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The “load-following” characteristic of the power system makes the electricity
consumption behavior on the load side crucial for the low-carbon operation of
the distribution network. To address this, this paper proposes an improved
dynamic carbon emission factor for the distribution network, taking into
account the spatiotemporal characteristics of carbon emission intensity and
the integration capacity of photovoltaics (PV). Based on this, a calculation
method for the carbon emissions of the distribution network load is provided.
Subsequently, for commercial and industrial user scenarios, demand response
models are separately constructed for commercial and industrial loads based on
different driving mechanisms. Using time-of-use electricity prices as decision
variables, optimization scheduling of the distribution network is carried out with
the objectives of minimizing scheduling costs and carbon emissions. At the same
time, a case study is conducted in an improved IEEE-33 node distribution
network. The results indicate that, under the guidance of the improved
dynamic carbon emission factor, load transfer can be achieved through
fluctuating electricity prices, effectively reducing the scheduling costs of the
distribution network, decreasing carbon emissions, and enhancing the PV
integration capacity of the distribution network in different user scenarios.
Finally, it is hoped that in the future, this optimization method can be widely
applied, and further research can explore coordinated strategies among
generation, network, load, and storage to advance the development of the
power industry.
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1 Introduction

Since the proposal of the Dual Carbon Goals by the 75th United Nations General
Assembly in September 2020, various industries have been continuously moving towards
the direction of green and low-carbon initiatives. As a crucial infrastructure supporting
modern society, the power system plays a key role in achieving low-carbon emission
objectives. The distribution network, being the end of the power system and connected to
end-users, has a direct and far-reaching impact on carbon emission levels through its
scheduling methods and topological structure (Kang et al., 2009). Therefore, it is an urgent
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task to develop rational optimization and scheduling plans,
considering the carbon emission characteristics of different loads
in the distribution network, to reduce carbon emissions while
ensuring the economic operation of the distribution network.

In recent years, research on carbon emissions in power systems has
shifted from generation to the load side. Although carbon emissions
primarily originate from the generation side, distributed generation units
on the distribution network side have almost zero carbon emissions.
However, due to the diversity and uncertainty of distribution network
loads, changes in load flow will occur, and carbon flow is dependent on
the existence of load flow. The introduction of different loads will change
the carbon emission intensity of the distribution network. Therefore,
considering the carbon emission flow theory (Zhou et al., 2012), research
on the low-carbon optimization operation of distribution networks
under different scenarios is conducted. The distribution
characteristics of carbon emission flow in distribution systems
developed by (Zhou and Kang, 2019) and establishes a carbon
emission flow calculation model for energy storage components,
proposing an optimization method for the operation of distribution
systems towards low-carbon goals. The responsibility of carbon
emissions shifts from the generation side to the load side and
considers low-carbon optimization scheduling (Ge et al., 2023) based
on carbon emission flow theory and demand response using carbon
prices as a pricing signal, providing new insights for reducing system
carbon emissions. (Zhang et al., 2023) addresses the issue of a singular
low-carbon means on the load side in low-carbon scheduling and
proposes a two-layer low-carbon economic scheduling model for
power systems considering multiple carbon reduction methods
coupled with the carbon potential of sources and loads. All of these
studies introduce the theory of carbon emission flow into the power
system, guiding electricity use for different types of users based on their
electricity consumption characteristics but without optimizing
considerations for load response characteristics and flexibility.

From the perspective of demand response, the optimization
scheduling of flexible loads has gradually become a research focus
for reducing carbon emissions. Considering the carbon emission
characteristics of thermal power units and cement factories (Han
et al., 2023), which proposed environmentally economic scheduling
of typical industrial loads with positive demand response. Literature (Li
et al., 2022a; Ibrahim et al., 2023) introduces a new mechanism for
reducing carbon emissions in power systems by guiding users to
respond actively, taking into account the users’ own carbon
reduction intentions or the price factors in the carbon market as
incentive signals. A distributed resource low-carbon scheduling
strategy for distribution networks based on the carbon potential of
nodes, considering both the economic and low-carbon aspects of power
grid operations proposed in (Xue et al., 2019; Song et al., 2023a). The
above studies on demand response in power systems do not take into
account the impact of abandoned wind and solar power on the carbon
emissions of distribution networks, as well as the differences in carbon
emissions due to electricity consumption at different times.

In summary, based on the carbon emission flow theory, this paper
proposes an improved dynamic carbon emission factor calculation
method considering temporal and spatial characteristics and the
integration capacity of new energy sources. For different user
scenarios, demand response models for commercial and industrial
loads with the objectives of minimizing scheduling costs and carbon
emissions are separately established. Finally, a case study is conducted

on an IEEE-33 node distribution network, validating that the proposed
model can effectively shift high-carbon emission periods to low-carbon
emission periods in different scenarios while enhancing the
photovoltaic integration capacity of the distribution network.

2 Calculation method for carbon
emissions in distribution networks

2.1 Improved dynamic carbon emission
coefficient for distribution networks

The traditional quantification of carbon emission levels in
distribution networks mainly relies on the nodal carbon potential of
the system. For a specific node, it is described as the ratio of the carbon
flow into that node to its active power. Physically, it represents the
carbon emission per unit of electricity consumed at the node,
corresponding to the carbon emission density of the generator at
that node and the weighted average of the carbon flow densities of
adjacent nodes concerning the injected power from generators and
adjacent nodes. The unit is kgCO2/kW·h (Zhou et al., 2012) Eq. 1.

ej �
∑N
j�1
Pj · ρj + PG,j · ρG,j

∑N
j�1
Pj + PG,j

(1)

In the equation, ej represents the carbon potential of Node j, Pj
represents Injected power at node j, PG,j represents the injected
power from generator units connected to node j, ρj represents the
carbon flow density at node j, ρG,j represents the carbon potential of
generatorn units connected to node j.

The traditional calculation for dynamic carbon emission factor
in distribution networks is as follow Eq. 2 (Zhou and Kang, 2019):

CDis,t �
∑N

j�1,t ∈ T
Pj,t × ej,t

∑N
j�1,t ∈ T

Pj,t

(2)

In the equation, CDis,t represents the dynamic carbon emission
factor of the urban distribution network at time t, Pj,t represents the
active load magnitude of node t at time t, ej,t represents the carbon
potential magnitude of node t at time t, calculated based on the carbon
emission flow theory, N represents the set of nodes within the
distribution network.

The traditional dynamic carbon emission factor for distribution
networks reflects the carbon emissions per unit of electricity
consumption at time t. However, the improved dynamic carbon
emission factor takes into account the equivalent carbon emissions
generated by adding new energy sources. During these times, all
electricity consumption in the distribution network comes from
photovoltaic output, resulting in a dynamic carbon emission factor of
zero for the distribution network. In such cases, users, when considering
changes in their electricity consumption based on the dynamic carbon
emission factor, cannot perceive the curtailed solar power at themoment
when the carbon emission factor is zero. The closer its value is to zero, the
higher the level of new energy consumption. Therefore, the equivalent
reduction in carbon emissions is also different in article (Ge et al., 2022).
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The improved expression for the calculation of the dynamic carbon
emission factor is as follows:

CDis,t �
∑N

j�1,t ∈ T
Pj,t × ej,t − PQ,t × e0,t

∑N
j�1,t ∈ T

Pj,t

(3)

In the equation, CDis,t represents the improved dynamic carbon
emission factor for the distribution network, considering the
curtailed solar power, PQ,t represents the curtailed solar power in
the distribution network at time t, e0,t represents the carbon
potential of the main grid at time t.

2.2 Calculation of carbon emissions in
distribution networks

Based on the carbon potential matrix E formed by the carbon
potential at each node in the distribution network and the active
power flow matrix at load nodes, the carbon emissions at the load
nodes can be determined, clearly defining the carbon emission
responsibilities of different nodes.

The active power flowmatrix at a specific node can be defined as
a diagonal matrix, as shown below:

P �
P11 0 0
0 1 0
0 0 Pnn

⎛⎜⎝ ⎞⎟⎠ (4)

Since there are no losses in the active power transmission
between nodes, the off-diagonal elements are 0, the calculation
for the diagonal elements is as follows Eq. 5 (Chen et al., 2023):

Pjj �
∑
l∈N+

Pl, l ∉ k+

∑
l∈N+

Pl + PG,l, l ∈ k+

⎧⎪⎪⎨⎪⎪⎩ (5)

In the equation,k+ represents the set of branches connected to
node j that are adjacent and have generating units with power
output, when a specific node is not adjacent to any generating units,
that is l ∉ k, the diagonal elements of the active power flowmatrix Pjj
is the active power flow entering node j; when there is a generating
unit on a specific branch, then the diagonal element of the node
adjacent to that branch Pjj is the sum of active power flow entering
node j and the outputs of generating units connected to that node.

Combining (Eqs. 3, 4), the calculation method for the node
carbon potential matrix is as follows for (Chen et al., 2023) Eq. 6:

E � P − PT
B( )−1PT

G,inQG (6)

In the equation, E represents the node carbon potential matrix,
PB represents the matrix of branch flow distribution, PT

G,in represents
the matrix of generating unit injection flow distribution, QG the
matrix of carbon emission intensity for generating units.

In distribution networks with a high proportion of photovoltaics,
the carbon potential at a node is affected by both photovoltaic power
sources and energy storage elements in discharge mode. If the
distribution network lacks generating units and energy storage
components, then in such a scenario, the carbon potential at all

nodes equals the carbon potential of the main network. However, if
the distribution network includes generating units and energy storage
components, given the main network’s carbon potential, distribution
network load, and generating unit outputs, it becomes possible to
calculate the distribution of branch power flows and branch carbon flow
density. Subsequently, node carbon potentials can be determined based
on the carbon flow density of the branches.

If the dynamic carbon emission factor matrix CT �
[CDis,1, CDis,2, , ..., CDis,T] for the given time period T is provided,
the improved dynamic carbon emission factor matrix for the system
CT � [CDis,1, CDis,2, ..., CDis,T], combining the matrix of active power
load for the system PL,t � [PL,1, PL,2, ..., PL,T], the total carbon
emissions RT for the entire distribution network during that time
period can be obtained as follow:

RT � CT · PT
L,t · ΔT (7)

3 Demand response load model in
distribution network

3.1 Incentive-based demand response

Traditional incentive-based demand response (Xu and Guo,
2023) mainly involves users adjusting or reducing electricity
consumption during peak demand periods to receive discounts
or compensation. This paper proposes an incentive-based
demand response load considering the dynamic carbon emission
factor. In this approach, agreements are pre-signed between the
power supplier and the consumer. The dispatch center issues
instructions the day before the demand response, and based on
the dynamic carbon emission factor, the load is transferred from
high carbon periods to low carbon periods. The load remains
unchanged during neutral carbon periods. According to the
agreement, users receive compensation after load transfer. The
expression for compensation is as follows for Eq. 8 (Ge et al., 2022):

Wind
IDR � ∑N

t�1
βindPind

in,t � ∑N
t�1
βindPind

out,t

Wcomp
DRE � ∑N

t�1
γcompPcomp

out,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(8)

In the equation, Wind
IDR represents compensation for incentive-

based load, βind represents compensation coefficient for transferable
load, Pind

in,t represents the amount of load transferred in at time t,
Pind
out,t represents the amount of load transferred out at time t,Wcomp

DRE

represents compensation for reducible load, γcomp represents
compensation coefficient for reducible load, Pcomp

out,t represents the
amount of load reduction at time t.

3.2 Price-based demand response

Price-based demand response in (Li et al., 2023) involves changing
the original electricity consumption behavior based on changes in
electricity prices. It mainly includes two methods: time-of-use
pricing demand response and tiered pricing demand response. This
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paper primarily adopts time-of-use pricing demand response, aiming to
improve the economic and low-carbon performance of the distribution
network by responding to variations in electricity prices.

For electricity consumption periods under different carbon
emission intensities, users will adjust their electricity
consumption structure (Kaile et al., 2020). The electricity price
level will not only affect the load of that period, but also affect
the load of other periods, which is a multi period demand response.
Based on the relationship between electricity quantity and price
demand balance, and the multi-period electricity quantity-price
elasticity matrix, users’ response behavior can be
comprehensively characterized. The ratio of electricity quantity to
price change rate can be described as the electricity quantity-price
elasticity matrix, representing the sensitivity of electricity
consumption in each period to prices. The expression is as
follows for Eq. 9 (Zhou et al., 2016):

χ � ΔE
ΔP · P

E
(9)

In the equation, χ represents electricity quantity-price elasticity
indicator, E and ΔE the quantity of electricity and its variation
respectively, P and ΔP represent the price and its variation
respectively.

The expression for the electricity quantity-price elasticity matrix
M under time-of-use pricing is Eq. 10 (Zhou et al., 2016):

M �
δhh δhm δhl
δmh δmm δml

δlh δlm δll

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (10)

In the equation, δhh、 δmm、 δll represent the self-elasticity
coefficients of electricity quantity to price for high-carbon, normal-
carbon, and low-carbon periods, the rest are cross-elasticity
coefficients.

The expressions for the self-elasticity coefficient and cross-
elasticity coefficients for the high-carbon period are as follows for
Eqs 11, 12 (Zhou et al., 2016):

δhh � −aheh
−aheh + bh

(11)

δhm � ameh
−aheh + bh

(12)

In the equation, ah, bh, am, bm, al, bl represent the parameters of
the electricity quantity-price curve for the high-carbon, normal-
carbon, and low-carbon periods, respectively.

The expression for electricity consumption in the high-carbon,
normal-carbon, and low-carbon periods after multi-period demand
response is as follows Eq. 13 (Ge et al., 2022):

E1 � E0 +
E0,h 0 0
0 E0,m 0
0 0 E0,l

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ·M ·
ΔPh/P0,h

ΔPm/P0,m

ΔPl/P0,l

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (13)

In the equation, E1 represents electricity consumption in
multiple periods after demand response, E0 represents electricity
consumption in the periods before demand response, E0,h、E0,m、
E0,l represent electricity consumption in the high-carbon, normal-
carbon, and low-carbon periods before price-based demand
response, P0,h、P0,m、P0,l represent the fixed electricity prices in
the high-carbon, normal-carbon, and low-carbon periods before
price-based demand response, respectively.

With a daily cycle and a 1-h sampling interval, assuming the set
of dynamic carbon emission factors for all time periods on a given
day is C24 � [CDis,1, CDis,2,, ..., CDis,24], Utilizing fuzzy membership
functions to determine the degree to which each point belongs to
peak or off-peak time periods, Among them, employing a large-type
trapezoidal membership function to calculate the membership
degree μ1 for peak periods, Using a small-type trapezoidal
membership function to calculate the membership degree μ2 for
off-peak periods, as shown below for Eq. 14 (Shao et al., 2021):

μ1 CDis,i( ) � CDis,i − min C24( )
max C24( ) − min C24( )

μ2 CDis,i( ) � max CDis,i( ) − C24

max C24( ) − min C24( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (14)

The peak and off-peak membership degrees for the maximum
point on the dynamic carbon emission factor curve are 1 and 0,
respectively, while for the minimum point, they are 0 and 1,
Assuming a membership degree threshold of σ1, σ2 ∈ (0, 1),
dividing the periods μ1(CDis,i)> σ1 into high carbon periods,
dividing the periods μ2(CDis.i)> σ2 into low carbon periods and
categorizing the remaining periods as moderate carbon periods.

4 Low-Carbon scheduling optimization
model for distribution
NetworksFeature selection

For commercial loads, the inherent industry constraints and
limited ability to shift electricity usage to off-peak hours make time-
of-use pricing less effective for load transfer, thus they are more
appropriately classified as reducible loads in paper (Qiang et al.,
2023). Therefore, this paper considers them as loads that can be
reduced. In practical operation, instructions can be issued to these
types of load users to reduce a portion of their load in response to
their own situation, which can refers to (Lixia and Yun, 2023). They
will receive corresponding compensation. On the other hand,
industrial loads can shift some of their load within a certain time
range without affecting overall production plans and lifestyle needs,
achieving load peak shaving and valley filling during the scheduling
period without compromising production plans and lifestyle needs.

4.1 Low-carbon scheduling optimization
model for commercial loads in
distribution networks

4.1.1 The objective function

minOcomp
DR � Fcomp

DR

∑N
t�1
pcomp
0,t Ecomp

0,t

+ Dcomp
DR

∑N
t�1
cDis,tE

comp
0,t

minFcomp
DR � Wcomp

DRE + ∑N
t�1
pcomp
0,t Ecomp

0,t −∑N
t�1
pcomp
1,t Ecomp

1,t
⎛⎝ ⎞⎠

minDcomp
DR � ∑N

t�1
cDis,tE

comp
0,t −∑N

t�1
cDis,tE

comp
1,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)
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In the formula Eq.15, Ocomp
DR represents the objective function

that takes into account both scheduling costs and carbon emissions,
Wcomp

DRE represents compensation cost for reducible commercial load
scheduling, Fcomp

DR represents Scheduling cost required for load
reduction, pcomp

0,t 、 pcomp
1,t represent the prices of commercial load

before and after reduction at time t, Ecomp
0,t 、 Ecomp

1,t represent the
power of commercial load before and after demand response at time
t, Dcomp

DR represent carbon emissions required for demand response
at time t, cDis,t represents dynamic carbon emission factors of the
distribution network (Zhang et al., 2023).

4.1.2 Constraints
a) Load reduction constraint

Ecomp
dec,t ≤Ecomp

dec,t,max ≤ 0.1E
comp
sum,t0 ,t (16)

In the formula, Ecomp
dec,t represents the magnitude of load

reduction at time t, Ecomp
dec,t,max represents the maximum value of

load reduction at time t, Ecomp
sum,t0 ,t represents the total load of

commercial demand from time t0 to t.

b) The constraint on photovoltaic (PV) output

PVmin ≤PVDG
t,comp ≤PVmax (17)

In the formula, PVmin represents the lower limit on the output of
the photovoltaic units in the commercial scenario, PVDG

t represents
the output of the photovoltaic units in the commercial scenario at
time t, PVmax represents the upper limit of the output from the
photovoltaic units in the commercial scenario.

4.2 Optimization model for low-carbon
scheduling of industrial loads in
distribution networks

4.2.1 The objective function
The demand response of industrial loads in an industrial park is

primarily considered with electricity price as a guide (He at al.,
2023). By incentivizing industrial users through benefits, a portion
of high carbon-emission periods is shifted to low carbon-emission
periods. The specific objective function is as follows:

minOind
DR � Find

DR

∑N
t�1
Pind
0,t E

ind
0,t

+ Dind
DR

∑N
t�1
cDis,tEind

0,t

minFind
DR � Wind

IDR + ∑N
t�1
pind
0,t E

ind
0,t −∑N

t�1
pind
1,t E

ind
1,t

⎛⎝ ⎞⎠

minDind
DR � ∑N

t�1
cDis,tEind

0,t −∑N
t�1
cDis,tEind

1,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Where Oind
DR represents the objective function that takes into

account both scheduling costs and carbon emissions, Wind
IDR

represents compensation cost for incentive load scheduling, Find
DR

represents incentive load scheduling compensation cost, pind
0,t 、 pind

1,t

represent electricity price for industrial load before and after
demand response at time t, Eind

0,t 、 Eind
1,t represent power

consumption of industrial load before and after demand response

at time t, Dind
DR represents carbon emission required for demand

response at time t, cDis,t represents dynamic carbon emission factor
of the distribution network.

4.2.2 Decision variables
In the optimization scheduling model, the electricity prices

during periods of different carbon emission intensities Ph, Pm, Pl

are treated as decision variables, from Eq. 13, it is evident that when
the electricity prices during high-carbon, medium-carbon, and low-
carbon periods change, the matrix on the right-hand side will be
affected, subsequently influencing the electricity demand response
Eind
1,t . Therefore, by adjusting the electricity prices during different

time periods, the objective function of the optimization scheduling
model can be optimized to achieve the best solution (Xiyun
et al., 2023).

4.2.3 Constraints
a) Constraints on Photovoltaic Output

The article does not consider the issue of distributed
photovoltaic power flow backfeeding according to (Zhou and
Kang, 2019). Therefore, when the photovoltaic output exceeds
the distribution network load, a portion of the photovoltaic
power will be curtailed, resulting in curtailed solar energy.

PVmin ≤PVDG
t ≤PVmax (19)

PVDG
t − PDN

t ≤ 0 (20)

The value of PVmin is minimum output of photovoltaic units in
the industrial park, the value of PVDG

t is output of photovoltaic units
at time t, PVmax represents upper limit of the output of photovoltaic
units, PDN

t represents total load in the distribution network.

b) Constraints related to load transfer

Eind
in,min ≤Eind

in,t ≤Eind
in,max (21)

Eind
out,min ≤Eind

out,t ≤Eind
out,max (22)

Where Eind
in,min、 Eind

in,max represent the minimum and
maximum values of the industrial load transferred due to
demand response, Eind

out,min、 Eind
out,max represent the minimum

and maximum values of the industrial load transferred out due to
demand response.

c) Constraints related to electricity price fluctuations

4
3
Tm ≤Th ≤

3
2
Tm

1
2
Tm ≤Tl ≤

5
6
Tm

∑N
t�1
βPind

in,t � ∑N
t�1
βPind

out,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

In the formula, Tm、 Th、 Tl represent electricity prices
corresponding to the periods of flat carbon, high carbon, and low
carbon; β represent compensation coefficient for transferrable loads,
Pind
in,t represent load transferred into the system at time t, Pind

out,t

represent load transferred out the system at time t.
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d) Power balance constraint

∑N
t�1
Eind
1,t � ∑N

t�1
Eind
0,t (24)

Where Eind
1,t represents total load after demand response, Eind

0,t

represents total load before demand response.

4.3 The solution process for low-carbon
scheduling of industrial and
commercial loads

As shown in Figure 1, for different user scenarios, first
determine the load power of industrial and commercial loads.
For industrial loads, there are two main scheduling methods. One
is to arrange production based on the high and low electricity
prices, and the other is to respond to transferable load scheduling
instructions and report to the dispatch center the load
arrangement after demand response. Unlike industrial loads,
commercial loads cannot transfer loads and are not affected
by electricity prices. The dispatch center mainly issues
instructions to reduce loads, and the load reduction is
completed in the specified time period. The dispatch center
provides compensation according to the agreement, ultimately
reducing the dispatch cost and carbon emissions of the
distribution network (Song et al., 2023b; Shi et al., 2024).

5 Case study

5.1 Basic data

For the modified IEEE 33-node system in the commercial load
scenario, the locations of various photovoltaic (PV) units and energy
storage are shown in Figure 2. In this study, three distributed PV
units with a capacity of 400 kW each are installed at nodes 14, 19,
and 28. Additionally, an energy storage system with a capacity of
400 kW/400 kWh is added at node 32.

Schematic diagram of the modified IEEE 33-node system for the
industrial load scenario as shown in Figure 3. Distributed
photovoltaic units with capacities of 1,000 kW are installed at
nodes 6, 15, 20, and 28. Additionally, an energy storage device
with a capacity of 1000 kW/1,000 kWh is added at node 32.

The carbon potential of the main network has been
predetermined, as referenced in [4], and its temporal distribution
is illustrated in Figure 4.

Distributed photovoltaic power generation is mainly influenced
by the intensity of sunlight and is also affected by the temperature
and humidity of the photovoltaic power generation equipment (Wu
et al., 2019; Li et al., 2022b). In this paper, we mainly consider
standalone photovoltaic power generation systems and do not
consider the issue of power flow feedback. And energy storage
and photovoltaic only provide output and do not participate in
actual scheduling operations. The photovoltaic output is based on
the power generated by a typical day during the summer solstice in a

FIGURE 1
Demand response flowchart “or” demand response process diagram.
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certain area of Jiangsu Province, sampled at 1-h intervals. The load
data and photovoltaic output are shown in Figure 5.

On the summer solstice day, the load exhibits a classic double-
peak pattern. The commercial load output accounts for
approximately 10% of the industrial load output. The

photovoltaic (PV) output starts at 6 a.m., peaks around noon at
12 p.m., and concludes by 10 p.m. in the evening.

5.2 Analysis of optimization scheduling
results for commercial load

The time period for reducing commercial loads is mainly
concentrated from 12:00 to 19:00, while the load output remains
unchanged in other time periods, as shown in Figure 6.

Combined with Cplex solution, the results of traditional
commercial load optimization scheduling are shown in Table 1.
After traditional commercial load demand response on the summer
solstice, it decreased by 4.71%, the scheduling cost decreased by
5.2%, carbon emissions decreased by 10.37%, and the compensation
cost was 131.17 yuan.

On the other hand, we also compared and analyzed the
scheduling results using traditional carbon emission factors
and improved carbon emission factors, as shown in Table 2.

FIGURE 2
Schematic diagram of the modified IEEE 33-node system for the commercial load scenario.

FIGURE 3
Schematic diagram of the modified IEEE 33-node system for the
industrial load scenario.

FIGURE 4
Distribution of main network carbon potential.

FIGURE 5
The data for photovoltaic output and load on the summer
solstice day.
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Due to the fact that scheduling costs do not involve carbon
emission factors, whether traditional or improved carbon
emission factors are used, scheduling costs remain unchanged;

The improvement of the carbon emission factor takes into
account the equivalent reduction in carbon emissions from
photovoltaic waste, resulting in a decrease of 475.81 kg in
carbon emissions compared to before the improvement.

5.3 Analysis of industrial load optimization
and scheduling results

Combining the distribution network and photovoltaic output
data, the dynamic carbon emission factors of the distribution
network before and after the improvement can be obtained, as
shown in Figure 7. The positive half of the dynamic carbon
emission factor on the Y-axis represents the overall carbon
emission level of the distribution network, with values closer
to zero indicating lower carbon emissions at that time. From 11 to
16 o’clock, when the photovoltaic output in the distribution
network is high, the traditional carbon emission factor is zero,
indicating the occurrence of curtailed photovoltaic power.

However, it cannot reflect the difference in curtailed
photovoltaic power at different times. The improved dynamic
carbon emission factor shows negative values during curtailed
periods, with higher absolute values indicating higher curtailed
amounts, and values closer to zero indicating higher levels of
renewable energy integration.

The paper divides the 24 h of a day into three electricity
consumption periods: high carbon, medium carbon, and low
carbon, based on the magnitude of carbon emissions. Each period
consists of 8 h. The decision variable in this study is the time-of-
use electricity price. The electricity price influences the amount of
electricity consumed during different periods. Additionally,
considering the variation in curtailed solar power during
periods with negative carbon emission factors, the time-of-use
electricity prices also differ accordingly. The time-of-use
electricity prices after demand response are illustrated
in Figure 8.

After demand response of industrial load, the distribution grid
load is shifted from periods with higher carbon emission factors to
those with lower carbon emission factors, as shown in Figure 9.
The optimization results of demand response for industrial load
are presented in Table 3. Compared to the situation before demand

FIGURE 6
Comparison of commercial load demand response before
and after.

TABLE 1 Commercial load optimization scheduling results.

Before demand response After demand response

Load output/kW 1989.57 1895.88

carbon emissions/kg 650.58 583.09

scheduling cost/yuan 1580.85 1498.64

TABLE 2 Comparison of carbon emission factor scheduling results before and after commercial load improvement.

Traditional carbon emission factors Improving carbon emission factors

carbon emissions/kg 583.09 107.28

scheduling cost/yuan 1498.64 1498.64

FIGURE 7
Comparison of dynamic carbon emission factors before and after
improvement.
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response, the carbon emissions have decreased by 1976.70 kg, and
the curtailed solar energy rate has reduced by 4.73%. Additionally,
the reduction in carbon emissions before and after demand
response based on traditional carbon emission factors is
1250.38 kg. Considering the improved carbon emission factors
after demand response, there is an increase of 36.7%. On the other
hand, similar to the commercial load scenario, we also compared
and analyzed the demand response scheduling results using
traditional and improved carbon emission factors, as shown in
Table 4. The scheduling cost remained unchanged, and the carbon
emissions decreased by 1448.05 kg.

In addition, to verify the flexibility and transferability of the
model, in a 96 node system, as long as the output of distributed
power sources and energy storage is given, Still, like 33 nodes,
demand response is achieved by adjusting electricity prices for
different periods of carbon emission intensity, thereby
optimizing the objective function of the entire distribution
network (Yang et al., 2023). On the other hand, in the
scenario examples involved in this article, due to the relatively
simple 10 kV voltage level network, which does not involve many
substations and distributed power sources, there is no need for a
lot of nodes. Only 33 nodes are needed to simulate the
distribution network in the real world and perform basic
operation scheduling operations.

6 Conclusion

This paper proposes a low-carbon economic optimization
scheduling model for the distribution network, considering an
improved dynamic carbon emission factor to shift carbon
emissions from the “source” side to the “load” side. Initially,
based on the improved dynamic carbon emission factor, the
method for calculating the carbon emissions of the distribution
network is determined. Subsequently, for both commercial and
industrial user scenarios, demand response models are
established based on electricity prices and compensation fees,
considering system scheduling and constraints. The distribution
network is then optimized for scheduling from both economic

FIGURE 8
Time-of-use pricing for commercial load.

FIGURE 9
Comparison of industrial load before and after demand response.

TABLE 3 The optimization results for industrial load.

Type Scheduling cost(yuan) Carbon emission reduction(kg) Reduction in curtailment rate(%)

Incentive-type Load 1441.1 1383.62 3.55

Transferable Load 1920.0 593.08 1.18

Total Load 3361.1 1976.70 4.73

TABLE 4 Comparison of carbon emission factor scheduling results before and after industrial load improvement.

Traditional carbon emission factors Improving carbon emission factors

carbon emissions/kg 2088.54 640.49

scheduling cost/yuan 3361.14 3361.14
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and low-carbon perspectives. The proposed method is analyzed
and validated through an improved IEEE 33-node system.

The results indicate that in the commercial user scenario, issuing
load reduction commands during specified time periods from the
dispatch center can effectively reduce the system’s scheduling costs and
carbon emissions. In the industrial user scenario, incentives based on
electricity prices and compensation fees guide users to shift loads from
periods with higher carbon emissions to those with lower emissions.
Additionally, during periods of high photovoltaic output, adjusting
load consumption based on the amount of curtailed energy has
increased the photovoltaic integration rate in the distribution
network, reducing both carbon emissions and scheduling costs. It is
hoped that in the future, this optimization method can be widely
applied, and further research can explore coordinated strategies among
generation, network, load, and storage to advance the development of
the power industry (Pang et al., 2015).
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