,372 before pre-processing;
however, five rows were eliminated by the Simple Imputer (SI)
approach after preprocessing since all of the data in such rows were
missing values. When this occurs, the SI is unsure of the value that
should be ascribed. If the imputer discovers at least one actual value
in the targeted record, it will impute some values rather than delete
them. It is also crucial to keep in mind that the SI method operates
column-wise, therefore you must transpose your data before using

FIGURE 1
Flow chart of the proposed model for ETD.
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the imputer approach. Take the data’s transposition once more after
imputation to return it to its original shape. The electricity
consumption patterns of two consumers, the dishonest consumer,
and the honest consumer, are shown in Figure 2. It demonstrates
that the electrical thief has irregular electricity consumption patterns
and that meter manipulation caused its electricity consumption
value to decrease. In contrast, an unbiased consumer displays typical
electricity consumption patterns.

3.2 Data balancing and augmentation using
K means SMOOTE

Once the data set has been cleaned, the next step is to balance the
data set. In this regard, there are fewer dishonest users’ consumption
samples in the real world. It is an unbalanced dataset, and the
machine learning, deep learning, or hybrid models during training
are biased toward the majority of class samples. Moreover, they
neglect occurrences of minority classes that affect performance.
Numerous resampling approaches have been presented in the
literature to address this issue (Chung, 2014; Zheng et al., 2017;
Ding et al., 2019). To do this, the k-means SMOTE algorithm and
augmentation techniques are combined in this study to

simultaneously over and under sample data classes to address the
imbalance problem. Removing the majority of class links until both
classes have an equal number of entities achieves the stated goal. The
pseudo-code of the k-means SMOTE algorithm is given in Table 1,
and an example of synthetic data generation through k-means
SMOTE can be seen in Figure 3.

3.3 The proposed model

After the data set has been cleaned and balanced, the next step is
to model the purified data set. To this end, within the proposed
hybrid system, we combine the features of MLP and GRUmodels to
obtain a new hybrid deep learning model. The GRU network uses
smart meter data from the CNGC dataset as input, and the MLP
network observes ancillary data with techniques that explore non-
harmful elements within electricity consumption data. The details
about the GRU, MLP, and the proposed hybrid model (GRU-MLP)
are in the following subsections.

3.3.1 Gated recurrent unit
In general, it can be noticed that electricity consumption

patterns fluctuate a lot more than those of regular consumers. To

FIGURE 2
EC Pattern of honest (blue) and dishonest (red) customers.
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identify co-occurring connections in time series data, 1D data is
supplied into the GRUmodel. To identify comparable dependencies
in time series data, Chung et al. presented the GRU algorithm in
(Ding et al., 2019). It features memory modules to store significant
periodic patterns, which aids in managing unexpected variations in
electricity consumption patterns brought on by regular occurrences
like varying weather conditions, large home parties, weekends, etc.
Moreover, it addresses the vanishing gradient issue with RNN.
LSTM and GRU are regarded as RNN variations. The
effectiveness of LSTM and GRU with an RNN model on various
sequential datasets is compared by the authors in (Buzau et al.,
2019). The vanishing gradient issue of the RNN is resolved by both
models, which outperform it. The authors in (Aslam et al., 2020)
conduct comprehensive tests on 10,000 RNN and LSTM designs.
Their final experimental findings demonstrate that GRU is the only
model that outperforms all others. Based on the analysis above, we
chose GRU to extract the best features from the electricity

consumption dataset because it performs well on sequential
datasets. It has gates for resetting, updates and regulate the data
that moves inside the network. The update gate determines how
much historical data should be kept for decision-making in the
future. Conversely, the reset gate determines how much historical
data should be retained or deleted. Update and reset gate equations
are related to one another. Yet, the use of weights and gates accounts
for the distinction. The GRU model’s mathematical Eqs 1–4 (Kabir
et al., 2021) are provided below:

zt � σ WZ, ht−1, xt[ ]( ) (1)
rt � σ Wr, ht−1, xt[ ]( ) (2)

ĥt � tanh W, rtp ht−1, xt[ ]( ) (3)
ht � 1 − zt( )pht−1 + ztpĥt (4)

In these equations, update gate zt controls the extent to which
states information from the previous moment is substituted into the

TABLE 1 Pseudo-code of the k-means SMOTE algorithm.

K-means SMOTE technique

Inputs:

Minority class samples Xmin

Number of nearest neighbors K

Output:

Synthetically generated minority class samples (Xsyn)

Cluster the minority class samples Xm in using the K-means algorithm with K clusters

Let C1, C2,. and CK be the resulting clusters

For each cluster Ci: a. Find the k-nearest neighbors of each sample in Ci using a distance metric (e.g., Euclidean distance). Let NNi denote the set of nearest neighbors of Ci.

b. For each sample in Ci, randomly select one of its k nearest neighbors from NNi and generate N/K synthetic samples by interpolating between the sample and its selected
neighbor. Add the synthetic samples to the set (Xsyn)

c. Return the set of synthetically generated minority class samples (Xsyn)

FIGURE 3
Synthetic data generation through k-means SMOTE.
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current state, and reset gate rt controls the extent to which state
information from the previous moment is ignored. σ is the
activation function. The candidate activation ht, is computed
with the reset gate rt (which control how much of the previous
information needs to be retained), and p denotes the element wise
multiply operation. Finally, ht, represents the actual activation of the
proposed GRU unit at time t, which is a linear interpolation between
the previous activation ht−1, and the candidate activation ht,.

3.3.2 Multi-layered perceptron network
TheMLP network is used to evaluate the auxiliary dataset. There

are multiple layers of hidden neurons in the MLP. These hidden
layers in the MLP network are selected using the validation dataset.

Hn � σ ∑Ui,n*Xi + Bn( ) (5)

“Where”, ⅈ � 1, 2, 3, . . . .N,

Yn � σ Un*Hn−1 + Bn( ) (6)

Eq. 5 specify that Un refers to the weights of layer n, Hn−1 for the
input layer’s prior hidden states, and Bn for the bias. The activation
function, which activates the neuron, is called after the input values have
been processed, and it decides whether or not to pass the values to the
subsequent layer. The sigmoid activation function is represented by σ.
The output layer, designated as Yn, is shown in Eq. 6. In this study, the
final output layer was activated using a sigmoid activation function for
the binary classification, while the hidden layer was activated using the
Rectified Linear Unit (ReLU) (Mukhopadhyay, 2019). Using a batch
normalization layer to normalize the input values sped up the network
convergence. A dropout layer was then included as a regularization
method to avoid overfitting.

3.3.3 Hybrid MLP-GRU model
The hybrid neural network composed of MLP and GRU is

introduced in the proposed work. Electricity consumption data is
used as input into the proposed GRU-MLP network. The proposed
methodology was motivated by research for identifying electricity
theft done in (Cheng et al., 2021). The research in (Xu et al., 2018)

generated the LSTM-MLP hybrid neural network classifier. The
GRU module with 100 neurons receives the preprocessed smart
meter energy consumption data. The number of neurons in the GRU
layer is two times higher than in the MLP model. The GRU layer
generalizes the embedding at a lower computational cost with
comparatively fewer cells. Since the data includes low-
dimensional features, auxiliary data with 20 neurons is sent as
input to the MLP module. The data is normalized using the
batch normalization approach until submitted to the final dense
layer. The final layer has just one neuron with a sigmoid activation
mechanism. The pseudo-code of the MLP-GRU technique is given
in Table 2. On the other hand, an overview of the proposed hybrid
system can be seen in Figure 4.

Initialize the MLP-GRU model:

a. Create an MLP with n−layers fully connected layers and
Rectified Linear Unit (ReLU) activation function. Each layer
should have dropout rate.

b. Create a GRU layer with n−units hidden units and a sigmoid
activation function.

c. Concatenate the output of the MLP and the GRU layer.
d. Add a final fully connected layer with a sigmoid

activation function.

Train the MLP-GRU model:

a. Define the binary cross-entropy loss function and the Adam
optimizer with learning rate.

b. Train the model for n-epochs with a batch size of batch-size.
c. Evaluate the model on the validation set after each epoch and

save the best model.

The training, validation, testing and best performance data for
MLP-GRU model for theft detection is given in Figure 5.

3.4 Benchmark models

In this section, we explore some standard existing models that
are compared with the proposed hybrid model, such as Alexnet,
GRU, BGRU, and RNN as follows:

1. Alexnet: It is a deep CNN architecture that is widely recognized
as one of the key break throughs in the field of computer vision
and deep learning, as it achieved a significant improvement in
image classification accuracy on the ImageNet dataset. The
AlexNet architecture consists of five convolutional layers,
followed by three fully connected layers and a final softmax
layer for classification. It also incorporates several novel
techniques, including ReLU as activation functions, data
augmentation through image mirroring and cropping, and
dropout regularization to prevent overfitting. One of the
major contributions of AlexNet was demonstrating the
effectiveness of deep learning for image recognition tasks
and paving the way for subsequent advances in the field.
Many state-of-the-art CNN architectures build on the
foundations laid by AlexNet and continue to push the

TABLE 2 Pseudo-code of the MLP-GRU technique.

Algorithms of the proposed hybrid (MLP-GRU) model

Inputs:

SGCC dataset with features X and labels y

Number of epochs n–epochs

Batch size batch–size

Learning rate lr

Number of GRU units n–units

Number of MLP layers n–layers

Dropout rate dropout–rate

Output:

Trained MLP-GRU model with confusion matrix

Split the CNGC dataset into training, validation, and testing sets
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boundaries of image recognition and other computer vision
tasks (Khan et al., 2024).

2. GRU: It is a type of RNN architecture that addresses the
vanishing gradient problem and allows for capturing long-
term dependencies in sequential data. It was introduced as an

alternative to the traditional Long Short-Term Memory
(LSTM) units, offering a simpler and more computationally
efficient design. GRU units consist of update and reset gates,
which control the flow of information within the network. The
update gate determines how much of the previous hidden state

FIGURE 4
An overview of the proposed hybrid system.
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should be retained and how much of the new input should be
added. The reset gate helps the network decide how much of
the previous hidden state is relevant for the current input.
These gates enable GRUs to selectively update and reset their
hidden state based on the input sequence, allowing them to
capture both short-term and long-term dependencies. One
advantage of GRUs over LSTMs is their simplified architecture,
which leads to faster training times and requires fewer
parameters. This can be particularly beneficial when dealing
with large datasets or limited computational resources.
Additionally, GRUs have shown comparable performance to
LSTMs on various tasks, such as language modeling, speech
recognition, machine translation, and sentiment analysis. The
GRU technique has proven effective in modeling sequential
data due to its ability to handle both short-term and long-term
dependencies. It has been widely adopted in various fields,
including natural language processing, time series analysis, and
sequential data generation. Researchers and practitioners
continue exploring and refining GRU-based models,
exploring variations and combining them with other
techniques to improve their performance and accuracy
(Munawar et al., 2021).

3. BGRU: It is also a deep learning architecture commonly used
for sequential data modeling, such as text, speech, and time
series data. It is an extension of the standard GRU architecture
incorporating bidirectional processing, allowing the network to
learn from past and future input sequences. The architecture
consists of two parallel GRU layers, one processing the input
sequence in a forward direction and the other in a backward
direction. The outputs of these two layers are then

concatenated and passed through a dense layer for
classification or regression. BGRU is particularly useful for
applications where context information from past and future
input sequences is important, such as in natural language
processing tasks like sentiment analysis, named entity
recognition, and machine translation. BGRU has been
shown to achieve stateof-the-art performance on a wide
range of tasks and is often used as a baseline model for
comparison with more complex architectures. Overall,
BGRU is a powerful and versatile deep-learning technique
for sequential data modeling that has become increasingly
popular recently. The RNNs are deep learning models
commonly used for sequential data processing, such as text,
speech, and time-series data. Unlike traditional neural
networks that take fixed-size inputs and produce fixed-size
outputs, RNNs are designed to operate on variable length
sequences. They achieve this by including loops within the
network that allow information to persist over time. This
makes them particularly effective at processing inputs that
have a temporal or sequential nature (Gul, 2020).

4. RNN: The basic RNN architecture consists of a single recurrent
layer that processes input sequences one element at a time
while maintaining a hidden state that captures the network’s
internal representation of the input sequence up to that point.
However, standard RNNs can suffer from the vanishing
gradient problem, making it difficult to learn long-term
dependencies in the data. More advanced RNN
architectures have been developed to address this issue,
including LSTM and GRU networks. These architectures
incorporate specialized gating mechanisms that allow the

FIGURE 5
Performance graph showing the training, validation, testing and best performance after nine epochs for MLP-GRU model.
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network to selectively remember or forget information over
time, making them more effective at processing longer input
sequences. RNNs have shown impressive results in various
applications, including natural language processing, speech
recognition, and time-series forecasting (Bohani et al., 2021).

3.5 Performance matrix

This section provides an in-depth analysis to evaluate the
proposed hybrid system performance with that of the considered
benchmark models. In this study, accuracy, F1-score, precision,
recall, and Matthews’ correlation coefficient (MCC) are
performance indicators used to verify the effectiveness of the
proposed techniques. These are derived from the confusion
matrix parameters True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), which, respectively, reflect
the ratio of consumers who are classified as honest consumers
correctly, incorrectly as normal consumers, fraudulent users
correctly, and users incorrectly classified as fraudulent users. One
of the most frequently used measures to show the model’s
percentage of precise prediction is accuracy. The mathematical
Eq. 7 for the accuracy is given by (Zidi et al., 2023):

Accuracy � TP + TN

TP + FN + TN + FN
(7)

Increasing the True Positive Rate (TPR), Fraud Detection Rate
(FDR), and low false positive rate is the main goal of ETD (Jindal
et al., 2016). To detect NTLs using binary classification, the ROC-
AUC is a suitable metric. To create it, TPR, also known as recall, is
plotted against false positive rate while the decision thresholds are
being adjusted. The range of the score is 0–1. In the event of a class
imbalance issue, it is a more precise measurement. False positive rate
and TPR are helpful metrics for evaluating a model’s effectiveness at
detecting NTLs, but they do not account for precision. Hence, PR-
AUC is a helpful metric that is also an appropriate measure for
imbalanced datasets to assess the model’s precision. Thus, the
mathematical form for the precision, recall, F1-score, and MCC
are given in Eqs 8–11 (Razavi et al., 2019).

Recall � TP

TP + FN
(8)

Precision � TP

TP + FP
(9)

F1 Score � 2p
PrecisionpRecall

Precision + Recall
(10)

MCC � TP*TN − FPpFN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√

j

(11)

In contrast to performance measures, to assess the significance
of the differences in the prediction performance of the proposed
models, the Diebold and Mariano Test (DMT) was performed
(Meidan et al., 2020). The DMT is a widely used statistical test
for comparing predictions obtained from different models. To assess
whether the prediction accuracy of the proposed prediction model is
significantly better than that of benchmark models, DMT statistic
was introduced in this study, as determined by the Eq. 12:

D � x�����
V �x( )√ (12)

Where; �x � 1
t ∑t

n�1xn, xn � (zn − ~z1n)2 − (zn − ~z2n)2,

V �x( ) � 1
t

2∑t−1
j�1 rj + r0( ), and rj � cov xn − xn−j( )

~z1n is the predicted value of the first predictive model and ~z2n is
the predicted value of the second predictive model at time n. If the
DMT statistic is negative, the first predictive model is statistically
better than the second predictive model.

4 Results and discussion

Real-time consumer data for residential customers makes up the
exploited data. The customers are divided into two groups based on
similar indexing patterns and appropriately designated
consumption categories. Each consumer’s consumption pattern is
represented by a staging numeric binary. Label 0 denotes an honest
consumer, while label 1 denotes a dishonest one. Each consumer’s
tracked and reordered patterns are collected every 24 h. For each of
the theft versions, benign class data is modified to create harmful
data. Data from both types is later combined. Due to the model’s
deviation towards the majority class, a data balancing strategy is
necessary to minimize the class bias issue. The data is balanced using
K-means SMOTE. The hyper-parameters and their appropriate
values obtained during the tuning of the proposed MLP-GRU
model are shown in Table 3. Due to their lengthy computation,
we investigate fewer hyper-parameters.

The proposed model’s training process is handled by the epoch
variable. We accomplish 15 iterations, or epochs, of our model. The
results show that the MLP-GRU’s training accuracy (accuracy on
seen data) gradually improves with each iteration, reaching a
maximum of 86% in the last iteration. Whereas the MLP-GRU
accuracy gradually rises as well, reaching 88% at the final iteration
when utilizing the testing data (accuracy using unseen data). The
CNGC dataset has some zero values, which makes it difficult for the
proposed classifier to learn it correctly in the early iterations. As a
result, during the first three epochs, training accuracy is higher than
testing accuracy, indicating that overfitting has taken place. The
suggested model successfully learns the zero values after the third
iteration and the overfitting problem is fixed. At various iterations,
the MLP-GRU loss is also calculated and recorded. The training loss
is decreasing with each iteration, until it achieves a minimum of
0.108 at the 10th iteration. The testing loss also decreases until the

TABLE 3 Hyper parameters of MLP-GRU.

Hyper parameters Values

Epoch 30,50

Batch size 32,64

Optimizer Adam, adammax, SGD

Dropout 0.3,0.2,0.5,0.01,0.1

Activation Relu, elu, sigmoid
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final iteration, when it hits 0.080. Due to the zero values included in
the dataset, the model overfits during the first three iterations. After
the third iteration, the model has learned both the dataset and the
zero values, which eliminates the overfitting problem. Finally, the
proposed model’s training and testing accuracy leads to the
conclusion that it generalizes effectively and avoids overfitting.

Using the same dataset, we trained the Alexnet, BGRU, and
RNN models to compare our proposed hybrid model (MLP-GRU)
to benchmark methods. Hence, Table 4 displays the performance
measures and PR-AUC for the MLP-GRU, Alexnet, BIGRU, and
RNN models in three training and testing sets cases. In the first case
of 50% training and 50% testing, the proposed MLP-GRU produced
recall 90, precision 87, F1-Score 89, accuracy 87.80, test loss 32, AUC
91, ROC 100, and MCC 73, respectively. Meanwhile, Alexnet
produces recall 85, precision 96, F1-Score 90, Accuracy 87.63,
test loss 34, AUC 94, ROC 85, MCC 73, and GRU poorly
performed with recall 75, precision 86, F1-Score 80, Accuracy
74.98, test loss 49, AUC 85, ROC 75, and MCC 46, respectively.
Moreover, in the second case of 75% training and 25% testing, the
proposed model yields recall 95, precision 95, F1-Score 91, accuracy
92.12, test loss 90, AUC 93, ROC 100, andMCC 76, respectively, and
Alexnet yields the second-best results with recall, precision, F1-
Score, Accuracy, Test loss, AUC, ROC, and MCC 94, 91.01, 20, 90,
97, and 82 accordingly. However, the results produced by other

benchmarks were not up to par in the second case either. Similarly,
the proposed models show the best performance in the third case of
90% training and 10% testing set with recall 95, precision 94, F1-
Score 94, accuracy 93.33, test loss 20, AUC 95, ROC 100, and MCC
85, followed by Alexnet with recall 94, precision 86, F1-Score 90,
accuracy 89.12, test loss 22, AUC 94, ROC 80, and MCC 64.
Meanwhile, GRU again performed poorly with the metrics of
recall 88, precision 86, F1-Score 87, accuracy 83.86, test loss 37,
AUC 89, ROC 80, and MCC 64.

It is evident from the results that the proposed model
outperformed other models, and Alexnet was found to be the
second-best performer in all three cases because it uses a
k-means smote sampling technique to balance the data.
However, GRU, performs the least well among the classifiers,
with an accuracy of 74.98% at a 50% training ratio. This is
because GRU does not capture long-term dependencies from the
huge time series data since it is based on the probability notion
and employs neural network theory. Furthermore, the training
using the majority of class samples makes it biased when
identifying genuine incidents of electricity theft. As a result,
GRU is unable to classify the vastly unbalanced dataset
accurately. By achieving 87% accuracy, the Alexnet, in
contrast, performs marginally better than the BGRU. Alexnet
is a deep learning model that extracts hidden patterns from data

TABLE 4 Performance measures of the proposed MLP-GRU with various training and testing case.

Case 1: 50% training and 50% testing set.

Methods Recall Precision F1-Score Accuracy Test loss AUC ROC MCC

MLP-GRU 90 87 89 87.80 32 91 100 73

Alexnet 85 96 90 87.63 34 94 85 73

BGRU 89 82 86 83.55 38 88 82 66

RNN 89 82 85 83.13 35 91 89 65

GRU 75 86 80 74.98 49 85 75 46

Case 2: 75% training and 25% testing set.

Methods Recall Precision F1-Score Accuracy Test loss AUC ROC MCC

MLP-GRU 95 95 91 92.12 19 93 100 76

Alexnet 94 92 93 91.01 20 90 97 82

BGRU 89 73 80 78.24 46 84 80 57

RNN 87 87 87 84.39 35 91 88 66

GRU 82 89 85 81.57 39 90 80 60

Case 3: 90% training and 10% testing set.

Methods Recall Precision F1-Score Accuracy Test loss AUC ROC MCC

MLP-GRU 95 94 94 93.33 20 95 100 85

Alexnet 94 86 90 89.12 22 94 95 78

BGRU 92 80 85 82.46 37 90 85 64

RNN 93 70 80 78.30 68 88 86 59

GRU 88 86 87 83.86 37 89 80 64
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on power use to detect electricity thieves. It has numerous stacks
of hidden layers. However, because of the thick layers, it suffers
from overfitting problems. It is unable to perform well across the
board. Furthermore, we have compared our proposed model
concerning execution time, and it is revealed in Table 5 that the
execution time of the proposed hybrid MLP-GRU is 106.837 s in
the first case of 50% training, 147.163 s for 75% training, and
167.221 s in 90% training set. This indicates that the proposed
model is executed in less time than other benchmark models,
including GRU, BGRU, and RNN, except for Alexnet. The
Alexnet model here performed best in terms of less execution
time due to the issues of imbalanced binary classification; this
method works better in the least possible time.

Finally, the DMT results (test statistic values) are tabulated in
Table 6. This table confirms that the prediction of the proposed
hybrid system demonstrated that the GRU-MLP model
significantly outperformed Alexnet, GRU, BGRU, and RNN.
Moving forward, the corresponding test statistical values were
negative in all cases at the 5% significance level using the loss
square function. In the end, the performance of the proposed
MLP-GRU versus the baseline models is plotted in Figure 6 for all
three scenarios of training and testing, such as 50%, 50%; 75%,
25%; and 90%, 10%. The first scenario (50%, 50%) of performance
matrices such as recall, precision, F1-Score, accuracy, test loss,
AUC, ROC, and MCC is displayed in Figure 6A. The MLP-GRU
is represented by a blueviolet bar, Alexnet by a periwinkle blue
bar, BGRU by a green bar, a pink bar for RNN, and GRU by a
yellow bar for the first case of training and testing, respectively.
Therefore, it is evident in the bar plot that the proposed MLP-
GRU performed best, followed by Alexnet, and GRU showed
poor performance for ET prediction in smart grids. Moreover,
Figures 6B, C explore the performance of these considered
models for the second (75%, 25%) and third (90%, 10%) cases
of the training and testing sets. After thoroughly evaluating the
displayed plots, it was concluded that the proposed MLP-GRU
model outperformed their competitors in the consistent
prediction of electricity thefts in smart grids. However, the
Alexnet model showed the second-best results. Additionally,
we have plotted level plots of DMT p-values in Figure 7 for
the proposed MLP-GRU, Alexnt, BGRU, RNN, and GRU to
check their significance in predicting electricity thefts.
However, Figure 7A explores the p-values of the test for the
first case of 50% training and 50% testing, Figure 7B displays the
second of 75% training and 25% testing, and the third one is
plotted in Figure 7C for 90% training and 10% testing set. It is
confirmed from the plotted level plot that the proposed MLP-
GRU significantly outperformed other used deep learning models
in electricity theft prediction.

To evaluate the effectiveness of the proposed hybrid system for
ETD by comparing its performance with other state-of-the-art
methodologies reported in the literature. To achieve this, we have
presented a comparison Table 7 that highlights the superiority of the
proposed hybrid system compared to the best approaches reported in
the literature. For instance, study (Khan et al., 2024), the proposed
method used the current study dataset and obtained performance
measures [accuracy (91%), precision (97.96%), and area under curve
(91.68%)] that were comparatively higher than our proposed hybrid
technique [accuracy (93.3%), precision (97.5%), and area under curve
(95%)]. In another study, (Munawar et al., 2021), the best-proposed

TABLE 5 Execution time of the proposed MLP-GRU with various training and testing cases.

Technique (epochs = 30) 50% training (sec) 75% training (sec) 90% training (sec)

Alexnet 88.118 125.370 136.577

MLP-GRU 106.837 147.163 167.221

GRU 182.175 239.909 665.178

RNN 185.077 239.092 248.284

BGRU 1120.171 1832.843 1921.032

TABLE 6 The results (DM statistic) using the square loss function.

Case 1: (50% training and 50% testing set)

Models MLP-GRU Alexnet BGRU RNN GRU

MLP-GRU 0.00 −0.49 −3.08 −3.05 −6.75

Alexnet 0.49 0.00 −2.98 −2.61 −7.11

BGRU 3.08 2.98 0.00 2.42 −8.02

RNN 3.05 2.61 −2.42 0.00 −7.49

GRU 6.75 7.11 8.02 7.49 0.00

Case 2: (75% training and 25% testing set)

Models MLP-GRU Alexnet BGRU RNN GRU

MLP-GRU 0.00 0.57 - −1.13 −2.33 0.05

Alexnet 0.57 0.00 −0.11 −0.99 0.96

BGRU 1.13 0.11 0.00 −2.19 1.62

RNN 2.33 0.99 2.19 0.00 2.29

GRU −0.05 −0.96 −1.62 −2.29 0.00

Case 3: (90% training and 10% testing set)

Models MLP-GRU Alexnet BGRU RNN GRU

MLP-GRU 0.00 −2.40 −2.37 −3.12 −1.13

Alexnet 2.40 0.00 2.42 1.21 2.86

BGRU 2.37 −2.42 0.00 −3.86 3.43

RNN 3.12 −1.21 3.86 0.00 4.57

GRU 1.13 −2.86 −3.43 −4.57 0.00
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method used the current study dataset and computed the
performance metrics [accuracy (89.9%), F-score (90.86%), and area
under curve (78%)] that were also comparatively higher than our
proposed system. On the other hand (Gul, 2020), reported the best-
proposed approach for detecting electricity theft in the smart grid. For
comparison, the authors obtained the evaluation measures for this
approach, such as accuracy (91.29%), F1 score (90.96%), and area
under the curve (0.87%), which were comparatively greater than the
current proposed hybrid system. However, in the work (Bohani et al.,
2021), the best-proposed method used the present study dataset and
computed the performance indicators, that is, accuracy (91%),
F1score (88.99%), and area under the curve (86%) that were also
relatively higher than our proposed hybrid system. Also, the best-
proposed model of (Razavi et al., 2019) was applied to this work’s
dataset, and their performance measures were obtained. The best-

proposed model of (Meidan et al., 2020) reported the performance
measures values as the following: accuracy = 57.70%, F-score =
70.01%, and area under curve = 77.01%, respectively, which are
remarkably greater than our performance measures values:
accuracy = 93.3%, F-score = 94.96%, and area under the curve =
95%. In a previous study (Pamir et al., 2022), the authors used the
same dataset as our proposed hybrid system and achieved higher
performance measures. For example, the accuracy, F1-score, and area
under curve achieved by their best method were 73.20%, 70.10%, and
69.50%, respectively, which were significantly better than our
proposed measures. Another study (Qu et al., 2020) also used our
dataset and achieved higher accuracy (87.90%), F-score (96.11%), and
area under the curve (87.90%) than our proposed hybrid system. In
summary, our proposed hybrid system achieved high accuracy but
was outperformed by the best methodologies in the literature.

FIGURE 6
The performancemeasures bar plot for the proposed MPL-GRU vs. benchmark models with different training and testing datasets; (A) 50%, 50%, (B)
75%, 25%, and (C) 90%, 10%.
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5 Conclusion

ETD is a significant issue in many countries, leading to a
substantial financial loss for power utilities worldwide. However,

conventional methods for ETD face challenges such as the curse of
dimensionality and an imbalanced distribution of electricity
consumption data. To overcome these problems, this study
proposes a hybrid system named MLP-GRU that analyzes and

FIGURE 7
The level plots DMT results (p-values) for the proposed MPL-GRU vs. benchmark models with different training and testing datasets; (A) 50%, 50%,
(B) 75%, 25%, and (C) 90%, 10%.

TABLE 7 The proposed work versus the related work performance indicator on CNGC data.

Technique Data Performance

The proposed model CNGC Recall = 95%, Precision = 97.5% F1-Score = 94% Accuracy = 93.33%, Test loss = 20% AUC = 95%, ROC =
100%, and MCC = 85%

Time and Location Gated Recurrent Unit (Pamir et al.,
2022)

CNGC Accuracy = 91%, Precision = 97.96%, and AUC = 91.68%

Wide and Deep Convolutional Neural (Zheng et al.,
2017)

CNGC AUC = 0.78, Mean Absolute Percentage Error = 0.90

SMOTE, LSTM (Qu et al., 2020) CNGC Accuracy = 0.89, Precision = 0.90, Recall = 0.87

SMOTE-LINK, Kernel, BGRU (Ramos et al., 2016) CNGC AUC = 0.86, Precision = 0.80, Recall = 0.89

CNN-LSTM (Hasan et al., 2019) CNGC Accuracy = 0.74, Precision = 0.725, recall = 0.85, F1-score = 0.779, ROC = 0.817

SVM (Toma et al., 2019) CNGC Accuracy = 0.577, Precision = 0.545, recall = 0.851, F1-score = 0.701, ROC = 0817

LR (Buzau et al., 2018) CNGC Accuracy = 0.732, Precision = 0.804, recall = 0.622, F1-score = 0.701, ROC = 0.645

LSTM (Adil et al., 2020) CNGC Accuracy = 0.879, Precision = 0.889, recall = 0.910, F1-score = 0.9611, ROC = 0.879
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solves electricity theft using data from the CNGC. The proposed
hybrid system consists of several steps. Firstly, the data undergoes
preprocessing. Secondly, the k-means SMOTE technique is used to
balance the data. Thirdly, the GRU model is applied to the
extracted, purified data. Fourthly, the MLP model is also
applied to the extracted, purified data. Finally, the performance
of the proposed system is evaluated using various performance
measures like a graphical analysis and a statistical test. To verify
the consistency of the proposed hybrid system, the dataset is
trained and tested using three different ratios. The study’s results
show that the proposed hybrid system for ETD is highly accurate
and efficient compared to other models including Alexnet, GRU,
BGRU and RNN. In our case, Hybrid MLP-GRU has solved
complex nonlinear problem. It handles large amounts of input
data and makes quick predictions after training. The same
accuracy ratio can be achieved even with smaller samples.

The main advantage of this research is introducing an
effective ETD model for power utilities, which enables them to
minimize financial loss. Furthermore, the accurate and prompt
detection of energy thieves decreases line losses in transformers
and other grid components. The suggested model also has certain
drawbacks. The model can only be trained using high-frequency
data on electricity consumption, which restricts its ability to
capture the minutest electricity consumption trends. Its accuracy
was also reduced as a result, more cases of misclassification occur.
Furthermore, there is no method for tweaking the hyper
parameters, so it can take much computing time. In the
future, we will improve its performance by using the
minimum frequency dataset and decreasing the delay in
identifying electricity theft in the CNGC dataset. Finally, the
authors believe that the system proposed in this work can be
extended to the ETD in other parts of the country and the world.
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Nomenclature

(ETD) Electricity Theft Detection

(MLP) Multi-Layer Perceptron

(GTU) Gated Recurrent Units

(CNGC) Chinese National Grid Corporation

(SMOTE) Synthetic Minority Oversampling Technique

(BGRU) Bidirectional Gated Recurrent Unit

(RNN) Recurrent Neural Network

(TL) Technical Losses

(NTLs) Non-Technical Losses

(UK) United Kingdom

(USA) United States of America

(AMI) Advanced Metering Infrastructure

(RF) Random Forest

(DT) Decision trees

(BE) Bagging Ensemble

(ANN) Artificial Neural Networks

(KNN) K-Nearest Neighbors

(NAS) Neural Architecture Search

(AUC) Area Under the Curve

(LSTM) Long Short-Term Memory

(CNN) Convolutional Neural Networks

(Bi-LSTM) Bidirectional Long Short-Term Memory

(2D-CNN) Two-Dimensional Convolutional Neural Networks

(ABC) Artificial bee Colony

(DNN) Deep Neural Network

(IoT) Internet of Things

(SVM) Support Vector Machine

(CVAE) Conditional Variation Auto-Encoder

(IoT) Internet of Things

(DoS) Denial-of-Service

(DDoS) Distributed Denial-of-Service

(U2R) User-to-Root

(R2L) Remote-to-Local

(MITM) Man-in-the-Middle

(WAMS) Wide Area Monitoring System

(MDML) Mixture Density-based Maximum Likelihood

(TLF) Track-Level Fusion

(MPI) Message Passing Interface

(TBSSVM) Technique with Support Vector Machine

(TCN-EMLP) Temporal Convolutional Network with Enhanced Multi-Layer
Perceptron

(GMM) Gaussian Mixture Model

(SI) Simple Imputer

(ReLU) Rectified Linear Unit

(LSTM) Long Short-Term Memory

(MCC) Matthews’ correlation coefficient

(TP) True Positive

(TN) True Negative

(FP) False Positive

(FN) False Negative

(TPR) True Positive Rate

(FDR) Fraud Detection Rate

(DMT) Diebold and Mariano Test.
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