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As the proportion of new energy continues to increase, the safety and stability of
the new power system are challenged, urgently requiring the allocation of new
flexible resources. This paper proposes a two-stage robust capacity optimization
model considering flexibility demand constraints. Firstly, the uncertain
characteristics of new energy are described, and a model of flexible resource
adjustment capacity is established. Then, uncertain parameters are introduced to
construct a robust capacity optimization model considering supply-demand
balance, solved by column constraint generation algorithm and KKT theorem.
Finally, a power system in a certain region of China is selected as the simulation
object for empirical analysis to verify the effectiveness of the constructed model.
The results show that the two-stage robust configuration optimization model
constructed in this paper can address the uncertainty of power system and the
flexibility demand brought by new energy, and the planning results can achieve a
balance between the safety and economy of the new power system.
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1 Introduction

With the ongoing development of the new type of power system, the increasing
penetration rate of new energy sources, such as wind and photovoltaic, in the power
system has brought about significant challenges and uncertainties. Flexibility has emerged
as a core attribute for assessing the power system’s resilience in handling uncertainty.
Therefore, it is of paramount importance to conduct capacity optimization configuration of
multiple types of new flexible resources with flexibility adjustment capability, attending to
effectively accommodate new energy sources and address uncertainty.

The planning and configuration resources are the foundation for constructing a new
type of power system with safety and stability. New types of flexibility resources such as
distributed generation (Pandey and Awasthi, 2020), data center (Sun et al., 2016) and
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hydrogen energy storage system (Ren et al., 2015) are playing an
increasingly important role in the new power system.
TORREGLOSA et al. established a dispatching optimization
model for multiple types of flexibility resources on the basis of
Model Predictive Control (MPC) (Torreglosa et al., 2015). As the
proportion of new energy generation continues to increase, scholars
have adopted series of methods such as to model the impact of
uncertainty of new energy on flexibility resource configuration
robust optimization (Chen and Li, 2021) and stochastic
programming (Grover-Silva et al., 2018), et al. Based on the
uncertainty of wind and PV, Ju L et al. established a multi-
objective robust model to maximize the benefits of virtual power
plants and minimize operational risks (Ju et al., 2019). Hong
developed a two-stage robust optimization model to optimize the
configuration of a hybrid hydroelectric and pumped system, which
is designed to address uncertainties in wind and photovoltaic power
generation and aims to achieve efficient complementarity between
different energy sources (Hong et al., 2023). The above literature
research still focused on meeting the energy balance and neglected
the impact of system flexibility requisite on resource allocation. As a
result, it fails to effectively meet the system’s flexibility requisite,
leading to compromised operational stability. In considering
flexibility requirements within the resource allocation model,
ensuring flexibility supply-demand matching will result in
allocating more resources. Although this slightly reduces
economic efficiency, it guarantees system flexibility and ensures
stable and secure system operation.

Accurately characterizing the flexibility requisite is a
prerequisite for achieving a balance between the requisite for
flexibility in the new power system and its corresponding supply.
Currently, there are two main methods for quantifying flexibility
requisite: circumstance-based approach and interval-based
approach. For circumstance-based approach, referring to the
correlation between the output of wind power and solar power,
some scholars use probability density functions to describe flexibility
requisite (Ji et al., 2018; LI et al., 2020). However, this method cannot
accurately describe the flexibility requisite in each time period, and
thus has certain limitations. For interval-based approach, some
scholars adopted the fluctuation coefficient to manually set the
top and bottom limits of prediction deviation attending to
describe the range of flexibility requisite (Nicholas and Pierluigi,
2019; Lin et al., 2023). HUO establishes a joint fluctuation domain
for renewable energy, thereby transforming it into flexibility
requisite, based on the consideration of volatility and correlation
(Huo et al., 2020).

Taking flexibility requisite into account during the process of
power system planning can be an efficient mechanism for
strengthening the integration capacity of renewable energy and
mitigating the negative consequences caused by the uncertainties
associated with renewable energy and power load. Zhang proposed a
hybrid energy storage optimization model that took into account
requisite of the upward and downward regulation from the power
system. Themodel aims to ensure the economic and stable operation
of the system by optimizing the configuration of energy storage
technologies (Zhang et al., 2023). DANESHVAR et al. constructed a
two-stage optimal model of types of flexibility resources based on
stochastic programming to meet the stable operation of the system
considering flexibility of the new power system (Daneshvar et al.,

2020). Du constructed a planning model with uncertainty of new
energy using Conditional Value-at-Risk (CVaR) considering the
flexibility constraints of the system and verified the effectiveness of
the model (Mingkun et al., 2021). MIANAEI et al. incorporated
flexibility constraints into their study and developed a capacity
configuration model for wind, solar, and hydro-pumped storage
systems utilizing the chance-constrained planning method, which
ensured reliable operation while considering uncertainties (Mianaei
et al., 2022).

In summary, although domestic and foreign scholars have
proposed the configuration optimization model for flexibility
resources, there is a lack of consideration for the planning and
configuration of new flexibility resources and constructing a
configuration optimization model for the new flexibility resources
considering the challenge of addressing requisite of the upward and
downward regulation of the power system in relation to the
uncertainty of renewable energy generation has persisted.
Referring to the above shortcomings, this paper establishes a
two-stage robust capacity optimization configuration model
considering flexibility requirements. Firstly, attending to quantify
the impact of the uncertain output of new energy on the flexibility
requisite, this paper characterizes the flexibility requisite to achieve
the coordination of economy and flexibility of the new flexible
resource allocation. Secondly, considering the uncertainty of new
energy output, a two-stage robust capacity optimization
configuration model considering flexibility requirements is
constructed, and the model is solved by CCG and KKT methods.
Finally, the power system of a certain place in China is selected as the
simulation object for empirical analysis to assess the effectiveness of
the proposed model.

2 Flexibility characterization
considering uncertainty

Flexibility requisite arises as a result of upward and downward
regulation requisite in different directions by net loads influenced by
the uncertainty of output of new energy in conjunction with electric
load fluctuations. For quantitatively analyzing the flexibility
requisite of the power system, this section proposes a flexibility
portrayal methodology considering the uncertainty.

2.1 Theory of flexibility characterization

The goal of flexibility resource capacity configuration is to satisfy
power system flexibility requisite at minimal economic cost.
Therefore, flexibility characterization becomes a key prerequisite
for flexibility resource capacity configuration. In this paper, the
interval method is used to characterize the flexibility requisite of the
power system, and the following are the specific procedures to
be followed.

(1) Determine the top and bottom bounds of forecasting error of
net load. Flexibility requisite arises from the forecast
deviation of net load. Its essence is difference between the
net load of adjacent time intervals, due to the prediction
deviation makes the actual regulation produce a higher
upward requisite than the prediction result or a
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downward requisite opposite to the prediction. Attending to
more comprehensively characterize the flexibility requisite
due to net load forecast deviation, this paper sets fluctuation
coefficients to define the top and bottom bounds of the
deviation for wind, PV and electric loads.

Lmax
wt,t � 1 + λwt( )Lwt,t

Lmin
wt,t � 1 − λwt( )Lwt,t

Lmax
pv,t � 1 + λpv( )Lpv,t

Lmin
pv,t � 1 − λpv( )Lpv,t

Lmax
c,t � 1 + λc( )Lc,t

Lmin
c,t � 1 − λc( )Lc,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

where, Lwt,t, Lpv,t, Lc,t, respectively, represent the power of wind
power, photovoltaic (PV) power, and electricity demand; λwt, λpv,
and λc, respectively, represent fluctuation coefficient of wind power,
photovoltaic (PV) power, and electricity demand; Lmax

wt,t , L
max
pv,t , L

max
c,t ,

Lmin
wt,t, L

min
pv,t, L

min
c,t , respectively, represent the top and bottom bound of

the deviation of wind power, photovoltaic (PV) power, and
electricity demand. The volatility coefficient can be determined
based on historical experience.

The top and bottom bounds for net load deviation are as follows:

Lmax
t � Lmax

c,t − Lmin
wt,t − Lmin

pv,t

Lmin
t � Lmin

c,t − Lmax
wt,t − Lmax

pv,t
{ (2)

where, Lmax
t and Lmax

t represent the top and bottom bounds net
load deviation.

(2) Characterize the flexibility requisite intervals. In general, the
flexibility requisite of net load is to subtract the net load
forecast value at a certain moment from the net load forecast
value at the previous moment, which ignores the forecast
deviation caused by the uncertainty of net load. The net load
forecast deviation is included in the net load fluctuation
range to calculate the flexibility requisite. By analyzing the
net load curve and considering the top and bottom limits, the
deviations in net load can be determined, which allows for
the identification of flexibility requirements in both upward
and downward directions for each time period.

As known in Figure 1, if Lt−1 ≤Lmin
t , only flexibility requisite in

the upward direction exists at time t; if Lmin
t ≤ Lt−1 ≤ Lmax

t , flexibility
requisite in the both upward and downward directions exist at time
t; if Lt−1 ≥ Lmax

t , only flexibility in the downward direction requisite
exists at time t.

2.2 Flexibility characterization based on
interval method

In addition to the time-series fluctuations that characterize net
loads, the uncertainty of net loads is also an important trigger for
flexibility requisite. Therefore, determining the uncertainty variation
interval of net load is a necessary step in portraying flexibility
requisite. From formular Eqs. 1, 2, net load deviation, top and
bottom bounds can be obtained.

Lt[ ] � Lt + δ−L,t, δ
+
L,t[ ] (3)

Lmax
t � Lt + δ+L,t (4)

Lmin
t � Lt − δ−L,t (5)

where, δ−L,t and δ
+
L,t represent downward and upward deviation of net

load at time t; Lmax
t and Lmin

t represent the top and bottom bounds of
net load at time t.

In addition, flexibility requisite needs to take into account
directionality, encompassing both upward and downward
directions:

Fup
FD,t � max Lmax

t − Lt−1, 0{ } (6)
Fdown
FD,t � max Lt−1 − Lmin

t , 0{ } (7)

where, Fup
FD,t and Fdown

FD,t represent the top and bottom flexibility
requisites of the system at time t.

3 New flexibility resource regulation
capability

New flexibility resources have tremendous flexibility regulation
capabilities, fast response speed, and are increasingly involved in the
interaction with the power system, playing an increasing role in
meeting the flexibility regulation requisite of the power system.

3.1 Distributed generation regulation
capability

There are many types of distributed power sources, which can be
categorized into controllable distributed power sources and
uncontrollable distributed power sources according to whether
they can participate in the scheduling of the distribution
network. Controllable power supply includes micro-gas
generations, fuel power, etc., whose output power can regulate
the net load, and can provide flexibility regulation on the scale of
15 ~ 60 min.

FDG,+ � min Pi,DG,max − Pi,DG,t,Δt × ri,DG,+{ } (8)
FDG,− � min Pi,DG,t − Pi,DG,min,Δt × ri,DG,−{ } (9)

FIGURE 1
Schematic of the flexibility requisite interval.
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where, FDG,+ and FDG,−, respectively, represent upward and
downward flexibility regulation capabilities provided by
distributed generation at time t; PDG,max, PDG,min and PDG,t,
respectively, represent maximum output, minimum output, and
current output of distributed generation at time t; rDG,+ and rDG,−
are upward and downward ramp rates for distributed generation.

3.2 New energy storage regulation capability

New energy storage mainly includes electrochemical energy
storage and hydrogen energy storage system and so on. Among
them, the hydrogen energy storage system has a fast response speed
and can provide a certain degree of flexibility in smaller or longer
time scales, but due to technical constraints, the scale of hydrogen
production is relatively limited, resulting in a smaller response
depth. Therefore, hydrogen energy storage systems are suitable
for providing flexibility regulation on 15–60 min time scales.
Electrochemical energy storage has a faster charge/discharge rate,
which can be quickly realized to smooth out random fluctuations
with high fluctuation frequency and low energy on short time scales,
and is suitable to provide flexibility regulation on short time scales
of <15 min, and also can provide some regulation capability on
medium time scales. The flexibility regulation capability of the new
energy storage mainly depends on the maximum storage power, top
limit of charging and discharging power, as shown in the
following equation.

Fup
k,t � min Pdis

k,max − Pk,t, r
up
k Δt, Ek,t − Ek,min( )ηdisk − Pk,tΔt

Δt( )
Fdn
k,t � min Pch

k,max + Pk,t, rdnk Δt, Ek,max − Ek,t( )/ηchk + Pk,tΔt
Δt( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)

where, Fup
k,t and Fdn

k,t are capacity of the type k of energy storage to
supply flexibility regulation in the upward and downward directions
at the time t; Pdis

k,max and Pch
k,max, respectively, represent the top limit

of charging/discharging of the type k of energy storage; Pk,t is the
operating power of the type k of energy storage at the moment t, with
positive being the discharging, and negative being the charging; rdnk
is the rate of ramping of the type k of energy storage; Ek,max and
Ek,min, respectively, represent the top and bottom limits of electricity
that can be stored by the type k of energy storage; Ek,t is the current
level of energy storage capacity for type k determined by the amount
of electricity that can be stored at time t; ηchk and ηdisk are the
efficiency of charging and discharging of the type k of
energy storage.

4 Two-stage robust configuration
optimization model and algorithm for
new flexibility resources

4.1 Theory of two-stage robust optimization

Two-stage robust optimization aims to attend to the
phenomenon of parameter uncertainty in the optimization
problem and is committed to optimizing the solution under

the worst case, so that the final solution owns the very strong
capacity to resist uncertainty or risk. The goal of two-stage robust
optimization is to jointly optimize the two-stage decision-making
while considering the uncertainty of the second-stage parameters
(Zeng and Zhao, 2013). The decision of the first stage needs to be
made first, and the decision of the second stage needs to be made
after the decision of the first stage is determined, and then the
corresponding second stage decision is made after the parameters
are revealed.

The abstract constraint model for two-stage robust optimization
is as follows:

min
y

cTy +max
u∈U

min bTx
x∈F x,u( )

(11)

s.t.

Ay≤d
Gx + Ey≥ h −Mu, u ∈ U
Sy ⊆ Rn

+
Sx ⊆ Rn

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (12)

where, y represents the decision variable of the first stage; x
represents the decision variable of the second stage; c represents
the determined parameters of the first stage.

4.2 Two-stage robust configuration
optimization model

The new flexibility resource is configured with a total target with
minimizing the comprehensive cost Csys, including the investment
cost and the operating cost.

minCsys � Cinv
DG + Cinv

BAT + Cinv
HES + CO (13)

Cinv
DG � cinvDGCDG (14)

Cinv
newsto � cinvBATCBAT + cinvHESCHES (15)

CO �∑T
t�1
αDGPDG,t + αBATPBAT,t + αHESPHES,t + αGPG,t

+ αbuyPbuy,t − αsellPsell,t (16)

where, Cinv
DG, C

inv
BAT, C

inv
HES and CO, respectively, represent investment

cost of distributed generation, electrochemical energy storage, and
hydrogen storage system and overall operation cost; cDG, cBAT, and
cHES, respectively, represent the capacity of distributed generation,
electrochemical energy storage and hydrogen storage systems; αDG,
αBAT, αHES, and αG, respectively, represent the operation cost of
distributed generation, electrochemical energy storage, hydrogen
storage systems and thermal generation; αbuy, αsell, respectively are
the purchase price and sale price of electricity.

Starting from the planning and operation stages of new flexible
resources, this paper considers the capacity constraints of new
flexibility resources, the operation constraints of each new
flexibility resource, and the constraints of power-load and
flexibility supply and requisite balance, as follows:

4.2.1 New flexibility resource planning capacity
constraints

The model models the planning stage from the constructed cost
of distributed generation, electrochemical energy storage and
hydrogen energy storage systems, and the corresponding
constructed capacity constraints are as follows:
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SDG,min ≤CDG ≤ SDG,max

SBAT,min ≤CBAT ≤ SBAT,max

SHES,min ≤CHES ≤ SHES,max

⎧⎪⎨⎪⎩ (17)

where, CDG, CBAT, CHES, respectively, represent configuration
capacity of distributed generation, electrochemical energy storage,
and hydrogen storage system; SDG,min and SDG,max, respectively,
represent the top and bottom limits of configuration capacity of
distributed generation; SBAT,min and SBAT,max, respectively, represent
the top and bottom limits of configuration capacity of
electrochemical energy storage; SHES,min and SHES,max,
respectively, represent the top and bottom limits of configuration
capacity of hydrogen storage system.

4.2.2 Generation-load balance constraint
Due to the nature of electricity, it is necessary to balance the

power generation resources and the load at each time.

PDG,t + Pdis
BAT,t − Pch

BAT,t + Pbuy,t − Psell,t( ) + Pdis
HES,t − Pch

HES,t + PG,t

� Pload,t

(18)
where, PDG,t, PG,t, Pdis

BAT,t, Pch
BAT,t, Pdis

HES,t, Pdis
HES,t, Pload,t,

respectively, represent output of distributed generation,
thermal generation, discharge and charge of electrochemical
energy storage and hydrogen storage system, net load at time
t; Pbuy and Psell are the purchased electricity and sold electricity
from the external grid.

4.2.3 Interconnection with external power grid
constraint

Between the power generation resource and the external power
grid, the amount of electricity can be purchased when the external
electricity price is low, and the electricity can be sold when the
electricity surplus can be used to reduce operating costs, which can
be expressed as:

0≤Pbuy ≤ μ1P
max
buy (19)

0≤Psell ≤ μ2P
min
sell (20)

μ1 + μ2 ≤ 1 (21)
where, μ1 and μ2 are state variables for purchased and sold
electricity, which are binary variables.

4.2.4 New energy storage charging and
discharging constraints

Electrochemical energy storage and hydrogen energy storage
system energy storage are both new types of energy storage (Xiaoyan
et al., 2023), which need to meet the charge-discharge power
constraints and state-of-charge constraints during operation,
which can be expressed as:

0≤Pdis
new sto ≤X1Cnew sto (22)

0≤Pch
new sto ≤X2Cnew sto (23)

Emin ≤Enew sto,t ≤Emax (24)
Enew sto,t − Enew sto,t−1 � μnew stoP

ch
new sto,t − Pdis

new sto,t/μnew sto (25)
X1 +X2 ≤ 1 (26)

where, Cnew sto is the installed capacity of new energy storage;
Pdis
new sto,t and Pch

new sto,t, respectively, represent the charging and
discharging power of new energy storage; Enew sto,t is SOC of
new energy storage at time t; X1 and X2, respectively, represent
the charging and discharging state of new energy storage.

4.2.5 Distributed generation operating constraints
Distributed generation is subject to power constraints and

flexibility adjustment capacity constraints in operation:

Pmin
DG ≤PDG,t ≤Pmax

DG (27)
−FDG,− ≤PDG,t − PDG,t−1 ≤FDG,+ (28)

where, Pmax
DG and Pmin

DG are the maximum and minimum output of
distributed generation; FDG,i,− and FDG,i,+ are the upward and
upward regulation capacity of distributed generation.

4.2.6 Thermal generation operating constraints
As a traditional flexibility resource, thermal power units are

constrained by output constraints and climbing performance:

Pmin
G ≤PG,t ≤Pmax

G (29)
−rrated · Δt≤PG,t − PG,t−1 ≤ rrated · Δt (30)

where, Pmin
G and Pmax

G are the maximum and minimum output of
thermal generation; rrated is the ramp rate; PG,t is the output of
thermal generation at time t.

4.2.7 Flexibility supply-requisite balance
constraints

The flexibility of a power system is determined by the flexibility
supply capability and flexibility requisite.

Fup
sup ≥L

up
new (31)

Fdown
sup ≥ Ldown

new (32)
Fup
sup � ∑

i∈Qnew

Fup
i (33)

Fdown
sup � ∑

i∈Qnew

Fdown
i (34)

where From formular Eqs. 8–10, Fup
sup and Fdown

sup are the capacity to
provide upward and downward regulation of new flexibility resource;
Fup
i and Fdown

i are the capacity to provide upward and downward
regulation of each type of new flexibility resource From formular Eqs.
3–7, Lupnew and Ldownnew are the upward and downward flexibility
requisite; Qnew represents the set of new flexibility resources.

The goal of the planning and simulation stage is to minimize the
sum of planning and operating costs during the planning period.
The deterministic problems for objective functions in the planning
and operating parts are shown as follows:

minCsys � min Cinv + Cop[ ] (35)

Cinv � r 1 + r( )s
1 + r( )s − 1

Cinv
DG + Cinv

DR + Cinv
BAT + Cinv

HES( ) (36)
Cop � CO (37)

where, r is the discount rate; s is discount period; CO is the typical
daily system operation cost in formula Eq. 15.
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To analyze the impact of uncertainty factors in the planning
process of new type flexibility resources, this paper establishes an
uncertain setU for load and wind/solar power, which is expressed as:

U �

Lnew,t � L̂new,t + B+
1,t ×ΔPmax

new,t − B−
1,t ×ΔPmax

new,t

Lwt,t � L̂wt,t + B+
2,t ×ΔPmax

wt,t − B−
2,t ×ΔPmax

wt,t

Lpv,t � L̂pv,t + B+
3,t ×ΔPmax

pv,t − B−
3,t ×ΔPmax

pv,t

0<B+
i,t + B−

i,t ≤ 1,∑T
t�1
B+
i,t + B−

i,t ≤ Γ

i � 1, 2, 3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

where, L̂new,t, L̂wt,t, L̂pv,t, respectively, represent the forecasted values
of load, wind power, and PV at time t; ΔPmax

new,t, ΔPmax
wt,t , ΔPmax

pv,t ,
respectively, represent the maximum deviation of load, wind power,
and PV at time t; B+

i,t, B
−
i,t are binary variables; Γ is the conservatism

parameter, which takes into account the varying level of
conservatism required by different planning circumstances in
reality. Different values can be chosen in the planning process,
where a larger value indicates a more conservative model.

Considering the flexibility requisites, integrate the formula Eqs
11–38, can reconstruct the new flexibility resources configuration
model with the goal of minimizing the total cost of the system into a
two-stage robust optimization model, and for the planning model, it
is necessary to consider the planning results to meet the needs of
different operating situations, so the operation model of the sub-
stage is represented by the expectation of each typical daily
operating cost.

min
y

Cinv + Ep
ω∈Ω

max
u∈U

min
x∈F x,u( )

Cop[ ] (39)

s.t.

r y( )≥ 0
h x, y, u( )≥ 0
g x, y, u( ) � 0
y � CDG, CBAT, CHES[ ]T
xω � PG,ω, PDG,ω, PBAT dis,ω,[
PBAT ch,ω, PHES dis,ω, PHES ch,ω, Pload,ω]T
u � B−

t , B
+
t[ ]T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(40)

Where, r(y) includes Eq. 17; h(x, y, u) includes Eqs 19–24, 26–33;
g(x, y, u) includes Eqs 18, 25, 33, 34.

4.3 Model solution

For the above two-stage robust model, the CCG algorithm is an
effective way to solve the problem refer to Eqs. 39, 40. The CCG
algorithm divides the solution of the model into two stages: the main
and the sub-stage, and continuously adds the tangent plane of the
original problem, so that the two stages are continuously iterative to
obtain the optimal solution. In the first stage, a new flexibility
resources allocation scheme is considered to meet the needs of
the known circumstance and ensure safety, economy and stability,
so as to minimize the equipment investment cost, as shown in Eq.
41. The second stage is based on the installed capacity of the
equipment in the first phase, aiming to find the worst
circumstance so that the operating cost of each resource is
minimized in the worst circumstance, as shown in Eqs. 42, 43.

The objective function and constraint conditions of the main
problem are expressed as follows:

min cTy + η[ ]

s.t.

η≥ bTxl

Gy + Exl ≥ h
Axl ≥d
Kxl � k
Iuxl � u l( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(41)

where, c is the cost of construction in the first stage; b is the cost of
operation in the second stage; u(l) is the value of the uncertainty set u
obtained in the iteration l under the most extreme circumstance; xl

is the solution for the sub-problem in the iteration l. G, E, A,K, Iu
are the coefficient matrixes of the planning problem; η is the value of
the cutting plane.

The objective function of the subproblem is expressed as follows:

Ep
ω∈Ω

max
u∈U

min
x∈F x,u( )

bTx (42)

The sub-problem in the second stage is a two-layer optimization
problem, which can be solved by using the KKT condition to convert
the model of the subproblem into a single-layer mixed integer
programming. The transformation process is to transform the
inner layer minimization problem into a maximization problem
through the Lagrange dual theory, and then combine the KKT
condition to transform the inner layer subproblem into a KKT
conditional equation, so that the nonlinear model can be
transformed into a linearized form. The expressions are
simplified and integrated to obtain:

max
u∈U

∑Ω
ω�1

pωb
Tx

s.t.

∑Ω
ω�1

pω � 1

G�y + Ex≥ h
Ax≥ d
Kx � k
ETγ + ATλ +KTπ ≤ b
0≤ G�y + Ex − h( )i ≤Mvi
0≤ γi ≤M 1 − vi( )
0≤ Ax − d( )j ≤Mμj
0≤ λj ≤M 1 − μj( )
0≤ b − GTγ + ATλ +KTπ( )l ≤Mωl

0≤ xl ≤M 1 − ωl( )
x, γi, λj ≥ 0
vi, μj,ωl � 0, 1{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(43)

where, γ, λ and π, respectively, represent dual variables of
constraints; vi, μj,ωl are linearization auxiliary variables.

The solution process, based on the column and constraint
generation approach, can be summarized as follows:

(1) Initialize a set of net load forecasts as the most extreme
circumstance of the model.

(2) Set the number of iterations k, set the top bound to UB � ∞,
and the bottom bound to LB � −∞, substitute the worst
circumstance into the main problem model, and update
the solution result to the bottom bound.

(3) According to the results obtained by solving the main
problem, the calculated values are substituted into the sub-
problemmodel, and the objective function values and the new
most extreme values are obtained, which are returned to the
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main problem. Updates the result of the solution to the
top bound.

(4) Determine whether the gap between the top bound UB and
the bottom bound LB reaches the given convergence
threshold, if it is reached, the problem converges, stops
iteration, and obtains the optimal solution, otherwise
return to step (2) and continue to iteratively solve.

In summary, the flowchart of the two-stage robust configuration
optimization algorithm combining KKT conditions and C&CG
method is shown in Figures 1–3.

5 Example analysis

5.1 Example data

In this paper, the empirical analysis conducted on a specific
power system in China, and the data of historical annual load and
wind and photovoltaic are reduced to three typical daily curves
through clustering, and a new flexibility resource capacity
configuration optimization is carried out to verify the
effectiveness of the proposed method. Based on historical
experience, the uncertain fluctuation range of wind power and

FIGURE 2
Flowchart of the two-stage robust solution process.
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photovoltaic output is set to be 15%, and the uncertain fluctuation
range of load is 10% (Jabr, 2013). Figure 3–5 show the typical daily
curves of wind and solar power and load power. In terms of setting
the case parameters, the discharge time of the electrochemical
energy storage and hydrogen energy storage system is 4 h, the

service life is 20 years, and the charging and discharging
efficiency of the electrochemical energy storage system is 90%,
and the hydrogen energy storage system is affected by the
performance of the electrolyze and fuel cell, with the charging
efficiency of 88% and the discharge efficiency of 60%. The

FIGURE 3
Data prediction chart of typical daily one.

FIGURE 4
Data prediction chart of typical daily two.
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discount rate is 8%. Table 1 lists the flexible resource allocation
parameters.

5.2 Example result

The article discusses, using the data of load, wind and
photovoltaic from the third typical day as examples, the
equipment planning costs and operational costs under different
conservativeness levels, and determines the optimal capacity
configuration of various new flexibility resources.

According to the algorithm flow in Figure 2, iterative solution
of the master-subproblem is performed with a convergence
accuracy of 0.01. As shown in Figure 6, the CCG algorithm
exhibits good convergence and can achieve satisfactory
convergence accuracy with fewer iterations. The result of the
third iteration indicates convergence within the top and bottom
bounds, as shown in Figure 7. The typical daily net load is
depicted in the top part of Figure 7, where thermal power
units, external power grid purchases, and output from new

flexibility resources collectively contribute to load balancing,
as illustrated in the bottom part of Figure 7.

As shown in Figure 7, in the most severe circumstance, the
deviation of net load is concentrated during peak load periods. For
instance, the net load reaches the top limit of deviation during time
periods 6–12 and 16–19, while during time period 24, the net load
exhibits the most extreme circumstance of downward deviation due
to being at a bottom level. During time periods 6–12 and 16–19,
there is a high flexibility requisite in the power system. Due to the
slow ramping rate of thermal power units, distributed generation
provides the main flexibility capability for the system. Between time
periods 12–14, the cost is higher due to the influence of time-of-use
electricity prices when purchasing power from the external grid.
Choosing discharge from electrochemical energy storage can reduce
operating costs caused by purchasing electricity at higher prices. At
time period 17, as the electrochemical energy storage is at its
minimum state of charge, the hydrogen energy storage system
discharges to meet the load requisite. The new energy storage
system effectively balances the system’s flexibility and
economic efficiency.

FIGURE 5
Data prediction chart of typical daily three.

TABLE 1 Parameters of Flexibility resource configuration.

Distributed generation Electrochemical energy storage Hydrogen energy storage system

Investment cost (CNY/kW) 6,000 1,100 13,500

Operation cost (CNY/kW)) 0.48 0.2 1.5

top and bottom bounds of capacity — 0.1–0.9 0.1–0.9

Charging efficiency — 0.9 0.88

Discharging efficiency — 0.9 0.6
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Under the circumstance where the deviation of wind and solar
power output remains within 15% and the load deviation remains
within 10%, with conservatism parameters set as parameters, the
planning capacity of distributed generation, electrochemical energy
storage, and hydrogen energy storage systems as new flexible
resources is determined. The planning costs and equivalent
comprehensive costs are then calculated. The results are
presented in Table 2.

Based on the data in Table 2, it can be observed that the higher
the conservatism of the model, the higher the planning cost and the
more conservative the model. As the conservatism parameter
increases, the deviation of net load increases, resulting in
increased capacity planning for distributed generation and
electrochemical energy storage, and overall increased planning
cost. Figures 4–6 shows the planning and operation results of the
model with a fluctuation deviation of 10% and a conservatism
parameter of 12.

As Figure 8 shows that new energy storage systems such as
electrochemical energy storage and hydrogen energy storage are
important means to solve the large-scale integration of new energy
into the power grid. Electrochemical energy storage effectively
absorbs excess renewable energy generation during off-peak
hours through off-peak charging and peak discharge. However, it
is limited by factors such as battery degradation and can only charge
and discharge at rated power. Hydrogen energy storage systems are
needed to balance the power. From Figure 7, it can be seen that
during periods of low net load levels at night, thermal power units
still operate at minimum technical output and reverse, causing the
net load to be at a trough or even negative. Electrochemical energy
storage and hydrogen energy storage systems charge during this
period to absorb excess wind and solar power generation and
discharge during daylight hours when the net load level is higher,
effectively alleviating the pressure of power supply during peak
hours. In addition, due to cost factors and energy conversion
efficiency limitations, the current capacity of hydrogen energy
storage systems is relatively low. However, with the continuous
progress of technologies such as hydrogen production through water

TABLE 2 Equipment capacity planning result.

Conservatism parameter Γ Type of resource Planning
capacity/MW

Planning cost/
(× 104 CNY/year)

Comprehensive cost/
(× 104 CNY/year)

6 Distributed generation 2,227.30 86,998.44 2,094,380.60

electrochemical energy storage 742.93 5,320.11

hydrogen energy storage system 444.31 39,048.05

12 Distributed generation 2,490.80 97,290.65 2,238,837.61

electrochemical energy storage 865.01 6,194.34

hydrogen energy storage system 444.31 39,048.18

TABLE 3 Cost comparison of different methods.

Model Type of resource Planning capacity/MW Planning cost/
(× 104 CNY/year)

Comprehensive cost/
(× 104 CNY/year)

Determined model Distributed generation 2,188.99 183,690.12 1,911,510.47

electrochemical energy storage 777.94

hydrogen energy storage system 444.3

Robust model Distributed generation 2,490.80 198,219.20 2,238,837.61

electrochemical energy storage 865.01

hydrogen energy storage system 444.31

FIGURE 6
Gradient descent condition.
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electrolysis and hydrogen fuel cell power generation, the
development prospects of hydrogen energy storage systems will
be broader.

To verify the effectiveness of the planning model
constructed in this paper, it is necessary to compare the
configuration results under different robust parameters.
Figures 9, 10 show the sensitivity analysis of the
configuration results under different robust parameters,
calculating the planning cost and capacity configuration of
the power system’s new flexible resources.

As shown in Figure 9, during the robust optimization and
configuration process, the two uncertainty parameters,
conservatism parameter Γ and net load fluctuation coefficient
Δu, have a significant impact on the final results of the
configuration model. When the Γ increases, the time periods
in which the net load reaches the most extreme circumstance will
increase. When the Δu increases, the severity of the most extreme
circumstances for the net load will intensify. Therefore, there is a
positive correlation between the uncertainty parameters and the
planning results of the robust model. In other words, as the values
of the uncertainty parameters increase, the capacity of resource
allocation also increases.

In Figure 10, assuming a fixed fluctuation coefficient Δu of 0.1, a
sensitivity analysis of the conservatism parameter on the overall cost
is conducted with a step size of 1.

As shown in Figures 4–8, the selection of the conservatism
parameter will greatly affect the objective function of the planning
model. The overall cost of the model is positively correlated with the
CP. When the CP increases, it represents an increase in the severity

of the circumstance, i.e., an increase in the net load deviation. The
overall cost also increases accordingly.

FromTable 3, it can be seen that in terms of capacity configuration,
the hydrogen energy storage system in the two-stage robust model did
not show significant changes in its configuration capacity, while the
configuration capacity of distributed generation increased by 13.8% and
that of electrochemical energy storage increased by 11.2%. In terms of
planning and operating costs, the capacity planning cost increased by
7.91%, and the overall cost increased by 17.12% in the two-stage robust
model. It can be concluded that the two-stage robust model considers
the most extreme circumstance of net load fluctuations, which
effectively enhances the robustness of the system’s capacity planning,
but alsomakes the planningmore conservative, leading to an increase in
the system’s planning and operating costs.

6 Conclusion

This article addresses the challenge of ensuring safe and stable
operation of the new power system with rapidly increasing
penetration of new energy. A two-stage robust capacity
optimization configuration model is proposed and applied to a
power system in a certain region of China for empirical analysis
to validate the effectiveness of the model. The empirical analysis
leads to the following conclusions:

(1) The flexibility requisite caused by uncertainty of renewable
energy sources is considered, and the flexibility supply-
requisite balance constraint is incorporated into the model

FIGURE 7
Net load and resources output under most extreme circumstance.
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constraints to better address the integration of renewable
energy sources.

(2) This paper considers a two-stage robust optimization model
in the form ofmax-min-max within the range of load and new
energy uncertainty. Under the worst-case scenario, the
optimal capacity allocation is pursued with minimum cost.
The allocated capacities are 2,490.80 MW, 865.01 MW, and
444.31 MW, respectively.

(3) The results of the model analysis validate the significant role of
emerging energy storage technologies, such as electrochemical
storage and hydrogen storage in addressing the uncertainty of
renewable energy sources and peak shaving. It confirms that new
energy storage is a critical factor in dealing with the uncertainty
of renewable energy sources.

(4) An analysis of the optimal configuration and operation of new
flexibility resources when robust parameters change is
conducted. Compared with the deterministic model, the
capacity configuration of distributed generation increases
by 13.8%, and the capacity configuration of electrochemical
energy storage increases by 11.2%. This validates that the
planning result achieves a balance between economy
and safety.

Data availability statement
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the article/Supplementary material, further inquiries can be directed
to the corresponding author.

FIGURE 8
Resource output with conservation degree of 12.

FIGURE 9
The resource configuration with different conservatism
parameters and deviation coefficients.

FIGURE 10
The relationship between the conservatism parameter and cost.
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