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Lithium-ion batteries are essential for electrochemical energy storage, yet they
undergo progressive aging during operational lifespan. Consequently, precise
estimation of their state of health (SOH) is crucial for effective and safe operation
of energy storage systems. This paper investigates the viability of ultrasound-
based methods for assessing the SOH of prismatic lithium-ion batteries. In the
experimental framework, a designated prismatic lithium-ion battery was
subjected to numerous charging and discharging cycles using a battery
cycling system. Subsequently, ultrasonic detection experiments were
conducted to record the waveforms of the transmitted and received signals.
These signals were then processed through wavelet transforms to extract signal
amplitude and time-of-flight data. To analyse these data, we applied four
algorithms: linear regression, support vector machines, Gaussian process
regression, and neural networks. The predictive performance of each
algorithm was evaluated through extensive experimentation and analysis. The
combination of ultrasonic signals with computational models has emerged as a
robust technique for precise battery degradation assessment, suggesting its
potential as a standard in battery health evaluation methods.
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1 Introduction

In the last decade, there have been substantial advancements in lithium-ion battery
technology, leading to its widespread utilization in various new energy devices, such as
mobile phones, laptops, electric motorcycles, and electric vehicles. Nevertheless, lithium-ion
batteries exhibit gradual aging during their operational lifespan. This aging phenomenon
manifests itself through a reduction in the maximum usable capacity and a shortened
service life. The quantification of battery aging and the detection of the state of health (SOH)
of lithium-ion batteries are crucial not only for mitigating safety hazards associated with
declining battery capacity and maximum usable power but also for evaluating the viability
of reusing retired electric vehicle batteries. Furthermore, assessing micro-health parameters,
which represent the condition of active materials and electrolyte, is essential for a detailed
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understanding of the battery’s internal health state, thereby
providing a comprehensive measure of SOH (Xu et al., 2023).

One innovative approach to assess the SOH of lithium-ion
batteries involves the application of ultrasonic detection
technology. This method offers a rapid, cost-effective, and
nondestructive means of evaluating the health of lithium-ion
batteries in situ. Pioneering work in this field can be attributed to
the Steingart research team at Princeton University. Hsieh et al.

(2015), for instance, entered this domain by developing a cobalt
lithium/graphite battery. Utilizing 2.25 MHz contact ultrasonic
probes placed on either side of the battery, Hsieh identified
variations in the received signal strength, which correlated with
the battery’s state of charge (SOC). Notably, the results indicate that
at a low SOC, the signal strength weakens as the health status of the
battery deteriorates, while at a high SOC, the signal strength
increases. Zhang et al. (2023) have further advanced our
understanding by introducing non-destructive methods for the
joint estimation of SOC and temperature using ultrasonic
reflected waves, highlighting their importance in preventing
thermal runaway and enhancing the safety of lithium battery
energy storage systems. Meng et al. (2022) established a
mesoscale physics-based model of lithium-ion batteries is
established to explain the change of signal amplitude which
carries the multiple reflections of ultrasonic waves within the
multi-layered structure of the cell. Davies et al. (2017) took a
synergistic approach by incorporating ultrasonic wave
propagation time of flight (TOF) data within a lithium-ion
battery alongside voltage data during the battery’s charging and
discharging cycles. Through the application of machine learning
techniques, Davies achieved commendable accuracy in predicting
both the battery SOH and SOC. His experiments underscored the
correlation between these parameters, and (Knehr et al., 2018)
further elucidated the interaction between the TOF of ultrasonic
waves within the battery and its SOH, emphasizing the profound
influence of the battery’s SOC. Kim et al. (2020), in his examination
of soft pack batteries, employed a single-sided dual-crystal straight
probe for ultrasonic testing. He observed a gradual decrease in

FIGURE 1
Schematic diagram of charging and discharging cycle.

FIGURE 2
Schematic diagram of experimental equipment.
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battery capacity with increasing cycle count, along with a
simultaneous increase in the ultrasonic wave propagation time
within the battery.

Notably, researchers have also initiated preliminary
investigations into the mechanics governing ultrasonic wave
propagation within lithium-ion batteries. For instance, Gold et al.
(2017) applied the Biot theory to construct an analytical wave
propagation model. This model allowed us to observe how
changes in the SOC might affect the propagation time of
ultrasonic waves, considering the battery as a liquid-filled porous
medium. Li and Zhou, (2019) investigated the morphological
changes within the internal air pockets of batteries. He
constructed a finite element model of the microstructure of
lithium-ion batteries and employed ultrasonic testing to detect
battery failure defects. Furthermore, Princeton’s Bhadra et al.
(2016) expanded this acoustic research to include zinc-
manganese oxide AA batteries. In a notable extension of this
approach, Chou et al. (2016), also from the same research team,
integrated this approach into the monitoring of the SOC for
vanadium oxide redox flow batteries.

(Ladpli et al., 2017; Ladpli et al., 2018) initiated a study involving
the utilization of piezoelectric ceramic plates for ultrasound
diagnostics of lithium-ion batteries. In contrast, Wu et al. (2019)
employed a twin-crystal piezoelectric ceramic plate to diagnose two
soft pack batteries with capacities of 1.8 Ah and 0.7 Ah. The study’s
findings revealed a significant lengthening of ultrasound
propagation time as the battery capacity decreased. Notably, for
the 1.8 Ah battery, the signal strength increased as the capacity
decreased, while the opposite trend was observed for the 0.7 Ah
variant. Bommier et al. (2020a) focused on NMC/SiGr composite

material soft pack batteries and employed ultrasound transmission
signals from piezoelectric ceramic plates. This analysis indicated that
as the battery capacity weakened, internal gas formation and
accumulation occurred, leading to a consistent reduction in the
ultrasound signal strength. In a subsequent study, Bommier et al.
(2020b) conducted charge‒discharge experiments at various rates
(0.5C, 0.7C, 0.875C, and 1C), revealing the substantial influence of
the battery’s charge‒discharge rate on the ultrasound
propagation time.

(Chang et al., 2020a) explored the effects of temperature on
ultrasound performance during the charging and discharging of
lithium-ion batteries at different temperatures by comparing the
growth rate of the SEI film. Popp et al. (2019) employed a 20 kHz
piezoelectric ceramic plate and established a laminated structure
analytical model based on multiple scattering theory. Copley et al.
(2021) proposed a novel peak calculation method, enabling the
prediction of the SOC of lithium-ion batteries following ultrasonic
pulse measurements using a proximally placed piezoelectric ceramic
plate. McGee, (2019) observed a sharp change in ultrasound signal
propagation time after overcharging and discharging a battery,
similar to Oca et al. (2019), who noted a significant decrease in
ultrasound signal strength for overcharged or overly discharged
batteries and evaluated their impact on battery health. Pham et al.
(2020) combined X-ray analysis with ultrasound diagnostics to
visualize the gas formation process during battery aging and
identify the layering of dense anode and cathode layers, causing
ultrasonic energy dissipation and signal attenuation. Zappen et al.
(2020) detected a significant decrease in ultrasound signal strength
during thermal abuse in a soft pack battery, highlighting the
potential of acoustic methods in identifying thermal abuse risks

FIGURE 3
Schematic of TOF (time-of-flight) and SA (signal amplitude) calculation methods.
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in batteries. This collective body of research underscores the
potential of ultrasound diagnostics as a powerful tool for
understanding the complex workings of lithium-ion batteries,
with implications for enhancing performance, safety, and longevity.

Historically, most ultrasonic research on lithium-ion batteries has
been confined to pouch cells and cylindrical batteries. However, given
the critical role of prismatic cells in electric vehicle power systems, they
have emerged as subjects of significant importance. Our study focused
on ultrasound-based methodologies for assessing the health status of
lithium-ion batteries, specifically for prismatic cells. In this study, a
battery cycling system was used to charge and discharge lithium-ion
batteries through a series of cycles. Subsequently, ultrasonic experiments

were conducted on these batteries after cycling. The acquired data
underwent wavelet pack transformation to eliminate noise, and key
parameters were extracted to predict the SOH of the selected prismatic
cells. These data were then partitioned for machine learning analysis
usingMATLAB’s regression tool, where various models were tested and
compared for accuracy. Our methodology, tailored specifically to the
characteristics of prismatic batteries, aims to enhance the understanding
of their behavior and improve the accuracy of health assessments, setting
a foundation for future advancements in battery technology and
sustainability. These results signify the development of a novel, cost-
effective, direct, and universally applicable method for obtaining the
SOH of prismatic lithium-ion batteries.

FIGURE 4
Experimental procedure for charging and discharging cycles.
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2 Experimental methods

2.1 Experimental setup

In the experimental setup, input signals were generated using a
Feeltech 6,600 waveform generator, while the output waveform
signals were provided by an Owon VDS 1022 oscilloscope. Both
the input and output signals were recorded and displayed using
laptop control software. A dual-crystal straight probe with a central
frequency of 50 kHz, manufactured by Daobo Company, was
thoughtfully selected and employed. This probe was strategically
positioned on one side of the battery’s surface to facilitate thorough
ultrasonic inspection of the battery. The ultrasound waves generated
by the transducer pass through the battery, reflected on the end
surface and received by the receiver. The interaction of these waves
with the battery’s internal components alters their properties, such
as amplitude and time of flight, which are key indicators of the
battery’s SOH. This method allows for a rapid evaluation of the
battery’s internal structure and health without requiring disassembly
or direct electrical measurement.

The research specimen chosen for this study was a prismatic
lithium-ion battery with a rated voltage of 4.35 V and an
impressive rated capacity of 50 Ah and geometry dimensions
of 148*98*26 mm. The experiments were conducted in a lab
environment with a controlled temperature of 23°C,
maintained by high-power air conditioning. This setup
ensured minimal temperature fluctuation within the batteries,
with variations kept below 1.3°C. The research prismatic battery
was allowed to stabilize post-discharge, incorporating a 24-h
resting period every ten cycles before ultrasonic signal recording.
The use of a couplant gel facilitated the transmission of ultrasonic
wave energy and minimized the significant refraction and
scattering of these waves caused by the coarse surface and air
gap between the probe and the battery. Figure 1 provides an

illustration of the experimental setup, featuring both a schematic
diagram of the charging and discharging cycle system and the
ultrasonic testing system. Figure 2 shows a photograph of the
experimental setup. Figure 3 displays a typical test result along
with the calculation of the TOF and signal amplitude (SA) of the
output signal. These two parameters, CH1 and CH2, represent
the input signal waveform and output signal waveform,
respectively, and will be utilized for predicting the SOH of the
researched prismatic cell.

2.2 Experimental procedure and
required materials

In our research, the experimental protocol comprises two main
stages: charge‒discharge cycling and ultrasonic testing.

The selected battery underwent a rigorous charge‒discharge
cycling process utilizing the Blue Electric Battery Test System. A
typical cycle involves:

1 Discharging at a steady 40A current occurs until the battery’s
voltage decreases to 2.8 V or less.

2 Maintaining a discharge at a constant voltage of 2.8 V until the
current drops to 0.1 A or less.

3 Charging at a constant current of 40A until the voltage ascends
to 4.2V or beyond.

4 Pursuing a charge at a consistent voltage of 4.2V until the
current diminishes to 0.1A or below.

This sequence indicates the conclusion of a single charge‒
discharge cycle. For the purposes of our research, each battery
underwent ten comprehensive cycles.

After the completion of these ten charge‒discharge cycles, the
battery is allowed to rest for a period of 24 h. It is important to note

FIGURE 5
The decaying (A) discharge capacity and (B) SOH as the increase of cycling number.
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that lithium-ion batteries may experience a temperature increase
after cycling. This resting interval serves two purposes: to dissipate
the accumulated heat and to ensure optimal conditions for the
subsequent ultrasonic testing phase.

With the battery conditioned through the aforementioned steps,
our research proceeds to ultrasonic examination utilizing the
techniques and equipment described earlier in our methodology.
In total, 240 charge and discharge cycles were conducted, and 24 sets
of acoustic data were captured to predict various SOH statuses for
the prismatic battery.

This sequence marks the completion of a single charge-
discharge cycle. In our research, we opted for ten
comprehensive cycles for each battery to collect data points as
densely as possible within a limited set of cycles, aiming to
meticulously trace signal strength changes during the
degradation process. This number was chosen to balance
between data granularity and the increased variability
introduced by fewer cycles, ensuring our results remain both
informative and reliable.

The entire procedure, along with key milestones and transitions, is
visually represented in Figure 4 for enhanced clarity and comprehension.

2.3 Machine learning predictions

In this research, four distinctmachine learningmethodologies, each
with four different presets, were employed to predict the SOH
degradation of prismatic batteries using acoustic signal data.

The first method, linear regression, is utilized in four variants:
The basic linear preset assumes that the direct relationship

between the predictor and the dependent variable is

Y � β0 +∑ βiXi + 

where Y is the SOH of the prismatic battery to be predicted. Xi

is the i th variable utilized for SOH prediction and consists of
two parameters: the SA of the output acoustic signal and the
TOF between the input signal and the output signal. Here, i =

TABLE 1 Summary of battery SOH and the change of TOF and SA of the output signal as the cycle number increases.

Record number Number of cycles SOH TOF (ms) SA (mv)

1 0 1 1.14 0.403495

2 10th 0.992152 1.142 0.424055

3 20th 0.987097 1.141 0.375336

4 30th 0.984839 1.139 0.394702

5 40th 0.982581 1.143 0.408852

6 50th 0.980645 1.142 0.416619

7 60th 0.979032 1.146 0.444004

8 70th 0.977419 1.148 0.418796

9 80th 0.975806 1.147 0.422669

10 90th 0.974516 1.144 0.398725

11 100th 0.973226 1.145 0.368224

12 110th 0.970968 1.151 0.374271

13 120th 0.969677 1.149 0.420585

14 130th 0.96871 1.153 0.41191

15 140th 0.966774 1.157 0.32272

16 150th 0.966129 1.154 0.352458

17 160th 0.965484 1.152 0.37827

18 170th 0.960323 1.159 0.343787

19 180th 0.957419 1.155 0.365899

20 190th 0.957097 1.156 0.324549

21 200th 0.956774 1.155 0.302858

22 210th 0.956129 1.158 0.352923

23 220th 0.955161 1.16 0.385727

24 230th 0.953871 1.165 0.350563

25 240th 0.952903 1.159 0.343787
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25. β0 is the intercept term, and βi is the coefficient of the
corresponding independent variable Xi. ϵ is the error between
the SOH predicted through machine learning and
the actual SOH.

The interactions linear preset, which includes
interaction terms

Y � β0 +∑ βiXi +∑ βijXiXj + 

FIGURE 6
(A) 0th cycle; (B) 50th cycle; (C) 100th cycle; (D) 150th cycle; (E) 200th cycle; (F) 240th cycle.
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where XiXj is the interaction term of the SA and TOF used to predict
the battery SOH. βij is the co-efficient of the corresponding
interaction term.

The robust linear preset, which maintains the same equation
form as the standard linear model but employs a fitting process that
assigns varying weights to data points, is intended to reduce the

FIGURE 7
Wavelet packet decomposition tree.

TABLE 2 Summary of SOH prediction results based on different models.

Method Preset R2 MAE (10−3) RMSE (10−3) Training time (s)

Linear Regression Linear 0.86 3.80 4.73 1.40

Interactions Linear 0.88 3.82 4.43 0.85

Robust Linear 0.86 3.73 4.78 0.46

Stepwise Linear 0.85 3.90 4.85 0.63

SVM Linear SVM 0.71 4.80 6.74 0.61

Quadratic SVM 0.82 4.08 5.37 0.18

Cubic SVM 0.80 4.35 5.61 0.20

Fine Gaussian SVM 0.89 3.15 4.19 0.21

Gaussian Process Regression (GPR) Squared Exponential GPR 0.88 3.58 4.37 0.82

Matern 5/2 GPR 0.88 3.60 4.37 0.26

Exponential GPR 0.93 2.73 3.35 0.27

Rational Quadratic GPR 0.88 3.58 4.37 0.29

Neural Network Narrow Neural Network 0.96 1.65 2.46 0.68

Medium Neural Network 0.92 2.38 3.47 0.28

Wide Neural Network 0.99 0.33 1.05 0.32

Bilayered Neural Network 0.95 1.53 2.94 0.43
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impact of outliers. Additionally, the stepwise linear preset initiates
with no predictors and iteratively selects the most statistically
significant predictors during the fitting process.

The second method, Support Vector Machine (SVM)
Regression, is applied using four different kernels:

2.3.1 Linear SVM with kernel

K Xi,Xj( ) � Xi · Xj

where K(Xi, Xj) is the kernel function, which computes the similarity
or a higher-dimensional relationship between two data points.

FIGURE 8
Denoised input and output signal: (A) 0th cycle; (B) 50th cycle; (C) 100th cycle; (D) 150th cycle; (E) 200th cycle; (F) 240th cycle.
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2.3.1.1 Quadratic SVM with kernel

K Xi,Xj( ) � γXi · Xj + r( )2
where γ is a scale factor for the feature vectors. r is the constant term
added to the kernel function.

2.3.2 Cubic SVM with kernel

K Xi,Xj( ) � γXi · Xj + r( )3
and Fine Gaussian SVM with kernel

K Xi,Xj( ) � e−γ‖Xi−Xj||2

where ║Xi-Xj║2 is the Euclidean distance between feature vectors
Xi and Xj.

Each offers different complexities in terms of data separation.
The thirdmethodology is Gaussian Process Regression (GPR), where

the prediction of SOH of a prismatic battery adops four kernel types:

2.3.2.1 Squared exponential GPR

K Xi,Xj( ) � σ2
f e

−γ‖Xi−Xj||2
2l2

where σf is the signal variance. l is the length-scale parameter.

2.3.3 Matern 5/2 GPR

K Xi,Xj( ) � σ2
f 1 +

�
5

√
r

l
+ 5r2

3l2
( )e − �5√

r
l

Exponential GPR

K Xi,Xj( ) � σ2
f e

− Xi−Xj‖ ‖
l

and Rational Quadratic GPR

K Xi,Xj( ) � σ2
f 1 + Xi − Xj

���� ����
2αl2

( )
−α

where α is a scale mixture parameter that controls the weighting of
different length-scales, allowing for modelling functions with
varying degrees of smoothness.

Each of these kernels is suitable for modelling varying degrees of
smoothness in data relationships.

Finally, this research employed Neural Network Regression
(NNR) and configured architectures as narrow, medium, wide,
and bilayer networks. These networks vary in terms of neuron
counts and layer depths, adhering to the general equation

y � f ∑wijg xi + bi( ) + b( )
However, the complexity and capacity for capturing nonlinear

patterns in acoustic signal data vary. In the equation y is the output
of the neural network, namely, the SOH of the prismatic battery. f is
the activation function for the output layer. g is the activation
function for the hidden layer. wij is the weight connecting
various layers. xj is the input feature consisting of the SA and
TOF. b is the bias for the output neuron. bj is the bias for the i
th neutron in the hidden layer.

All of these methods and their presets are systematically applied
and evaluated to determine the most effective approach for
predicting the SOH degradation of prismatic batteries based on
acoustic signal characteristics. This analysis provides a
comprehensive overview of machine learning strategies in the
context of battery health monitoring.

3 Results

3.1 Capacity decay

Figures 5A, B depict the evolving discharge capacity and SOH of
the tested lithium-ion battery as the experiments progress. These

FIGURE 9
The change of signal amplitude of output signal with the increase
of cycling number.

FIGURE 10
The change of TOF of output signal with the increase of
cycling number.
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figures offer a comprehensive overview of the battery’s performance
indicators and health trajectory throughout our study as the cycle
count steadily increases.

With an increasing number of cycles, the discharge capacity of
the prismatic battery decreases from an initial 48.44 Ah to 46.16 Ah
by the 240th cycle. Correspondingly, after 240 cycles, the SOH
decreases from one to 0.952.

Table 1 includes data from an initial set of experiments in
addition to the 240 cycles of charging and discharging tests with
ultrasonic signal measurements recorded every 10 cycles, totaling
25 sets of ultrasonic signals.

3.2 Ultrasonic signal

Figure 6 shows the input and output waveforms from the
initial (0th) cycle to the 240th cycle. Subfigures (a) through (f)
show the signal waveforms for the 0th, 50th, 100th, 150th, 200th,
and 240th cycles, respectively. These records offer a
comprehensive view of the waveform evolution as the battery
undergoes repeated cycles.

To reduce noise in the output signals, a denoising method
utilizing 4-level wavelet packet decomposition was employed, as
depicted in Figure 7. This approach effectively removes both low-
frequency and high-frequency noise, resulting in a cleaner signal
representation and ensuring a more precise analysis of the battery’s
performance over the designated cycles.

This waveform results from the laminated structure within
lithium-ion batteries, where stress waves undergo reflection,
transmission, and attenuation across various internal interfaces.
As batteries age, phenomena such as particle cracking, gas
production, and mechanical property degradation lead to
increased damping. This, in turn, diminishes the amplitude of
received signals and alters the propagation speed of stress waves,
thereby elongating the time difference between the incoming and
outgoing waves, which increases the time of flight.

Figure 8 displays the input and output waveforms following
decomposition, reconstruction, and denoising. Panels (a) through
(f) represent the denoised signal waveforms at the 0th, 50th, 100th,
150th, 200th, and 240th cycles, respectively.

Figure 9 shows the changes in the output SA from the 0th to the
240th cycling processes. With an increasing number of cycles, a

FIGURE 11
SOH prediction through linear regression with (A) linear, (B) interactions linear, (C) robust linear and (D) stepwise preset.
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noticeable decrease in the overall amplitude of the output signal becomes
evident. This decline indicates a prevailing downwards trend as the
battery undergoes repeated cycles, highlighting the evolving dynamics of
the battery’s health and operational parameters with continued usage.

Figure 10 illustrates the variations in the TOF of the output
signal from the 0th to the 240th cycling processes. Remarkably, as
the number of cycles increases, the overall signal propagation time
increases. This upwards trend as the battery progresses through its
cycles may suggest underlying alterations in the battery’s internal
structure or chemistry, highlighting the complex interplay of factors
influencing its performance over time.

The change in the SOH of the researched battery and the TOF
and SA of the output signal as the cycle number increases
from 0 to 240.

4 SOH prediction

To efficiently assess the SOH of the selected prismatic lithium-
ion batteries using ultrasonic methods, the input parameters

identified were the SA and the TOF of the output signal.
MATLAB’s regression learner tool was leveraged to implement
four distinct prediction methodologies: linear regression, SVM,
GPR, and neural networks. Each method was configured with
four different presets, resulting in a comprehensive evaluation
involving 16 unique models for forecasting the SOH of lithium-
ion batteries.

Figure 11 displays the results of the SOH predictions when
employing the linear regression methodology with four distinct
presets: linear, interaction linear, robust linear, and stepwise. The
coefficients of determination (R2) for the predictions of these models
were 0.86, 0.88, 0.86, and 0.85. Additionally, the Mean Absolute
Error (MAE) values for the models were 3.80 × 10−3, 3.80 × 10−3,
3.73 × 10−3 and 3.93 × 10−3. Moreover, the root means square errors
(RMSEs) observed for these four models were 4.73 × 10−3, 4.43 ×
10−3, 4.78 × 10−3, and 4.85 × 10−3.

Figure 12 displays the results of SOH predictions using SVM
techniques with four distinct presets: linear SVM, quadratic SVM,
cubic SVM, and fine Gaussian SVM. The R2 values for these models’
predictions were determined to be 0.71, 0.82, 0.80, and 0.89. The

FIGURE 12
SOH prediction through SVM with (A) linear SVM, (B) quadratic SVM, (C) cubic SVM and (D) fine Gaussian SVM preset.
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MAEs for these models were 4.80 × 10−3, 4.08 × 10−3, 4.35 × 10−3, and
3.15 × 10−3, respectively. Furthermore, the RMSE values calculated
for these SVMmodels were 6.73 × 10−3, 5.37 × 10−3, 5.61 × 10−3, and
4.19 × 10−3, respectively.

Figure 13 depicts the results of SOH prediction using GPR with
four different presets: the squared exponential GPR, the Matern 5/
2 GPR, the exponential GPR, and the rational quadratic GPR. The
corresponding R2 values for these models were recorded as 0.88,
0.88, 0.93, and 0.88, respectively. In terms of the MAE for each
model, the values were 3.58 × 10−3, 3.60 × 10−3, 2.73 × 10−3, and
3.58 × 10−3. Furthermore, the RMSE values associated with these
GPR presets were determined to be 4.37 × 10−3, 4.37 × 10−3, 3.35 ×
10−3, and 4.37 × 10−3, respectively.

Figure 14 illustrates the results obtained through the application
of neural network techniques for predicting SOH. Four distinct
presets were used: the narrow neural network, medium neural
network, wide neural network, and bilayer neural network. The
achieved R2 values for these models are as follows: 0.96, 0.92, 0.99,
and 0.92. When assessing the MAE for each model, the recorded
values were 1.68 × 10−3, 2.38 × 10−3, 0.33 × 10−3, and 1.53 × 10−3,

respectively. Furthermore, the RMSE values associated with these
neural network presets were determined to be 2.46 × 10−3, 3.46 ×
10−3, 1.05 × 10−3, and 2.94 × 10−3. These results underscore the
robustness and versatility of neural network-based models in
predicting SOH, highlighting their substantial accuracy and
reliability in assessing the status of lithium-ion batteries.

Table 2 compiles the results obtained from employing four
distinct prediction methodologies: linear regression, SVM, GPR,
and neural network methods. Each method was further finetuned
using four unique presets, resulting in a total of 16 model
variations for predicting the SOH in lithium -ion batteries.
The table presents the performance metrics, including R2,
MAE, and RMSE, for each of these models. Among the
analysed models, the wide neural network emerged as the
superior predictor for battery SOH, exhibiting impressive
accuracy metrics: an R2 value of 0.99, a MAE of 0.33 × 10−3,
and an RMSE of 1.05 × 10−3. These results underscore the
effectiveness of neural network-based models, particularly the
wide neural network variant, in delivering highly precise SOH
assessments for lithium-ion batteries.

FIGURE 13
SOH prediction through Gaussian Process Regression (GPR) with (A) squared exponential GPR, (B) Matern 5/2 GPR, (C) exponential GPR and (D)
rational quadratic GPR preset.
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In this study, four distinct prediction methodologies were
implemented with MATLAB’s regression learner tool: linear
regression, SVM, GPR, and neural networks. Previous researches
(Davies et al., 2017; Galiounas et al., 2022; Huang et al., 2022) have
frequently utilized SVM and neural networks for its robustness in
similar contexts. However, our exploration extends beyond
conventional approaches by including a variety of machine
learning techniques, particularly emphasizing the novel
application of a wide neural network. This method demonstrated
enhanced accuracy in predicting the SOH of batteries, distinguishing
our approach from SVM applications and offering a significant
contribution to the field of battery health diagnostics.

The training times for various models employed in the state of
health (SOH) prediction of prismatic batteries was assessed in the
comprehensive comparative analysis in Table 2, which highlighted
the fine Gaussian SVMmethod’s optimal performance, achieving R2,
MAE, and RMSE scores of 0.89, 315, and 4.19, respectively, with an
efficient training time of 0.21 s. Contrastingly, the wide neural
network model, among the neural network options explored,

stood out for its exceptional predictive accuracy, marked by R2,
MAE, and RMSE scores of 0.99, 0.33, and 1.05, respectively, albeit at
a marginally higher training time of 0.32 s. The decision to adopt the
neural network approach, despite the slight increase in
computational demand, was driven by its significantly enhanced
accuracy. This strategic choice underscores our commitment to
balancing computational efficiency with predictive precision.

This novel approach, diverging from the rapid state-of-health
assessments typically used for pouch cells, sets the groundwork for
refining diagnostic techniques for prismatic batteries. It promises
advancements in rapid post-discharge battery diagnostics, offering
profound implications for their secondary use and safety
performance evaluation.

It is important to note that while this approach provides valuable
insights into the battery’s health in a fully discharged state, its
applicability to batteries in different charge states requires further
investigation. This limitation is crucial for the interpretation of our
model’s predictions and outlines an avenue for future research to
expand the model’s applicability across various charging conditions.

FIGURE 14
SOH prediction through neural network with (A) narrow neural network, (B) medium neural net-work, (C) wide neural network and (D) bilayered
neural network preset.
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In addressing the comparative analysis between ultrasound-
based methods and traditional voltage-based feature extraction
for SOH estimation, it is important to highlight the distinctive
advantages of utilizing ultrasound diagnostics. Unlike voltage
analysis, which offers cost-effectiveness and straightforward
implementation, ultrasound methods provide a more
comprehensive insight into the battery’s internal health by
detecting structural and electrochemical changes not immediately
evident through voltage measurements. This capability allows for an
earlier detection of degradation phenomena, offering a deeper
understanding of the battery’s condition beyond what voltage
data can reveal. The ultrasound approach, with its non-invasive
and real-time monitoring advantages, represents a significant
advancement in battery health diagnostics, despite its higher
complexity and implementation challenges.

5 Conclusion

In this study, a comprehensive experimental framework was
established to evaluate the SOH of lithium-ion batteries using
ultrasonic testing methods. The study was systematically divided into
charge‒discharge cycling experiments followed by ultrasonic testing. As
the number of cycles increased, a noticeable decrease in the SOH of the
battery was observed.With an increasing number of cycles, the SA of the
output signal gradually decreased, while the TOF generally increased.
Central to our analysis was the utilization of advanced tools such as
MATLAB, which facilitates wavelet transformations for signal denoising,
and various machine learning techniques for predictive modelling.

This study revealed the significant potential of various predictive
models, with neural networks, particularly wide neural networks,
emerging as the most accurate tool for SOH prediction. This model
achieved an impressive R2 value of 0.99, highlighting its superior
accuracy. The results demonstrate that ultrasonic methodologies,
when combined with advanced machine learning algorithms, can
provide an efficient, precise, and cost-effective diagnostic tool for
assessing the health status of lithium-ion batteries. In summary, this
research not only significantly contributes to battery diagnostics for
electric vehicles but also lays the foundation for further innovations
in the domain of battery health assessment.
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