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Lean resource management and
reliable interaction for a
low-carbon-oriented new grid

Yuting Liu*

Finance Department, State Grid Jibei Electric Power Company Limited, Beijing, China

The lean resource management and reliable interaction of massive data are
important components of a low-carbon-oriented new grid. However, with
a high proportion of distributed low-carbon resources connected to a new
grid, issues such as data anomalies, data redundancy, and missing data lead
to inefficient resource management and unreliable interaction, affecting the
accuracy of power grid decision-making, as well as the effectiveness of
emission reduction and carbon reduction. Therefore, this paper proposes a
lean resource management and reliable interaction framework of a middle
platform based on distributed data governance. On this basis, a distributed data
governance approach for the lean resource management method of the middle
platform in the low-carbon new grid is proposed, which realizes anomalous
data cleaning and missing data filling. Then, a data storage and traceability
method for reliable interaction is proposed, which prevents important data from
being illegally tampered with in the interaction process. The simulation results
demonstrate that the proposed algorithm significantly enhances efficiency,
reliability, and accuracy in anomalous data cleaning and filling, as well as data
traceability.

KEYWORDS

lean resource management, anomalous data cleaning, missing data filling, reliable
interaction, low-carbon-oriented new grid

1 Introduction

With the increasing demand of a low-carbon-oriented new grid for strengthening
the management and control of massive data, lean resource management and reliable
interaction with functions such as data cleaning and governance play an important
role in the low-carbon-oriented new grid (Li et al., 2021; Shahbazi and Byun, 2022;
Liao et al., 2023a). However, due to the complex operating environment and the diversity
of data sources, lean resource management poses high requirements on the data quality
and reliability (Bo et al., 2023). Issues such as data anomalies, data redundancy, and
missing data have a significant impact on the accuracy and stability of the system
operation and may also increase the risk of low-carbon-oriented new grid decisions
and even pose a threat to the security and stability of the entire grid financial
operation (Zhou et al., 2018; Tariq et al., 2021; Li et al., 2022). The emergence of a data
middle platform provides a solution for the lean management and unified integration
of financial data, realizing the fine configuration of resources and improving the
overall economic efficiency through integrating financial data middle platform and
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service middle platform (Tariq and Poor, 2018; Ashtiani and
Raahemi, 2022; Fei et al., 2022).

However, data governance under the traditional middle
platform architecture often adopts a centralized management
model, with issues such as data silos, poor data quality, high
data security risk, low data governance efficiency, and poor
scalability. Therefore, research on data cleaning governance for
lean resource management and reliable interaction of financial
financing in the low-carbon-oriented new grid is required
(Li et al., 2023).

1.1 Contribution

The main contribution of this research lies in
proposing a lean resource management and reliable
interaction framework for the middle platform based
on distributed data governance in the context of the
lean financing management environment for power grid
companies. The paper addresses the pressing need for
enhanced data management and control in the grid,
particularly focusing on functions such as data cleaning
and governance.

First, the existing research algorithms for anomalous data
detection have encountered some limitations, such as a manual
anomaly threshold setting and untimely threshold updating. In this
regard, an anomalous data cleaning method is proposed, based
on the dynamic adjustment of local outlier factor (LOF) anomaly
thresholds, to achieve the optimal selection of the anomaly threshold
for eliminating anomalous data and ensuring high standards of data
quality and reliability in lean resource management.

Second, there are some shortcomings in various methods
to complete missing data, such as the incomplete utilization of
context information and data correlation. In this regard, a missing
data-filling method based on an adaptive update domain genetic
algorithm is proposed to ensure reliable data support for decision-
making processes in the low-carbon-oriented new grid.

Finally, a data storage and traceability method was
proposed, integrating blockchain with the InterPlanetary
File System (IPFS) to ensure the authenticity and reliability
of financial data during the interaction process, thereby
enhancing the efficiency and efficacy of lean resource
management and reliable interaction in the context of the new
energy grid.

The remainder of the paper is structured as follows:
Section 2 outlines the related work; Section 3 introduces
the lean resource management and reliable interaction
framework of the middle platform based on distributed data
governance; Section 4 presents a distributed data governance
approach for lean resource management of the middle
platform in the low-carbon-oriented new grid; Section 5
introduces a data storage and traceability method for
reliable interaction; Section 6 presents the simulation results;
Section 7 presents the discussion and limitations; and Section 8
presents the conclusion.

2 Related works

At present, a number of studies focus on the data cleaning
governance of the grid financial financing lean resource
management and reliable interaction, and themainmethods include
data anomaly identification algorithms and missing data filling
algorithms (Kalid et al., 2020; de Prieëlle et al., 2022). The LOF
algorithm is a typical algorithm in data anomaly identification.
Several studies have introduced methods for evaluating the extent
of outliers within data segments through the utilization of the LOF
calculated with respect to principal components (Wang et al., 2021).
Some other methods include the LOF based on the sample density
(SD-LOF) data cleaning algorithm (Xu et al., 2018). However,
the above methods still have some issues. The identification of
anomalous data usually requires manual setting of the anomalous
determination threshold, which is inefficient and inaccurate. For
missing data filling, the current main methods include vector-based
andmatrix-basedmissing data fillingmethods. In addition, there are
tensor-based missing data filling methods, which can be regarded
as matrix-based extensions and are suitable for multi-dimensional
data filling (Deng et al., 2019; Jiang et al., 2021). In this regard, there
is research on missing data interpolation methods based on tensor
completion (Dai et al., 2017; Liao et al., 2021), and some scholars
have put forward a missing data-reconstruction method based on
matrix completion (Li Q. et al., 2020). However, the missing filling
method often fails to make full use of the contextual information
of the data and the correlation between the data, which leads to
inaccurate or incomplete filling results. In the realm of reliable
interaction among cooperating systems through the interoperability
platform, several studies have sought to enhance the trustworthiness
of digital governance interoperability and data exchange using
blockchain and deep learning-based frameworks while also
integrating a lightweight Feistel structure with optimal operations
to enhance privacy preservation (Malik et al., 2023). However, there
is a lack of consideration for data cleaning and filling, leading to
compromised data quality and low contextual relevance in business
flows. Additionally, studies have proposed the integrated service
architectural view and two methods of modeling messaging flows at
the service and business levels, defining a business flow context using
the integrated process view, thereby improving communication
efficiency in complex systems (Górski, 2023). Nevertheless, this
modeling approach overlooks the essentiality of reliable data storage
and traceability, resulting in the inefficient generation of executable
integrated flows for large-scale composite systems such as grid
companies. In addressing the abovementioned issues, this paper
presents significant innovations in service and business flow data
processing. It introduces a dynamic data cleaning algorithm with
adaptive data-filling methods that consider contextual information.
Furthermore, it proposes a data trust storage method based on
a blockchain and IPFS, along with data traceability through
Merkle trees. This series of data processing methods is closely
interconnected, enhancing the effectiveness of lean resource
management and the performance and trustworthiness of digital
governance interoperability and data exchange within the reliable
interaction framework.
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FIGURE 1
Lean resource management and reliable interaction framework of the middle platform based on distributed data governance.

3 Lean resource management and
reliable interaction framework of the
middle platform based on distributed
data governance

With the continuous development of the financing scale
of low-carbon-oriented new grid financial systems and the
gradual expansion of interest-bearing liabilities of electric power
companies, lean resource management and reliable interaction
of financial financing are urgently needed. Therefore, this paper
constructs a lean resource management and reliable interaction
framework of a financial middle platform based on distributed data
governance, as shown in Figure 1. The proposed framework mainly
includes the data awareness layer, distributed data governance
layer, management and interaction layer, middle platform layer,
and overall decision-making layer. The following paragraphs
describe how to realize the fine allocation of financial data
resources and improve the overall economic benefits of electric
power companies.

The data awareness layer is the foundation of the lean resource
management framework, which covers the core capital flow data
of the low-carbon-oriented new grid financial system (Li Z. et al.,
2020).The core capital flow data include the cash inflow and outflow
data of the whole chain of cost and expense inputs and benefit
outputs, such as assets, equipment, projects, costs, capital, loads,
reliability, electricity sales, and tariffs. Data awareness encompasses
the acquisition, organization, analysis, and visualization of data,
serving to enhance individuals’ comprehension of the concealed
trends and value inherent within the data. Through efficient data
collection and integration, it ensures the accuracy and completeness
of the basic data of the financing lean management framework and
provides reliable data support for the subsequent financing lean
management of electric power companies.

The distributed data governance layer is mainly responsible
for the management of distributed financial data standardization,
data quality, master data, metadata, data security, data sharing,
data value, and life cycle of the low-carbon-oriented new grid,
aiming to improve the security and controllability of data in the
system and achieve the purpose of lean resource management
and reliable interaction. By adopting advanced data governance
technologies, such as data anomaly identification cleaning and
missing data filling (Ali et al., 2021; Hou et al., 2023), the usability
and integrity of financial data are guaranteed, and a credible
database is provided tomeet the data requirements of financing lean
management, thus enhancing the protection of financial data and
providing reliable support for financial decision-making in the low-
carbon-oriented new grid. Furthermore, through distributed data
governance, the consistency and accuracy of data across disparate
systems and departments can be ensured, thereby mitigating data
redundancy and errors. It can establish a robust data security
and compliance storage mechanism, hence enhancing the lean
level of resource management. Distributed data governance, by
safeguarding data consistency, security, quality, and traceability,
enhances the reliability of data resource interactions to ensure the
dependable exchange and sharing of data across various systems and
departments.

The management and interaction layer is responsible for
analyzing the financial data from the distributed data governance
layer and formulating the financing strategy of electric power
companies, including the modules of financing scale measurement,
financing structure measurement, financial cost upper- and lower-
limit measurement, and electricity tariff sensitivity analysis. Among
them, the goal of financing scale measurement is to scientifically
determine the capital demand. Financing structure measurement
aims to optimize the allocation of capital. Financial cost upper- and
lower-limitmeasurement ensures that the financial cost is controlled
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within a reasonable range. Electricity tariff sensitivity analysis is used
to assess the financial performance of the enterprise in different
market situations. In addition, this layer is also responsible for
providing reliable financing data interaction. The blockchain and
IPFS are located in this layer, which realizes the functions of trusted
storage and accurate traceability of distributed financial data (Tant
and Stratoudaki, 2019). The IPFS is a peer-to-peer distributed file
system that uses content addressing for data storage and retrieval.
Trusted storage leverages this technology to ensure the integrity,
confidentiality, and reliability of data, guarding against tampering,
loss, or leakage, which further ensures the reliability of the financing
strategy and improves the reliable interaction capability of the
distribution grid.

The financial middle platform layer includes the financial
service middle platform and the financial data middle platform.
First, the financial service middle platform integrates common
and universal core financial accounting capabilities such as fund
accounting, taxmanagement, expense reimbursement,management
reports for material procurement, power purchase fee payment, and
power sales revenue, achieving the reuse and sharing of financial
service capabilities of different service units of the enterprise.
The financial data middle platform realizes the integration and
unification of multi-level and multi-professional data such as
distribution network projects, assets, equipment, costs, funds,
power, and users. The financial middle platform integrates the
data and functions of each layer of the lean resource management
and reliable interaction framework, provides unified interfaces
and service, improves the quality of business and financial data,
and forms various types of data products, which can be used to
serve in the front-end business and support the lean resource
management and reliable interaction for the low-carbon-oriented
new grid.

The overall decision-making layer mainly includes carbon
trading management, enterprise budget management, personnel
performance management, and investment decision-making
modules (Tariq et al., 2020; Liao et al., 2023b). Through the
implementation of financing strategies as well as the analysis and
feedback of the results, it formulates to ensure the controllable scale
of interest-bearing liabilities and optimize financing costs.

4 A distributed data governance
approach for the lean resource
management of the middle platform
in the low-carbon-oriented new grid

In the process of data acquisition, execution, control, and
feedback, data anomalies and missing data easily occur due to
factors such as short-term failure of sensors, manual errors, and
redundancy of information, which reduce the available information
of original data and affect data accuracy and continuity. In this
paper, we propose a distributed data governancemethod for the lean
resource management of the middle platform in the low-carbon-
oriented new grid. The specific process is shown in Figure 2, which
can significantly improve the quality of basic data and improve the
available information through the identification and cleaning of data
anomaly and the automatic filling of missing data. Data governance

FIGURE 2
Flowchart of the distributed data governance method for the lean
resource management of the middle platform.

technology supports the lean resource management in the low-
carbon-oriented new grid and the efficient and reliable operation of
the power system.

4.1 Data anomaly cleaning method based
on the dynamic adjustment of LOF
anomaly thresholds

The LOF algorithm is a classic unsupervised anomaly
identification algorithm, mainly utilizing the density of the data
to determine the data anomaly. However, the traditional LOF
algorithm requires the LOF threshold to be set manually in
advance, which is not applicable to massive financial data cleaning
(Zheng et al., 2015; Salehi et al., 2016). This paper proposes a data
anomaly cleaning method based on the dynamic adjustment of
LOF anomaly thresholds, which adjusts and updates the anomaly
threshold according to the number of samples of the LOF value.
The proposed method realizes the optimal selection of anomaly
thresholds, which is described as follows.

The kth reachable distance is calculated. The kth distance
between the point farthest from di and di in all financial data points
is defined; the distance Sk(di) is the kth distance of di, and Sk(di,dj)
denotes the distance between point di and point dj. Thus, the kth
reachable distance from point di to point di is denoted as Sk(di,dj) =
max{s(di,dj),Sk(di)}.
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The local reachable density for each financial data point is
calculated.The kth distance domain of point di is denoted byVk(di),
that is, all points within the kth distance of point di. The local
reachability density ρk(di) of point di is the inverse of the average
reachability distance from all points within Vk(di) to point di,
reflecting the density between point di and points in the surrounding
domain, which is given by the following expression:

ρk (di) =
|Vk (di)|

∑
dj∈Vk(di)

Sk (di,dj)
. (1)

The LOF is calculated for all financial data points in the sample.
The local anomaly factor ξLOF(di) for point di is given by the
following equation:

ξLOF (di) =
∑

dj∈Vk(di)
ρk(dj)
ρk(di)

|Vk (di)|
. (2)

Here, ξLOF(di) denotes the average value of the ratio of the local
reachability density of points within the kth distance domain Vk(di)
of point di to the local reachability density of point di. The larger
ξLOF(di) is, the more likely that point di is an anomalous data point.

The LOF anomaly threshold is determined. After obtaining all
LOF values, the anomaly threshold can be continuously adjusted
based on the number of statistics of LOF values to realize the
accurate identification of anomaly financial data, and the LOF
anomaly threshold is defined as ξ′LOF, which is calculated as follows:

ξ′LOF = ̄ξLOF +
β ⋅ √∑n

i=1
(ξLOF (di) − ̄ξLOF)

2

n
. (3)

Here, ̄ξLOF =
1
n
∑ni=1ξLOF (di) is the mean of all LOF values. n is

the sample size of LOF values. β is the anomaly skewness, which
measures the extent to which the anomalous data differ from the
normal data, and the larger the value of β, the larger the ξ′LOF is
likely to be. When ξLOF(di) is greater than ξ′LOF, di is an anomalous
data point.

Since β is an important parameter affecting the LOF anomaly
threshold, a too-large value of β will lead to a large anomaly
identification error, while a too-small value of β will lead to
slow identification efficiency. Therefore, the optimal β needs to be
selected.This paper further adapts the parameter of β, which is given
as follows:

β =
n

∑
i=1
(1− 1

eai
) ⋅

ξLOF (di) − ̄ξLOF
ξLOF,max − ξLOF,min

, (4)

where ai ∈ [0,1] is an indicator variable for the mean value of the
financial data. When ai = 0, it indicates that ξ

′
LOF = ̄ξlo f ; otherwise,

ai = 1. ξLOF,max and ξLOF,min indicate the maximum and minimum
values of the LOF financial data point, respectively. Using the above
equation, the optimal β can be adaptively adjusted according to the
number of samples of LOF values, and the optimal LOF anomaly
threshold can be further obtained, which improves the efficiency and
accuracy of financial data point anomaly identification.

The above steps are repeated until all anomalous financial data
points are identified, and the anomalous financial data are cleaned
to obtain a new financial dataset E = {E1,E2,…,Em}.

4.2 Missing data-filling method based on
the adaptive update domain genetic
algorithm

As the cleaning of anomalous financial data will result in
missing financial data points, it is necessary to fill in the missing
data to protect the integrity of financial data to support the lean
resource management of financial financing. We assume that E =
{E1,E2,…,Em} satisfies the m dimensional normal distribution,
which is denoted as E = Eobs ∪Emis. Eobs is the set of financial data
with observations, and Emis is the set of missing financial data. In
this paper, based on the adaptive update domain genetic algorithm,
we estimate the log-likelihood function of the parameters μ and Ω
of the financial dataset E as follows:

Φ (μ,Ω) = − t
2
ln (2π) − t

2
ln |Ω| − 1

2

t

∑
1=1
(e1 − μ)T ⋅Ω−11 (e1 − μ) , (5)

where μ = {μ1,μ2,…,μm} is a vector of means for each financial data
andΩ(σpq) is the covariance matrix of variable {E1,E2,…,Em}. The
initial values of μ and Ω are generally determined by the financial
dataset Eobs, and el denotes the vector of variables corresponding
to the financial data record l = {1,2,…, t}, where t is the number of
financial data records.

In this paper, Φ(μ,Ω) is used as the fitness function to calculate
the fitness of each parameter individual in the population.The larger
theΦ(μ,Ω) value is, the closer andmore accurate the parameter.The
following constraints must be met.

s.t. {μ1,min ≤ μ1 ≤ μ1,max,…,μm,min ≤ μm ≤ μm,max} , (6)

where μm, min and μm, max denote theminimumandmaximumvalues
of themth anomalous financial data point, respectively, whose values
are determined by Eobs.

In order to improve the speed of selecting the optimal
parameters, the parameters determined by Φ(μ,Ω) are further
crossed and mutated to realize the selection of the optimal
parameters. Assuming that pc is the crossover probability and
there are t parameter individuals in the parameter population,
tpc parameter individuals are selected for crossover operation.
Assuming that O = {O1,O2,…,Ot} denotes the parent of the
parameter population, two parameters are randomly chosen in O =
{O1,O2,…,Ot} to form the crossover pair O(Or,Os). At the same
time, v is randomly chosen in {1,2,…,m}. Two offspring μ′rv,μ

′
sv

are generated by performing a c-crossing operation on μrv,μsv in
O(Or,Os), which, in turn, yields a new parameter O′rv,O′sv. The
crossover formula is expressed as follows:

μ′rv = eμrv + (1− e)μsv
μ′sv = (1− e)μrv + eμsv

, (7)

where e is the crossover randomnumber and its value is within [0,1].
Assuming that px is the variation probability and there are t

parameter individuals in the parameter population, tpx parameter
individuals are selected from the parameter population for crossover
operation. Oh is denoted as an individual in the parameter
population. {μh1,μhn,⋯,μhm} is the set of means of Oh, and φ is
randomly selected in {1,2,…,m} for the mutation operation. Then,
the mutated parameter isO′h, and the mean is {μ′h1,μ

′
hn,…,μ

′
hm}.The
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mutation formula is expressed as follows:

μ′hφ =
{
{
{

μhφ +Δ(g,maxφ − μhφ) ,random (⋅) > 0

μhφ −Δ(g,μhφ −minφ) ,random (⋅) < 0
, (8)

Δ (g,x) = x(1− η(1−
g
G
)β) , (9)

where random() is a random function that produces a uniform
distribution. If a random number is greater than 0, the mean value
after mutation will increase, that is, random(⋅) > 0; if a random
number is less than 0, the mean value after mutation will decrease,
that is, random(⋅) < 0; and if a random number is 0, the mean value
after mutation will remain unchanged, that is, random(⋅) = 0. G is
the maximum number of generations of variants, g is the current
number of generations of variants, β is a parameter that determines
the degree of non-consistency, and η is a random number in [0,1].

Considering that the genetic algorithm easily falls into the local
optimum and has many iterations, this paper makes the algorithm
jump out of the local optimum by the chaotic disturbance of
excellent parameters to reduce the number of iterations. Let the
fitness function of the current optimal parameter μ∗ be Φ∗ and the
mean vector of the excellent parameter μ∗h = {μ

∗
h1,μ
∗
h2,…,μ

∗
hm}, then,

the chaotic disturbance to μ∗hm can be expressed by the following
equation:

μ∗hm = μ
∗
hm−1 + 1−[

(y− 1)
y
]
n
χj−1. (10)

Here, μ∗ is the value after chaotic perturbation in the traversal
interval of the smaller feasible domain. 1− [ (y−1)

y
]
n
is the adjustment

coefficient with respect to the number of iterations y. The value of
χj−1 is randomly set as 1 or -1.

In order to further improve the optimization accuracy of the
genetic algorithm, this paper introduces the search domain adaptive
update mechanism. The update domain includes a total of two
phases. Φo and Φo−1 are defined as the optimal adaptation values of
the oth and o− 1th generations, respectively. α is a threshold, which
takes the value of (0,1). If the difference between Φo and Φo−1 is less
than a threshold α, the search domain update is in the first stage;
otherwise, it is in the second stage.The stage discrimination formula
of the search domain update is shown as follows:

Φ∗ = |Φo −Φo−1| < α. (11)

When the search domain update is in the first stage, the lower
bound of the search domain is increased, and the upper bound of
the search domain is decreased, thus reducing the overall search
domain. The upper and lower bounds of the search domain for the
oth generation are calculated as follows:

blowo = b
low
o−1 +min(|bupo−1 − b

low
o−1|)/ε,

bupo = b
up
o−1 −min(|bupo−1 − b

low
o−1|)/ε
, (12)

where blowo and bupo are the upper and lower bounds of the oth
generation, respectively, and ɛ is the scale parameter.

When the difference between Φo and Φo−1 is larger than a
threshold α, the replicated optimal individual enters the second
stage, and then, the search domain is updated as follows:

clowo = μ
′
hφ +min(|cupo−1 − c

low
o−1|)/ε,

cupo = μ′hφ −min(|cupo−1 − c
low
o−1|)/ε
, (13)

where clowo and cupo are the adjusted lower and upper bounds,
respectively. Φ∗ is used as the criterion to shrink the boundaries
one by one. When the distance of the optimal individual from the
boundaries is less than the fault-tolerant variable, the boundaries
are restored to the initially defined domain. The current optimal
individual is preserved, and then, the genetic search is continued
until reaching the maximum number of iterations.

In order to reduce the error of the estimated value of missing
data, it is necessary to further estimate the missing anomalous
financial data. Therefore, this paper uses the Markov chain Monte
Carlo (MCMC) method to fill the missing data. This method
iteratively estimates the missing data on the condition of incomplete
datasets and parameters of incomplete data, and the filling process
is as follows.

1) Each of the missing-type anomalous financial data are
estimated according to the optimal parameters μ, Ω, and Eobs,
and the value of Ey+1

mis is derived from the conditional distribution
p(Emis,Eobs,Oy). p(Emis,Eobs,Oy) is the probability distribution
associated with Emis, Eobs, andOy. μ andΩ are generally determined
by the financial dataset Eobs.

2) The posterior mean vector and covariance matrix of the
simulated data, that is,Oy+1, are obtained in p(O ∣ Eobs,E

y+1
mis), based

on the filled complete financial dataset, whichwill be repeated in (1).
3) Filling the missing-type financial data by iterating

(1) and (2) over each other produces a Markov chain
({Y1,O1} , {Y2,O2} ,…,{Yy+1,Oy+1}), which exhibits a
p((Emis,O) ∣ Eobs) distribution. When the distribution is stabilized,
the filledmissing data of Emis will be obtained, yielding the complete
financial dataset U = {u1,…,um}.

5 A data storage and traceability
method for reliable interaction

After the anomaly financial data cleaning and missing data
filling, measures are implemented to further guarantee the reliable
interaction between different departments in the financial financing
of electric power companies. This paper proposes a data storage
and traceability method for the reliable interaction of the financial
system, which prevents the financial data from being illegally
tampered with in the interaction process. It ensures the authenticity
and reliability of power grid data and further supports the
calculation and interaction of the internal financing revenues and
costs in electric power companies and the cost units.

5.1 Data storage method based on th IPFS

After data governance, the dataset U = {u1,…,um} is stored
using the IPFS.The IPFS enables the data storage and retrieval based
on the content of financial data and uses the idle storage resources in
the network to establish a distributed data storage system. It divides
the data to different network locations, supports fast retrieval and
data sharing, and possesses a fault-tolerant nature.

Considering that the IPFS uses the hash value of data as the
storage address, this feature is naturally consistent with the tamper-
proof feature of blockchain storing data hash values. Therefore, this
paper proposes a data storage scheme combining the IPFS and
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blockchain, which combines the IPFS to store data and blockchain
to store data hash so as to realize distributed data storage and
ensure data safety reliability, and traceability. When uploading
data larger than 256 KB to the IPFS, the system automatically
divides the data into 256 KB chunks and stores these chunks on
different nodes in the network. Blockchain nodes store hash values
of data elements, while nodes except leaf nodes store hash values
of child nodes. Therefore, the hash value in the node is calculated
as follows:

Ai,j =Hash(Ai−1,2j−1,Ai−1,2j) , (14)

where Ai,j denotes the hash value of the jth target node in the
ith level.

To represent the hash of the data, the IPFS uses a multi-hash
format and Base58 encoding. The storage address Ad is represented
as follows:

Ad = Base58(ACode |ALengh|AHash) , (15)

where ACode denotes the hash algorithm encoding; ALengh
denotes the length of the hash value; and AHash denotes the
hash value.

For each fragment, a unique hash value is generated.
Subsequently, the IPFS concatenates the hash values of all fragments
and computes the resulting hash value for the data, which is

AHash =∑Hash(um) . (16)

5.2 Data traceability method based on
Merkle mountain proof

In order to ensure the authenticity and traceability of financial
data flow records (DFRs) of electric power companies, this paper
proposes a data traceability method based on Merkle mountain
proof, supporting the safety and reliability of financial data in
the interaction process. Specifically, a new Merkle mountain block
structure is introduced to construct a data storage structure, which
includes two parts: block header and block body. Between them,
the block header contains the data version number, time stamp,
degree of confidentiality, business category, hash value of the
previous block, Merkle tree root (MTR), and Merkle mountain
range root (MMRR). The block body consists of the Merkle
tree and Merkle mountain. As a special Merkle tree, the Merkle
mountain has the advantage of dynamic data addition, and it is
not necessary to rebuild the data structure. The data traceability
method based onMerklemountain proof includes two parts,Merkle
mountain proof and data traceability of Merkle mountain proof
based on data private blockchain (DPBC), which are introduced
as follows.

5.2.1 Merkle mountain proof
The process of data traceability requires the initial generation

of Merkle mountain proof, which involves verifying the data
stored in the leaf nodes of the Merkle mountain to ensure their
integrity and authenticity, thereby safeguarding against tampering
and ensuring trustworthiness.TheMerklemountain proof process is
as follows:

1:Input:h, MTR

2:Output:MTR', MMRRh

3:Phase1:Downloading

4:InitializeΘi(t) = ∅ and yi,j = 0.

5:A target node in the financial middle platform

synchronizes information about a block of height h

from the local ledger of the entire node in the

DPBC network of the company.

6:Obtain the MTR′ of the Merkle tree in block h.

7:Phase 2: Merkle mountain proof

8:Calculate the MTR′ of a node by Merkle

mountain proof.

9:if MTR′ = MTR then

10:Synchronize the block information of the latest

height H from the local account book of all nodes

in the DPBC network, and obtain MMRR from the

H block.

11:Calculate the MMRRh of the target node by

Merkle mountain proof.

12:ifMMRRh = MMRRH then

13:DFR care authentic and traceability is

completed.

14:else

15:Error in DFR.

16:end if

17:else

18:Error in DFR.

19:end if

Algorithm 1. The proposedMerkle mountain proof-based data traceability
method.

Step 1: The process starts with the target node to be verified,
looks up to the upper parent node, and ends with the MTR of the
Merkle tree where the target node is located.The set of nodes passed
through in the search process is calledMerkle mountain range path.

Step 2: The MTR is retrieved for all subtrees within the Merkle
mountain range.

Step 3: The Merkle mountain range proof set is assembled by
combining the nodes from the Merkle mountain range path in step
1 and the MTRs from step 2.

Step 4: A hash operation is performed on the Merkle mountain
range proof set, which is compared with the field in the block header
to complete the Merkle mountain proof.

Then, the set of Merkle mountain proof can be expressed as
follows:

Ai,j
M = {∑Ai,j

MP ⊗∑Ai,j
MTR} , (17)

where ∑Ai,j
MP is the node in the path of the Merkle mountains and

∑Ai,j
MTR is theMTR of all subtrees. ⊗means that all nodes in the path

of theMerklemountain form a one-to-one combination relationship
with the MTR of all subtrees.
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Therefore, the MMRRh of the target node can be obtained
through hash operation, that is,

MMRRh =Hash(Ai,j
M) , (18)

whereMMRRh denotes the MMRR of the block with height h.

5.2.2 Data traceability of Merkle mountain proof
based on the DPBC

The traceability process is shown in Algorithm 1, where H
represents the latest block height in the current network and
h represents the height of the block to be verified. When it is
necessary to trace the DFR in the block with height h, the node
only needs to synchronize the block with height h and the block
header with the latest height H from the network to complete
the verification.

6 Simulation results

6.1 Analysis of anomalous data
identification and cleaning performance

This paper uses a sample set consisting of 103–104 distribution
grid financial system data points collected for the purpose of
identifying and cleaning anomalous financial data.Thefinancial data
points used are sourced from the transaction data and financial
books of five departments in the distribution network financial
system of a certain power supply company of the State Grid
Corporation of China from January to March 2017 (Shouyu et al.,
2019). To further validate the efficiency of the proposed algorithm
in this paper, a comparative analysis is conducted with two existing
algorithms for identifying and cleaning anomalous data: the quartile
algorithm and the traditional LOF algorithm.The quartile algorithm
demonstrates high cleaning efficiency but is prone to excessive
removal, leading to identifying and cleaning some data points within
the normal fluctuation range, resulting in a serrated pattern in
the clustered regions of the data. The traditional LOF algorithm
requires a manually preset threshold, heavily relying on expert
experience. When applied to the cleaning of massive financial data
characterized by high uncertainty, its efficiency and accuracy are
notably compromised.

Figure 3 shows the anomalous data identifying and cleaning
results under different numbers of data points. The proposed
algorithm exhibits higher accuracy in identifying and cleaning
anomalous data than the two comparing algorithms. Specifically,
when the number of data points is set at 104, the performance
of the proposed algorithm improves by 76.4% compared to the
quartile algorithm and 106.5% compared to the traditional LOF
algorithm. This improvement stems from the adaptive adjustment
of the anomaly threshold based on the sample size of LOF values
in the proposed algorithm, enabling a dynamic optimal selection
of the anomaly threshold and consequently enhancing the accuracy
of anomalous data identifying and cleaning in massive financial
datasets. The weaker ability of the quartile algorithm to identify
biases in the data leads to the excessive removal of normal
data, resulting in a decrease in accuracy in the identification

FIGURE 3
Anomalous data identifying and cleaning results versus different
numbers of data points.

FIGURE 4
Number of false positives for anomalous data versus different
numbers of data points.

and cleaning of anomalous data. The traditional LOF algorithm,
when confronted with large datasets, has a fixed threshold, which
limits its ability to identify and eliminate a significant portion
of extreme anomalies, particularly in the context of multivariate
high-dimensional data, thereby diminishing its accuracy in
anomaly identification.

Figure 4 shows the number of false positives for anomalous data
under different numbers of data points. The proposed algorithm
exhibits a significantly lower count of misjudged anomalous data
than the two comparison algorithms. Specifically, when the number
of data points is set at 104, the number of false positives for
anomalous data in the proposed algorithm is 790, representing
reductions of 83.5% and 85.7% compared to the quartile algorithm
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TABLE 1 Simulation parameters.

Sub-
dataset

Sample
size

Number
of
attributes

Number
of
categories

Balance sheet 3,002 42 8

Profit 5,890 33 34

Cash flow 103 18 21

and traditional LOF algorithm, respectively. This noteworthy
improvement stems from the real-time dynamic adjustment of the
LOF threshold by the proposed algorithm, leading to a substantial
decrease in the misjudgment count, particularly in the context of
handling vast datasets. In contrast, the two comparison algorithms
lack the capability to adapt to dynamic changes in financial
data, resulting in an increase in the misjudgment count as data
rapidly expand.

6.2 Analysis of missing data-filling
performance

The performance of the algorithm is validated through
simulation using a foundational financial dataset from the
power grid financial system, aiming to demonstrate its data
imputation capabilities in a multivariate dataset. The validation
indicator is the data-filling accuracy, which refers to the
similarity between the filled data and the original data.
The specific attributes of the selected dataset are detailed
in Table 1 (Wu et al., 2012).

To validate the performance of the proposed algorithm,
the expectation maximization algorithm (EMA) and genetic
algorithm (GA) are selected as comparison algorithms. The
EMA assumes a distribution for a financial dataset with partially
missing data and makes inferences based on the likelihood
under this distribution, replacing missing data with expected
values. The GA, on the other hand, derives the optimal
combination of attribute weights, or the best chromosome, through
selection, crossover, and mutation operations. Consequently,
it estimates missing values in the dataset based on this
optimal chromosome.

Figure 5 shows the variation in data-filling accuracy with
the number of algorithm iterations. The proposed algorithm
demonstrates superior data-filling accuracy and faster convergence
than the two comparison algorithms. At the 120th iteration,
the data-filling accuracy of the proposed algorithm surpasses
those of the EMA and GA by 41.1% and 8.2%, respectively. This
improvement is attributed to the adaptive updating mechanism
of the search space introduced by the proposed algorithm,
which dynamically identifies whether the improvement rate
of the optimal individual meets the requirements, leading to
adjustments in the updating space. Consequently, it conducts global
optimization for the attributes of each sub-dataset. Although the

FIGURE 5
Accuracy of data filling versus the number of iterations.

EMA exhibits faster convergence than the proposed algorithm,
its failure to consider the entire parameter space may result in
estimating optimal parameters that are specific to local optima
in individual sub-datasets, leading to a decrease in the overall
data imputation accuracy. The GA lacks the ability to promptly
use feedback information from the network, exhibiting a slower
search speed, requiring more training epochs to achieve more
accurate solutions.

6.3 Analysis of data traceability
performance

To validate the performance of the proposed data traceability
algorithm in this paper, simulation experiments are conducted, with
the evaluation metrics being the amount of data downloaded and
data traceability verification time. The amount of data downloaded
refers to the size of data that nodes need to store locally when
performing data traceability verification. The data traceability
verification time is the time required to verify a specific transaction,
encompassing the duration from submitting the proof of inclusion
of a transaction to locating its corresponding hash value. The
comparison algorithm chosen for this analysis is the simplified
payment verification (SPV) algorithm. The impact of block height
at various magnitudes on simulations is discussed, with the
experimental setup including block heights of 0.01× 105, 0.02× 105,
0.02× 105, 0.1× 105, 0.2× 105, 0.3× 105, 0.6× 105, 1× 105, 1.5× 105,
and 2× 105.

Figure 6 shows the amount of data downloaded at different
blockchain heights. As the blockchain height increases, both the
proposed algorithm and SPV algorithm experience an increase
in the required data volume. However, at the same block height,
the proposed algorithm necessitates a smaller data download than
the comparison Algorithm. At a blockchain height of 2× 105,
the amount of data downloaded for the proposed algorithm is
45.4 MB, representing a 16% reduction compared to the SPV
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FIGURE 6
Amount of data downloaded versus different blockchain heights.

algorithm. This discrepancy arises from the fact that during data
verification, the SPV algorithm needs to download the block
header information for the entire chain, whereas the proposed
algorithm only requires the download of the latest block in
the longest valid chain, thereby reducing the storage resource
consumption for nodes.

Figure 7 shows the results of data traceability verification time
at different blockchain heights. As the number of blocks in the
blockchain network increases, the verification time for both the
proposed algorithm and SPV algorithm gradually escalates. The
proposed algorithm exhibits a shorter verification time than the SPV
algorithm. This is attributed to the fact that the proposed algorithm
only requires obtaining the Merkle mountain range, calculating
the verification path to derive the MMRR and comparing it with
the hash value in the latest block header at the current height. In
contrast, the SPV verification process is more complex as it involves
traversing downward from the latest block to trace back to the target
block. At a blockchain height of 2× 105, SPV incurs a maximum
time cost of approximately 36 ms, while the maximum time cost of
the proposed algorithm is approximately 10 ms. Consequently, the
proposed algorithm achieves a reduction of approximately 72% in
verification time compared to the SPV algorithm, thereby enhancing
the efficiency of the verification process in data traceability.

7 Discussion and limitations

Our proposed approach and framework offer several advantages
that make them promising candidates for integration into enterprise
architecture management (EAM) practices. One key strength is
that the proposed framework adopts a distributed data governance
method, which has high scalability and flexibility. At the same time,
the proposed framework adopts advanced abnormal data cleaning
and missing data-filling technology to ensure the availability and
integrity of financial data. In the context of enterprise architecture

FIGURE 7
Data traceability verification time versus different blockchain heights.

management, our approach opens up opportunities for the
introduction of a novel integration pattern. By leveraging the
decision-making layer, organizations can establish a more seamless
and responsive integration mechanism that aligns with the dynamic
nature of contemporary enterprises. However, the proposed
framework still has some limitations. Introducing a new approach
may require significant changes to existing enterprise architecture
management processes, potentially posing integration challenges. In
addition, the compatibility of our approach with legacy systemsmay
be a concern.

8 Conclusion

In this paper, we proposed a lean resource management and
reliable interaction framework of the middle platform based on
distributed data governance. First, the distribution grid anomaly
data are cleaned by the dynamic adjustment of LOF anomaly
thresholds, and then, the missing data are filled based on
the adaptive update domain genetic algorithm, which enables
lean resource management in the low-carbon-oriented new grid.
Second, the data storage method based on the IPFS is proposed,
and the distribution grid data can be traced back by Merkle
mountain proof based on DPBC, which enables reliable interaction
in the low-carbon-oriented new grid. Finally, the simulation
results show that compared with the quartile algorithm and
traditional LOF algorithm, the proposed algorithm improves
the accuracy of identifying and cleaning anomalous data by
76.4% and 106.5%, respectively. Compared with the EMA and
GA, the accuracy of the proposed data-filling algorithm is
improved by 41.1% and 8.2%, respectively. Compared with SPV, the
proposed data traceability method reduces the verification time by
approximately 72%. In the future, we will study how to integrate the
financing income evaluation of electric power companies into the
proposed framework.
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