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Two-stage collaborative
information interaction reliability
improvement for the distribution
grid

Zhan Shi*

Power Dispatching and Controlling Center of Guangdong Power Grid Company Limited, Guangzhou,
China

The impulse noise generated by a large volume of power electronics
devices imposes a hazardous impact on information interaction reliability
in low-voltage distribution grids. In this paper, we propose a two-stage
collaborative information interaction reliability improvement algorithm to
minimize the bit error rate (BER) of the information interaction under impulse
noise. In the first stage, the transmission-side peak-to-average power ratio
(PAPR) is reduced based on the adaptive particle swarm optimization (PSO)-
enabled partial transmit sequence (PTS). In the second stage, the reception-
side dual-signal blanking is proposed based on the transmission-side PAPR
and reception-side useful signal power estimation and peak median ratio.
The transmission–reception collaborative information interaction reliability
improvement is realized through two aspects. First, transmission-side PAPR
reduction improves the performance of reception-side signal blanking by
making it easier to distinguish useful signals from impulse noise. Second, the
transmission-side PAPR is utilized to improve the estimation accuracy of both
coarse and precise thresholds in dual-signal blanking. Simulation results show
that the proposed algorithm outperforms existing algorithms in both PAPR
reduction and BER performances to achieve information interaction reliability
improvement effectively.

KEYWORDS

low-voltage distribution grid, information interaction, reliability improvement, dual-
signal blanking, partial transmit sequence, particle swarm optimization

1 Introduction

Information interaction plays an important role in low-voltage distribution grid
dispatch. As a widely used medium in low-voltage distribution grids, power line
communication (PLC) has played a crucial role in realizing reliable information
exchange. PLC takes existing power lines as the communication medium, which
demonstrates the great advantages of low deployment costs, fast installation, and
wide coverage (Yuwen et al., 2018; Khaled et al., 2018; Zhou et al., 2023). It can adapt
well to the complex multi-branch and multi-load communication topology of low-
voltage distribution grids (Antonio et al., 2015; Li et al., 2022a). However, with the
large-scale integration of renewable energy resources, flexible loads, and energy
storage units into distribution grids, the presence of a significant number of power
electronics devices generates unignorable impulse noise, which significantly reduces
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information interaction reliability and leads to the degradation of
bit error rate (BER) performance (Nima et al., 2017; Ali et al., 2021a;
Wen-Jing et al., 2022). How to ensure information interaction
reliability for a low-voltage distribution grid under impulse noise
remains an open issue (Tariq and Poor, 2018).

Impulse noise suppression is an important aspect of information
interaction reliability improvement for low-voltage distribution
grids, the core of which lies in the transmission-side peak-to-
average power ratio (PAPR) reduction and reception-side signal
blanking. On one hand, the adoption of orthogonal frequency
division multiplexing (OFDM) (Bo et al., 2023; Liong et al., 2023)
in PLC results in high transmission-side PAPR, which counteracts
the effect of reception-side signal blanking because it is difficult to
distinguish impulse noise from useful signals under high PAPR. A
widely utilized approach to reducing the PAPR is the partial transmit
sequence (PTS). It decomposes the original OFDM symbols into
multiple subsequences and then performs weighting and phase
modulation on each subsequence to achieve PAPR minimization.
On the other hand, reception-side signal blanking suppresses
impulse noise by nulling the signal whose amplitude is above a
preset blanking threshold of zero. Its effectiveness in improving
information interaction reliability of PLC has been proved due
to its high feasibility and practicability in real-world applications
(Wang et al., 2023).

However, although recent studies have achieved significant
progress, the study on improving information interaction reliability
in low-voltage distribution grids still faces some major technical
challenges (Kelvin et al., 2017; Zhang et al., 2017). First, there is
a lack of comprehensive consideration of transmission-side PAPR
reduction and reception-side signal blanking from the perspective
of collaboration (Gaëtan et al., 2008; Hongxiang and Tetsuya, 2016;
Ali et al., 2021b). Information interaction reliability improvement
is a complex problem that involves both the transmission and
reception sides, and the transmission-side PAPR has an unignorable
impact on reception-side signal blanking. Second, the selection
of the optimal phase factor in the PTS has extremely high
computational complexity. The search space of minimum PAPR
increases exponentially with the number of partial sequences, and
the simple utilization of the exhaustive method becomes infeasible
(Satyendra Singh et al., 2015; Yassine and Abdelkrim, 2017; Li et al.,
2023). Finally, signal blanking relying on a single threshold is less
effective to deal with the scenario where low-amplitude impulse
noise coexists with high-amplitude noise. The one-size-fits-all
threshold tends to either suppress high-amplitude impulse noise
but keep the low-amplitude one or even suppress both the impulse
noise and useful signal, which has an adverse impact on information
interaction reliability improvement (Filbert et al., 2016).

Numerous researchers have studied PTS for PAPR reduction.
Sravanti and Vasantha (2017) proposed various precoding PTS
methods to improve PAPR reduction performance based on
the exhaustive method. Qian et al. (2019) proposed a PTS-based
algorithm to search for the optimal phase factor using the
exhaustivemethod, which reduces the PAPRof transmission signals.
Zhang et al. (2020) proposed a permutated PTS scheme, which
exhibits significantly higher PAPR reduction performance with less
complexity by combining two operations of phase rotations and
frequency-domain permutations. However, the above studies rely
on exhaustive methods to search for the optimal phase factor,

which is infeasible for practical implementation.The particle swarm
optimization (PSO) algorithm can quickly find the optimal phase
factor by simulating the interaction between particles. It has been
widely applied to PTS due to the advantages of simultaneous
utilization of both local and global information to improve the
search performance. Ouqour et al. (2014) designed a PSO-based
active constellation extension-projection onto convex sets (ACE-
POCS) algorithm to reduce the PAPR of OFDM signals. However,
the conventional PSOalgorithmadopts a fixed inertial weight, which
cannot be adaptively adjusted by the signal characteristic, leading
to poor optimization accuracy and convergence speed. Moreover,
the above studies do not consider signal blanking on the reception
side. Nir and Ron (2014) proposed a narrowband noise suppression
scheme based on frequency shift filtering, the objective of which is
to improve the information exchange reliability of PLC. Gaëtan et al.
(2010) investigated an impulse statistics estimation-based automatic
noise mitigation algorithm to improve the BER performance of
the information interaction. However, the above studies ignore the
collaboration between the transmission-side PAPR and reception-
side useful signal power estimation and peak median ratio, which
cannot fully release the potential for impulse noise suppression.
Furthermore, the mere consideration of a single-signal blanking
threshold cannot achieve accurate impulse noise suppression.

To address these challenges, we propose a two-stage
collaborative information interaction reliability improvement
algorithm for low-voltage distribution grids. First, the transmission-
side PAPR is reduced based on adaptive PSO-enabled PTS. Second,
reception-side dual-signal blanking is proposed based on the
transmission-side PAPR and reception-side useful signal power
estimation and peak median ratio. Finally, through simulation
results, we verify the effectiveness of the proposed algorithm in both
PAPR reduction and BER performances. The main contributions of
this work are summarized as follows:

• Two-stage collaborative impulse noise suppression for
information interaction reliability improvement: the proposed
algorithm realizes transmission–reception collaborative
information interaction reliability improvement in two stages.
In the first stage, the transmission-side PAPR is reduced by
optimizing the phase factor of PST based on adaptive PSO,
which improves the performance of reception-side signal
blanking by making it easier to distinguish useful signals from
impulse noise. In the second stage, the transmission-side PAPR
is further used to calculate both coarse and precise thresholds,
which can effectively improve the blanking threshold accuracy
based on signal characteristics.

• Transmission-side PAPR reduction based on the adaptive PSO-
enabled PTS: we propose a transmission-side PAPR reduction
based on the adaptive PSO-enabled PTS to preprocess the
frequency domain signal. By dynamically adjusting the adaptive
inertia weight of PSO based on differentiated PAPRs, the
proposed algorithm can adaptively adjust the global and local
search capabilities. Global search is adopted to improve the
searching speed under large PAPR, while local search is adopted
to improve the searching accuracy under small PAPR. In this
way, the proposed algorithm can avoid falling into the local
optimum and improve the search precision.
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• Reception-side dual-signal blanking based on useful signal
power estimation and peakmedian ratio: we propose reception-
side dual-signal blanking based on the transmission-side PAPR
and reception-side useful signal power estimation and peak
median ratio. The proposed algorithm uses the transmission-
side PAPR to carry out coarse blanking, which blanks high-
amplitude impulse noise to improve useful signal power
estimation for precise signal blanking. Then, precise signal
blanking is carried out based on useful signal power estimation
and the peak median ratio. The precise threshold is set to
approach the peak value of the useful signal so that the low-
amplitude impulse noise can be precisely suppressed.

The remainder of this paper is organized as follows: Section 2
formulates the system model. The proposed adaptive PSO and dual
blanking-based two-stage collaborative information interaction
reliability improvement algorithm is presented in Section 3. The
simulation results are provided in Section 4. Finally, conclusions are
drawn in Section 5.

2 System model

PLC is a complex process, including transmission and reception,
and the whole communication process consists of many aspects.
During the information interaction of PLC, impulse noise is
generated by a large number of power electronics devices,
which will seriously affect the quality of PLC and lead to data
transmission errors and even transmission interruptions. Compared
withmodulationmethods such as code division,multiple access, and
time division multiplexing, OFDM divides the signal into multiple
subcarriers, limiting the impact of impulse noise (Wang et al., 2019).
Furthermore, by dynamically adjusting the power distribution of
subcarriers, OFDM reduces the effect of impulse noise on the entire
PLC communication system (Hou et al., 2023). In order to reduce
the impact of impulse noise on PLC, it is necessary to establish a
complete OFDM signal transmission model to lay the foundation
for information interaction reliability improvement.

2.1 Signal transmission model

The complete OFDM signal transmission model is shown in
Figure 1. At the transmitter, the binary bit data are modulated as
a frequency domain signal by Q-phase shift keying (QPSK). A is
defined as the original frequency domain signal, which is given by
Eq. (1)

A = [A1,A2,…,An,…,AN]
T, (1)

where N is the number of subcarriers and AN represents the data
carried by the Nth subcarrier.

PTS is a phase optimization scheme that works by splitting
the original signal into multiple sub-sequences and weighting these
sub-sequences using different phase factors. Then, the weighted
sub-sequences are superimposed together before transmission. It
effectively reduces the high PAPR generated by OFDM modulation
and improves the interaction reliability performance of the signal.

We divide N subcarriers into L disjoint subsets, each of which
contains M subcarriers, i.e., N = L×M. For each subset, M
corresponding subcarriers are selected from the original frequency
domain signal to form a partial sequence. The set of partial
sequences is defined as Ω = {Q1,Q2,…,Ql,…,QL}, where Ql is the
partial sequence of the lth subset and represented as Eq. (2)

Ql = [Aq1
,…,Aqm
,…,AqM]

T, (2)

where q1,…,qm,…,qM are the indexes of the selected subcarriers in
the subset.

PAPR, the peak-to-average power ratio of a signal, is used as a
measure of the dynamic range and complexity of a signal. A lower
PAPR indicates a higher resolution between the noise generated
during signal transmission and the useful signal, which improves
the information interaction reliability performance. By weighting
partial sequences, the phase can be adjusted to avoid high PAPR
in the process of signal superposition. Therefore, the phase factor
bl = exp(jφl) is introduced as the auxiliary information to weigh
partial sequences, where φl ∈ [0,2π ). By choosing different phase
factors to weigh partial sequences, the generated integrated discrete
time domain signal xk is given by Eq. (3)

xk =
L

∑
l=1

IDFT{bl Ql)}

=
L

∑
l=1

blIDFT{Ql}

=
L

∑
l=1

blql,k = 1,…,N, (3)

where q1 is the discrete time-domain signal of Q1. The PAPR of xk
is represented as Eq. (4)

PAPR(xk) = 10lg(
max

k=1,2,…,N
|xk|

2

1
N

N

∑
k=1
|xk|2
). (4)

In order to obtain the time-domain signal with the lowest PAPR,
it is necessary to choose the optimal phase factor sequence, which is
given by Eq. (5)

{b1,b2,…,bl} = arg min
{b1,b2,…,bl}

(max
1≤k≤N
|xk|

2), (5)

where argmin{⋅} denotes the value of the independent variable
when the function reaches its minimum value. In order to better
describe the reduction degree of the signal PAPR before and after the
weighted integration of phase factors, we adopt the complementary
cumulative distribution function (CCDF) to characterize the degree
of reduction in the PAPR, which is given by Eq. (6)

CCDF(xk) = Pr(PAPR(xk) > PAPR∗ ) , (6)

where PAPR∗ is the threshold of the transmission-side PAPR.

2.2 Noise model

According to Antoniali et al. (2016), during the information
interaction of PLC, the relevant research mainly classifies the noise
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FIGURE 1
Complete OFDM signal transmission model.

into two categories, i.e., background noise and impulse noise,
according to the variation in noise and the amplitude of fluctuation
over time. Background noise varies more smoothly in a certain time
range, with little amplitude fluctuation and a long duration. Impulse
noise is mainly caused by the sudden switching of the working
state of high-power electronic equipment and contains multiple
frequency components in the frequency domain (Tariq et al., 2020;
Li et al., 2022b). It covers a wide frequency range and has a high
impact on the quality of PLC. The Middleton class A noise model
is used to model PLC impulse noise (Savoia and Verde, 2013). The
overall noise is given by Eq. (7)

ωk = αk + βk, k = 1,….,N, (7)

where αk is the background noise of the tth OFDM symbol period
and can be expressed as additive Gaussian white noise. βk is
the impulse noise, which can be described as the multiplication
of Gaussian noise and a Bernoulli process (Axell et al., 2015),
in Eq. (8),

βk = μkgk, (8)

where gk is the zero-mean white Gaussian noise and μk is
the Bernoulli process. The probability density function of μk is
expressed as Eq. (9)

fμ (μk) =
{
{
{

λ, μk = 1

1− λ, μk = 0,
(9)

where μk = 1 indicates the presence of impulse noise and μk = 0
indicates the absence of impulse noise. λ is the probability of
generating impulse noise. The noise probability density function
over a period of time can be obtained, which is given by Eq. (10)

fω (ωk) = (1− λ)G(ωk,0,σ2α)

+ λG(ωk,0,σ2α + σ2β) ,
(10)

where σ2α is the variance in backgroundnoise, σ
2
β is the variance in the

impulse noise, andG(⋅) is the Gaussian probability density function.

2.3 Bit error rate model

According to the description of the noise model, the total noise
in the channel of the OFDM system is composed of additive white
Gaussian noise and impulse noise. The power spectral densities of
additive Gaussian white noise and impulse noise are defined as Nα
and Nβ, respectively (Abdo et al., 2018). We use QPSK to modulate
the transmission-side signal of the OFDM system. The BER under
noise is expressed as Eq. (11)

BER = Q(√
2Eb

Nα +Nβ
), (11)

where Eb is the binary code energy of the OFDM signal. Q(⋅) is
the right tail function of the standard normal distribution, which
is given by Eq. (12)

Q (z) = ∫
∞

z

1
2π

e−
t2

2 dt = 1
2
erfc( z
√2
). (12)

3 Adaptive PSO and dual
blanking-based two-stage
collaborative information interaction
reliability improvement for
low-voltage distribution grids

In this section, we propose an adaptive PSO and dual
blanking-based two-stage collaborative information interaction
reliability improvement algorithm for low-voltage distribution
grids. Specifically, in the first stage, we endeavor to reduce the
transmission-side PAPR by optimizing the phase coefficients of
the PST, thereby enhancing the resolution between the impulse
noise and the useful signal. Subsequently, in the second stage, we
utilize the decreased transmission-side PAPR from the first stage
to compute coarse and precise thresholds, thereby elevating the
blanking performance of the reception-side signal in the second
phase. Ultimately, this approach achieves transmission–reception
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FIGURE 2
Overall structure of the proposed algorithm.

collaborative information interaction reliability improvement.
Without the collaboration of the two stages, the PAPR on the
transmission side may not effectively decrease, thereby affecting
the performance of impulse noise suppression. In the first stage, we
successfully reduce the transmission-side PAPRby optimizing phase
coefficients, enhancing the resolution between impulse noise and
useful signals. The second stage utilizes the reduced transmission-
side PAPR to calculate coarse and precise thresholds, further
improving the blanking performance of the reception-side signal.
Neglecting the collaboration in the second stage could result in
a reduced resolution between impulse noise and useful signals,
inaccurate threshold calculations, and, consequently, an impact
on the impulse noise suppression performance. The proposed
algorithm is shown in Algorithm 1. The overall structure of the
proposed algorithm is shown in Figure 2.

3.1 First-stage transmission-side PAPR
reduction based on the adaptive
PSO-enabled PTS

The traditional PTS algorithmhas high complexity since it needs
to search for the optimal phase factors using the exhaustive method.
The PSO algorithm realizes PTS optimization by simulating the
interaction between particles to effectively reduce computational
complexity.

PSO designs massless particles to simulate the individuals in
a swarm. The particle contains two attributes defined as velocity s
and position p, where s reflects the moving speed of the particles in
the swarm and p reflects the moving direction of the particles. The
particles’ positions indicate potential solutions, while their speeds
determine the direction and speed of movement within the search
space. Integrating speed and position attributes with the article’s
specific content can enhance the algorithm’s problem-specific
nature, thereby increasing the search efficiency and accuracy. The
optimal solution searched by each particle individually is denoted
as the current individual optimal value vind and shared with other
particles in the swarm.The optimal solution searched by all particles

in the swarm is denoted as the current global optimal value vglo. The
optimal solution is the one with the best performance based on the
fitness function value in the current iteration cycle. The individual
optimal value is the best solution found in each particle’s history.The
global optimal value is the best solution found in the history of all
particles in the entire particle swarm. By comparing these values,
the optimal solution in the current iteration cycle may evolve into
the individual optimal solution and potentially evolve into the global
optimal solution.

We consider G iterations, the set of which is G = {1,…,g,…,G}.
After the optimal solution is searched in the gth iteration, PSO
updates the position and velocity of the particle based on its inertial,
cognitive, and social components to adjust the search direction and
step size in the (g+ 1)th iteration.The position pi(g+ 1) and velocity
si(g+ 1) of the ith particle in the (g+ 1)th iteration are updated
as Eq. (13) and Eq. (14) (Fernandez-Martinez and Garcia-Gonzalo,
2011; Anamika et al., 2018):

si (g+ 1) = θsi (g) + l1r1 (v
ind
i (g) − pi (g))

+ l2r2 (vglo (g) − pi (g)) ,
(13)

pi (g+ 1) = pi (g) + si (g+ 1) , (14)

where r1 and r2 are the random numbers within [0,1]. θ is the
inertia weight factor, which serves to balance the local and global
search ability of PSO. l1 and l2 are the learning factors, which
reflect the tendency of each particle to search toward itself or the
swarm. vindi (g) and v

glo(g) are the individual optimal value of the ith
particle and global optimal value in the gth iteration, respectively.
θsi(g) is the inertia part, which reflects the motion behavior of the
particle, i.e., the tendency of the particle to maintain its previous
state. l1r1 (v

ind
i (g) − pi(g)) is the cognitive part, which reflects the

particle’s memory of its own historical experience and represents
the particle’s tendency to approach its historical optimal position.
l2r2 (vglo(g) − pi(g)) is the social part, which reflects the swarm
history experience on cooperation and knowledge sharing among
the particles and represents the tendency of the particles to approach
the best position in the swarm history.
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1: Input: G, s, l1, l2, smax, A, bl, L, N, C, M, h,

p, σα, σβ, θini, θend, r1, and r2.

2: Stage 1: First-stage transmission-side PAPR

reduction algorithm based on the adaptive

PSO-enabled PTS

3: Initialize s, p, l1, l2, G, smax, Nph, L, N, θini,

θend, r1, and r2.

4: For g = 1:G do

5: Divide the original frequency domain signal

into L partial sequences and weigh the above

partial sequences by different phase factors

according to the PTS.

6:  Calculate the minimum PAPR(xk) and use it as a

fitness function.

7: Obtain vind and vglo based on the

fitness function.

8: Adaptively adjust the inertia weight according

to (17).

9:  Update the particle velocity and position

based on (16) and (18).

10: Determine whether s exceeds the maximum speed

limit smax.

11: If g = G

12: Output vglo. The final vglo is the minimum

PAPR(xk).

13: else

14:  g = g+ 1.

15: End if

16: End for

17: Stage 2: Second-stage reception-side

dual-Signal blanking based on the

transmission-side PAPR and reception-side useful

signal power estimation and peak median ratio

18: Coarse blanking based on the transmission-side

PAPR:

19: Calculate the coarse threshold Γ of the signal

amplitude based on (19).

20: Perform coarse blanking based on (20).

21: Precise blanking based on reception-side

useful signal power estimation and peak median

ratio:

22: Calculate the difference between the average power

of the original reception-side signal and the average

power after coarse suppression based on (21).

23: Calculate the useful signal power based on (22).

24: Calculate the parameters ϖ and ξ based on the

peak and median values of the

reception-side signal.

25: Calculate the precise threshold Γ∗ of the

signal amplitude based on ϖ, ξ, and the useful

signal power.

26: Perform precise blanking based on (26).

27: End

Algorithm 1. Adaptive PSO and dual blanking-based two-stage
collaborative information interaction reliability improvement for
low-voltage distribution grids.

In actual OFDM systems, the phase factor is generally selected
from a specific set to reduce computation complexity, which is
presented as Eq. (15)

bl ∈
{
{
{
expj2π[

[

[0:Nph − 1]

Nph
) , (15)

where Nph is the number of phase factors.
However, the traditional PSO algorithm has the problems of

slow convergence speed and poor optimization accuracy. To address
these challenges, we propose a first-stage transmission-side PAPR
reduction algorithm based on the adaptive PSO-enabled PTS. It
adopts PSO to quickly find the optimal phase factors of PTS and
uses PAPR of the transmission-side signal to dynamically adjust
the weights of local and global search, improving the speed and
accuracy of PSO.

Based on the traditional PSO algorithm, si,d(g) is defined as the
velocity of the dth dimension of the ith particle in the gth iteration,
which is updated as

si,d (g+ 1) = θ (g) si,d (g) + l1r1 (v
ind
i (g)) − pi,d (g))+

l2r2 (vglo (g)) − pi,d (g)) , (16)

where θ(g) is the adaptive inertia weight. θ(g) is calculated as

θ (g) = PAPR(xk) ∗
(θini − θend) (G− g)

G
+ θend, (17)

where θini is the initial inertia weight and θend is the inertia weight
in the Gth iteration. The adaptive inertia weight decreases with an
increase in the number of iterations, and the local search ability
is increased to make the algorithm converge faster. At the same
time, when PAPR(xk) is larger, it tends to perform the global
search as a way to expand all positions and reduce the PAPR
as quickly as possible. When PAPR(xk) is smaller, it tends to
maintain its previous state and refine the exploration of local
positions to approach the optimal solution faster. Through (17), the
global and local search capabilities can be adaptively adjusted based
on the transmission-side PAPR and provide better convergence
performance to effectively reduce the algorithm complexity of the
PTS method.

pi,d(g) is defined as the position of the dth dimension of the ith
particle in the gth iteration, which is updated as

pi,d (g+ 1) =
{
{
{

1, rand!sig(si,d (g+ 1))

0, else,
(18)

where sig(si,d(g+ 1)) =
1

1+exp (si,d(g+1))
.

Thus, the implementation steps of the first-stage transmission-
side PAPR reduction algorithm based on the adaptive PSO-enabled
PTS are as follows:

1) Np particle swarms are randomly generated in a Nph ∗ L
dimensional space. Learning factors l1 and l2, position p,
velocity s, maximum speed limit smax, maximum number of
iterations G, the number of phase factors Nph, disjoint subset
number L, subcarrier number in a disjoint subset M, and
subcarrier number N are initialized.

2) Based on the PTS method, the original frequency domain
signal is divided into L partial sequences, which are multiplied
by different phase factors after IDFT.
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3) The minimum PAPR(xk) of the transmission-side signal xk is
calculated and used as a fitness function.The search values vind

and vglo are obtained according to the fitness function.
4) Based on PAPR(xk), θ(g) is adaptively adjusted according to

(17). The velocity and position of the particles are updated
based on (16, 18).Whether s exceeds themaximum speed limit
smax is determined.

5) The iterative process of learning is repeated until themaximum
number of iterationsG is reached.Thefinal vglo is theminimum
PAPR(xk).

3.2 Second-stage reception-side
dual-signal blanking based on the
transmission-side PAPR and reception-side
useful signal power estimation and the
peak median ratio

The proposed algorithm involves two parts: the transmission
side and reception side. The proposed algorithm is conducted
in two stages. After PAPR reduction at the transmission side is
completed, the second stage of the proposed algorithm occurs.
In the second stage, the reception-side signal is blanked to
improve information interaction reliability by suppressing impulse
noise. Traditional single-blanking-based impulse noise suppression
algorithms realize impulse noise suppression by zeroing out the
impulse noise with a preset threshold. Due to the influence of
parameter uncertainty and the characteristics of the signal, the
preset threshold is not precise, which makes it difficult to suppress
the impulse noise through the threshold. Therefore, we propose
a second-stage reception-side dual-signal blanking based on the
transmission-side PAPR and reception-side useful signal power
estimation and peak median ratio, which consists of coarse and
precise blanking and can be applied to all low-voltage distribution
network systems. Dual blanking refers to the proposed algorithm
performing two-step blankings, i.e., the first one being coarse
blanking followed by precise blanking. Impulse noise suppression
can be effectively realized by these two-step blankings. Replacing
single-signal banking with the proposed dual-signal blanking will
increase the additional calculation cost, but the calculation of dual-
signal blanking is simple and the added cost is minimal. Moreover,
dual-signal blanking can significantly enhance the impulse noise
suppression capability. The detailed steps of this algorithm are
shown as follows.

3.2.1 Coarse blanking based on the
transmission-side PAPR

The coarse threshold Γ of the signal amplitude is calculated
by combining the PAPR of the transmission-side signal,
which is given by

Γ = √PAPR(xk) ×
1
N

N

∑
k=1
|yk|2, (19)

where yk represents the reception-side signal and 1
N

N
∑
k=1
|yk|

2

represents the average reception-side signal power. Γ should be
located between the maximum signal envelope without noise and

the maximum waveform of the reception-side envelope. In the first
stage, the signal with lower PAPR is obtained based on the adaptive
PSO-enabled PTS, which indicates that the dynamic range of the
useful signal is small and the amplitude gap with the impulse noise
amplitude is large. Therefore, we perform coarse filtering of the
reception-side signal according to this feature in the coarse blanking
stage, thus realizing the cooperative impulse noise suppression at the
transmission side and reception side.

According to Γ, a coarse blanking method is used to suppress
impulse noise, which is given by

y′k =
{
{
{

yk , i f|yk| ≤ CΓ

0 , i f|yk| > CΓ,
(20)

where C represents the coarse estimation threshold adjustment
factor. It can adjust Γ to avoid the elimination of useful signals.
Through the above processing, the impulse noise greater than CΓ
is suppressed.

3.2.2 Precise blanking based on the
reception-side useful signal power estimation
and peak median ratio

Based on the coarse blanking results of the reception-side
signal y′k, the difference between the average power of the original
reception-side signal and the average power after coarse blanking
can be given by

D = 1
N

N

∑
k=1
(|yk|

2 − |y′k|
2) . (21)

The impulse noise power suppressed in the coarse blanking can
be approximated as D, but the actual impulse noise power is larger
thanD.We introduce the constant τ to adjustD so that the estimated
average power is closer to the actual useful signal power, which
ensures that the obtained threshold is more accurate. Useful signal
power R is given by

R = 1
N

N

∑
k=1
|yk|

2 − τD×

N

∑
k=1
|y′k|

2

N

∑
k=1
|yk|

2

, (22)

where

N
∑
k=1
|y′k|

2

N
∑
k=1
|yk|2

is the ratio of the average power of the received signal

after coarse blanking to the average power of the received signal
before coarse blanking.

Then, the peak value of the useful signal can be obtained using
the transmission signal PAPR and useful signal power. To improve
the blanking accuracy, we adjust the threshold based on the peak
median ratio of the received signal in the precise blanking to realize
precise noise suppression.

The parameters ϖ and ξ are calculated based on the peak and
median values of the received signal. ξ is the peak median ratio
of the received signal. The concepts of peak median ratio and
PAPR are distinct as they delineate different aspects of a signal
in the time domain. Specifically, PAPR quantifies the discrepancy
between the peak power and the average power of a signal. A higher
PAPR indicates a greater disparity between the peak and average
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powers, potentially leading to signal distortion and degraded system
performance. On the other hand, the peak median ratio represents
the difference between the peak power and the median power of a
signal. In contrast to the PAPR, the peak median ratio is typically
employed to characterize signal stability and waveform symmetry.
The parameters ϖ and ξ are given by Eq. (23) and Eq. (24)

ϖ =
median
k=1,2,…,N

(|yk|)

η
,0 < η < 1, (23)

ξ = √
max

k=1,2,…,N
(|yk|)

median
k=1,2,…,N

(|yk|)
, (24)

where η is a constant used to adjust the parameter calculation and
median(⋅) represents the median function.

Useful signal power and the peak median ratio are combined to
calculate the precise threshold Γ∗ of the signal amplitude, which is
given by Eq. (25)

Γ∗ = (1− h)√PAPR(xk) ×R+ h
ϖ×√2 log (N)

1+√1+ ξ
2

, (25)

where h represents the balance parameter and
ϖ×√2 log(N)

1+√1+ ξ
2

is the

threshold based on parameters. Due to the reduction in the useful
signal’s PAPR at the transmitter and the high power characteristics of
impulse noise, the value of parameter ξ is larger. A larger parameter
ξ brings Γ∗ closer to the peak of the useful signal, thus suppressing
low-amplitude impulse noise.

According to Γ∗ , precise blanking is carried out to improve the
blanking accuracy of impulse noise, which is given by

y′′k =
{
{
{

y′k , i f|y
′
k| ≤ Γ
∗

0 , i f|y′k| > Γ
∗ .

(26)

4 Simulation results

In this section, we evaluate the information interaction
reliability improvement performance of the proposed algorithm
through simulation. The simulation is implemented through
MATLAB. We consider an OFDM communication system with
256 subcarriers using QPSK modulation. Other detailed simulation
parameters are shown in Table 1 (Emad and Khaled, 2013;
Khaled and Emad, 2014).

Two state-of-the-art algorithms are used for comparison.
The first algorithm is dynamic peak-based threshold estimation
(DPTE), which improves information interaction reliability by
analyzing the relationship between the optimal blanking threshold
and the peak value of OFDM symbols and using the peak
amplitude of the OFDM symbol as the noise suppression threshold
(Khaled and Emad, 2014). The second is the dynamic peak-based
threshold estimation–partial transmission sequence (DPTE-PTS),
which considers PTS-based PAPR reduction before implementing
DPTE and realizes PTS optimization by conventional PSO
(Khaled and Emad, 2014).

TABLE 1 Simulation parameters.

Parameter Value Parameter Value

N 256 M 8

L 2, 4, 8, 16, and 32 Nph 4

l1 2 l2 2

Q3-4: smax 0.2 G 250

θini 0.9 θend 0.4

h 0.5

FIGURE 3
Q2-5: Transmission-side PAPR fluctuation under different algorithms.

The complexity of the proposed algorithm includes two
stages. In the first stage, the computational complexity of
PSO depends on the number of particles and the number
of iterations and can be calculated as O(3I×G), where I
represents the total number of particles. In the second stage,
computational complexity simply depends on the number of
mathematical calculations, and the computational complexity
is O(8). It is worth mentioning that the complexity of using
single-signal blanking in the second stage is O(2). Therefore,
the computational complexity of the proposed algorithm is
O(3I×G+ 8). The computational complexity of DPTE is O(3G).
DPTE-PTS also adopts the PSO algorithm, and its computational
complexity is O(3(I+ 1) ×G). Since DPTE does not consider
PAPR reduction on the transmission side, its computational
complexity is less, but the impulse noise suppression performance of
DPTE is poor.

Figure 3 shows the box plot of the transmission-side PAPR,
illustrating the fluctuation of the transmission-side PAPR under
different algorithms. Compared with DPTE and DPTE-PTS, the
proposed algorithm has the smallest PAPR fluctuation and reduces
the average PAPR by 24.7% and 16.1%, respectively. The reason
is that the proposed algorithm optimizes phase factor selection
for PST through adaptive PSO to improve the PAPR reduction
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FIGURE 4
CCDF of PAPR reduction under different algorithms.

FIGURE 5
CCDF of PAPR reduction of the proposed algorithm under different
L values.

performance. Simultaneously, it utilizes the PAPR to adaptively
update inertia weights based on signal characteristics so as to
balance between global search and local search, leading to better
convergence performance, higher searching accuracy, and smaller
PAPR fluctuation. DPTE neglects selection optimization of phase
factors for PTS, which leads to higher transmission-side PAPR.
DPTE-PTS cannot adaptively adjust its search strategy according to
the change in PAPR, resulting in a slower searching speed and poor
search accuracy.

Figure 4 shows the CCDF of PAPR reduction under different
algorithms. Compared with DPTE and DPTE-PTS, the proposed
algorithm can realize better PAPR reduction performance. The
reason is that the proposed algorithm uses the PAPR to realize the
dynamic adjustment of the inertia weight of PSO, thus effectively
improving the search accuracy and PAPR performance. In this way,
the probability that the transmission-side PAPR exceeds the PAPR
threshold is effectively reduced.

FIGURE 6
Average PAPR versus PSO iterations.

FIGURE 7
BER performance versus SNR.

Figure 5 shows the CCDF of PAPR reduction with different L
values. The proposed algorithm decomposes the original OFDM
symbols into L subsequences and then performs weighting and
phase modulation on each subsequence to reduce the PAPR of the
signal at the transmission side. As L increases,more phase factors are
utilized to weigh the decomposed partial subsequences, achieving
better PAPR reduction. However, the computational complexity also
increases exponentially with L.

Figure 6 shows the average PAPR versus PSO iterations. As
the number of PSO iterations increases, the average PAPR of the
proposed algorithm first decreases and finally stabilizes after g = 25,
while that of DPTE-PTS also decreases at first and finally stabilizes
after g = 50.When g = 250, comparedwithDPTE-PTS, the proposed
algorithm reduces the average PAPR by 4.5%. The reason is that
the proposed algorithm dynamically adjusts the updating of inertia
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weights based on PAPR variation. It combines global search under
large PAPR and local search under small PAPR to jointly improve
the convergence rate and searching accuracy of PSO.

Figure 7 shows the variation in the BER versus SNR. Since data
transmission involves the interaction between the transmission side
and the reception side, the higher the interaction reliability between
the transmission and reception sides, the smaller the BER of the
reception-side signal. Therefore, the BER can reflect the interaction
reliability of the proposed algorithm.When SNR= 10 dB, the BER of
the proposed algorithm decreases by 81.3% and 65% compared with
DPTE and DPTE-PTS, respectively. The reason is that the proposed
algorithm achieves two-stage collaborative information interaction
reliability improvement by suppressing the impulse noise. The first
stage uses adaptive PSO to optimize PTS to reduce transmission-
side PAPR, which improves the amplitude gap between impulse
noise and the useful signal. The second stage utilizes reception-side
dual-signal blanking to further suppress the impulse noise. DPTE
does not consider PTS or transmission-side PAPR reduction. The
signal blanking effectiveness is counteracted due to the degraded
resolution between the useful signal and impulse noise, thereby
resulting in higher BER. DPTE-PTS performs better than DPTE
because it considers PTS-enabled transmission-side PAPR reduction
to improve reception-side signal blanking.However, its performance
is worse than the proposed algorithm because it cannot adaptively
adjust inertia weight updating, according to PAPR variation, and
the searching of the phase factor is prone to being trapped in local
optimum. Furthermore, it does not consider the combination of
coarse and precise blanking so that impulse noise whose amplitude
is close to that of a useful signal cannot be accurately identified and
suppressed.

5 Conclusion

In this paper, we addressed the problem of insufficient
reliability of information interaction for low-voltage distribution
grids under impulse noise caused by the high proportion of
power electronics devices and proposed a two-stage collaborative
information interaction reliability improvement algorithm for low-
voltage distribution grids. Compared with DPTE and DPTE-PTS,
the average PAPR of the proposed algorithm is reduced by 65.5%
and 34.5%, and the BER of the proposed algorithm decreases
by 81.3% and 65% when SNR = 10 dB. This demonstrates that
the collaboration between transmission-side PAPR reduction and
reception-side signal blanking has obvious performance gains. We
have provided insights into combining PTS and signal blanking
to improve information interaction reliability, but the form of
collaboration is not constrained by PTS and signal blanking.

Meanwhile, the proposed work is still applicable in the case of
SINR. However, the proposed method does not consider the effect
of background noise or the frequency domain characteristics of
impulse noise. In the future, considering the coupling of noise
features in the time and frequency domains, wewill further look into
information interaction reliability improvement based on historical
performance feedback from a reinforcement learning perspective.
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