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The small-signal stability of high voltage direct current (HVDC)-connected wind
farms (WFs) is a challenging issue inmodern power systems. The relative stability,
i.e., the stability margin, of such a typical multiple-input multiple-output (MIMO)
system is quite difficult to be quantified. This paper evaluates the relative stability
of HVDC-connected WFs using a new stability index based on the ν-gap metric.
We first develop a MIMO model represented by a transfer function matrix of
the HVDC-connected WFs. Then, a new stability index, i.e., the robust stability
margin, based on the ν-gap metric is proposed to quantify the relative stability
of such a MIMO system. Finally, we propose a method to compute the stable
region of control parameters based on the corresponding stability criterion of
ν-gap metric. Case studies are given to demonstrate the effectiveness of the
proposed method.
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1 Introduction

Nowadays, line-commutated converter based HVDC system is widely used for long-
distance transmission of renewable energies, especially in China. In recent years, several
subsynchronous oscillations have occurred in theHVDC systems connectedwith renewable
energy generations, e.g., the oscillation phenomena in the Hami grid of China’s Xinjiang
Province, which seriously threaten the stability of modern power systems.

The small-signal stability of HVDC-connected WFs has attracted a lot of attention
from researchers. Eigenvalue analysis method is one of the commonly used approach for
stability analysis (Zhou et al., 2011; Yogarathinam et al., 2017; Ángel Cardiel-Álvarez et al.,
2017). Based on the state-space model of the overall system, the eigenvalues, participation
factors and sensitivity of control parameters are calculated (Yogarathinam et al., 2017;
Ángel Cardiel-Álvarez et al., 2017; Shen et al., 2021). Some insights of the oscillations can
be found from the analysis results. A state-spacemodel of Gravelines generator and IFA2000
HVDC system is established (Kovacevic et al., 2019). The results show that damping of the
6.3 Hz mode can be improved while the damping of 12 Hz mode can be deteriorated by
increasing the proportional parameters of DC current controller and PLL.

Impedance analysis is also a widely used method to analyze the stability of the
HVDC-connected WFs. The impedance models of HVDC-connected WFs are developed
in (Liu and Sun, 2013a; b), and the stability of the systems are analyzed based on the
Nyquist criterion (Sun, 2011; Liu et al., 2014; Wang et al., 2022b). Researchers compared
the influence of different control parameters on the impedance characteristics of the system
in (Wang et al., 2022a; Wang et al., 2020). Considering the effect of DC control system, an
impedance modeling method of control system based on transfer function is proposed
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FIGURE 1
Topology diagram of a rectifier connected with two WFs.

in (Su et al., 2023).The results show that the constant current control
of the rectifier has resonance risk near a specific frequency.

However, the above methods mainly focus on determining
whether the system is stable or not. It is difficult for them to assess the
relative stability, i.e., the stability margin, of the system and measure
how far the system is away from instability. A better relative stability
performance indicates that the system can tolerate a larger range of
parameter variation.

On the other hand, gain margin and phase margin are
measurements of the relative stability of a single-input single-output
(SISO) system in classical control theories. Researchers use gain and
phasemargin to analyze and design the control systems in the context
of robust stabilization (Bayhan and Soylemez, 2007). Based on the
impedance model of WFs, phase and gain margin can be calculated
from Nyquist curve (Rohit et al., 2021). However, since phase and
gain margin are calculated by the open-loop transfer function of a
unit feedback system, they are only available for SISO systems. It
is difficult to compute the phase and gain margin of the HVDC-
connectedWFs,whichisatypicalMIMOsystemwithmultipledevices.
To address this issue, we come up with the idea of applying the ν-gap
metric tomeasure the stabilitymargin of the system.The ν-gapmetric
theory is commonly used to investigate the robustness of stability
in feedback interconnected systems (Vinnicombe, 2001; Jiang et al.,
2021), especially for MIMO systems.

In this paper, we analyze the relative stability of a HVDC system
connected with WFs utilizing the ν-gap metric. The contributions
of this paper are as follows:1) We build a small-signal model of a
HVDC system connectedwithWFs represented by transfer function
matrix, in which the internal current vector and the active/reactive
power are the input and output signals. 2) A new stability index, i.e.,
the robust stability margin, based on the ν-gap metric is proposed
to quantify the relative stability of such a MIMO system. Compared
with phase and gain margin, the proposed robust stability margin
can be calculated directly on the basis of the proposedMIMOmodel

of the system. 3) Based on the sufficient and necessary stability
criterion of the ν-gap metric, we propose a method to compute the
stable region of the control and operation parameters of the system.

The rest of this paper is organized as follows. Chapter 2
presents the original small-signal model of HVDC- connected
WFs and the basic definitions of the ν-gap metric. Chapter 3
develops a standardized feedback model of HVDC- connectedWFs
applicable to he ν-gap metric. Furthermore, the robust stability
margin and the method to compute the stable region of control and
operation parameters is presented in Chapter 4. Simulation results
are proposed in Chapter 5, and conclusions are drawn in Chapter 6.

2 Related work

In this section, we show the related work of this paper. Firstly,
we present the original small-signal model proposed in (Yuan et al.,
2017; Lu et al., 2020) based on the typical control scheme of a
HVDC system andWFs.Then, the basic definitions and the stability
criterion based on the ν-gap metric are introduced.

2.1 Original small-signal model in DVC
timescale

Figure 1 shows a HVDC system connected with two WFs. This
paper mainly focuses on the power sending terminal containing the
rectifier of the HVDC and the GSCs of theWFs. In such a system, P
and Q represent active power and reactive power. Ė and ̇I represent
the voltage and current vectors of each equipment. U̇t represents the
voltage vector at the point of common coupling. X represents the
reactance between each equipment and the grid connection point.
Subscripts1, 2, 3, g represent GSC 1, GSC 2, a rectifier, and infinite
bus, respectively.
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FIGURE 2
Control strategies of the rectifier of HVDC and GSCs of the WFs. (A) Control strategy of a rectifier. (B) Control strategy of a GSC.

FIGURE 3
Original small-signal model of the rectifier of HVDC and the GSC of the WFs. (A) Original small-signal model of a rectifier. (B) Original small-signal
model of a GSC.

According to (Lu et al., 2020), Figure 2A shows the typical
control strategy of the rectifier of a HVDC system. DC current
control (DCC) is applied to control the DC current and generate an
appropriate order triggering angle αord for the thyristors. At the same
time, a phase-locked loop (PLL) is used to capture the phase of the
AC terminal voltage.The value of αord is the sum of actual triggering
angle and PLL’s angle.

Figure 2B depicts the typical control strategy of aGSC, including
DC voltage control (DVC), reactive power control (RPC), inner
current control (ICC) and PLL. The active branch controls the DC
voltage and the AC current in d-axis. The reactive branch controls
the reactive power and the AC current in q-axis. Similar with the
rectifier of HVDC, all the above control are controlled on the PLL
synchronization reference frame.

Utilizing the above control strategies, the small-signal models of
a rectifier and a GSC in DVC timescale (about 10 Hz) are proposed
in (Yuan et al., 2017; Lu et al., 2020), respectively. Figure 3A depicts
the original small-signal model of a rectifier. Figure 3B depicts the

original small-signalmodel of a GSC. In thesemodels, the active and
reactive power are the input signals and the phase and magnitude of
the internal voltage or current are the output signals. They describe
the dynamic characteristics of the rectifier and the GSC with clear
mechanism understanding based on the motion equation concept.

2.2 Basic theory of ν-gap metric

The basic theory of ν-gap metric is proposed (Zhou, 2010) to
analyze the robust stability of a feedback system. Consider a nominal
feedback system depicted in Figure 4A. P(s) is the forward channel
and C(s) is the feedback channel. The robust stability margin to
quantify the relative stability is denoted as b[P(s),C(s)]. If the system
is stable, b[P(s),C(s)] is in the interval (0,1]. If the system is unstable,
b[P(s),C(s)] = 0.

For the corresponding feedback system with uncertainties as
shown Figure 4B. P̃(s) and C̃(s) are sets of uncertainties around the
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FIGURE 4
Standard model block diagram. The left image is (A), and the right image is (B).

FIGURE 5
Small signal model.

given system P(s) and C(s). Denote the distance between P(s) and
P̃(s) as ν[P(s), P̃(s)]. Denote the distance between C(s) and C̃(s) as
ν[C(s), C̃(s)]. If

ν[P (s) , P̃ (s)] + ν[C (s) , C̃ (s)] < b [P (s) ,C (s)] (1)

the uncertain system is stable. Otherwise, the uncertain system is
unstable.

It is worth noticing that the system can be a SISO system or a
MIMO system. Furthermore, the stability criterion is a necessary
and sufficient condition without any conservatism.

3 Modeling of a HVDC system
connected with WFs

In this section, based on the original small-signal
model in Figure 5, we build a MIMO system model for
the relative stability analysis. First, we present the forward
channel of the MIMO system model by transfer function
matrix. Then, we establish the feedback channel reflecting
the power flow in AC network by transfer function
matrix.
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FIGURE 6
Standard feedback model of the HVDC system connected with WFs.
The left image is (A), and the right image is (B).

3.1 Modeling of the forward channel

In this subsection, we build the forward channel of the MIMO
system model reflecting the dynamic characteristics of the rectifier
and GSCs.

On the basis of the rectifier model shown in Figure 3A the GSC
model shown in Figure 3B,we establish the small-signalmodel of the
HVDC system connected with two GSCs in Figure 5. In this model,
ΔPin represents the active power input of the DC inductance and
DC capacitors of each device. ΔPout and ΔQout represent the active
and reactive power output of the DC inductance and DC capacitors
of each device. Δθ and ΔE represent the phase and magnitude of
the internal voltage. Denote Δθ and ΔI as phase and magnitude of
the internal current of the rectifier. Transfer functions M(s) and
D(s) represent the equivalent inertia and damping, respectively.
GEQ(s) is the transfer function related to the reactive power control.
GPr3(s) is a partial transfer function between ΔPout and Δθ of the
rectifier. Denote Δi3 as AC current of the rectifier. GPθr(s) is a
partial transfer function between Δi3 and Δθ of the rectifier. K3 is a
proportionality transfer function betweenDC current dynamics and
ΔI of the rectifier. J6 × 6 is an admittance matrix of the power flow
in AC network. Specific expressions of the matrix and the transfer
functions are provided in Supplementary Appendix SA according to
(Yuan et al., 2017; Lu et al., 2020).

For the GSCs in the model, the transfer function between Δθ of
the internal voltage and ΔPout of GSC 1 can be expressed as

GPθ1 (s) =
sD1 (s) + 1
s2M1 (s)

. (2)

The transfer function between Δθ of the internal voltage and ΔPout
of GSC 2 can be described as

GPθ2 (s) =
sD2 (s) + 1
s2M2 (s)

. (3)

For the rectifier in the model, denote the transfer function GPθ3(s)
between Δθ of the internal current and ΔPout of the rectifier as

GPθ3 (s) = −
sD3 (s) + 1

s2M3 (s)GPθr (s)
+GPr3 (s) . (4)

The transfer function between ΔI and ΔPout of the rectifier can be
described as

GPI3 (s) =
K3

sM3 (s)
. (5)

Specific expressions ofGEQ1,GEQ2,GQθ are given in (Lu et al., 2020).
For compact expressions, denote

ΔV = [Δθ1 Δθ2 Δθ3 ΔE1 ΔE2 ΔI3]T,

ΔS = [ΔPout1 ΔPout2 ΔPout3 ΔQ1 ΔQ2 ΔQ3]T.
(6)

FIGURE 7
Flowchart of the algorithm of assessing the parameter stable region.

Then, the forward channel of the MIMO system can be described as

ΔV =H (s)ΔS. (7)

where

H(s) =

[[[[[[[[[[

[

GPθ1(s) 0 0 0 0 0
0 GPθ2(s) 0 0 0 0
0 0 GPθ3(s) 0 0 GQθ(s)
0 0 0 GEQ1(s) 0 0
0 0 0 0 GEQ2(s) 0
0 0 GPI3(s) 0 0 0

]]]]]]]]]]

]

.

3.2 Modeling of the feedback channel

Next, let’s establish the model of the AC network, i.e., the
feedback channel of the MIMO system.

As seen fromFigure 5, the feedback channel reflects the power flow
oftheACnetwork.SincetheinputsignalsoftheACnetworkcontainsthe
phase and magnitude of both the internal voltage and internal current,
we need to derive the Jacobian matrix of the mixed system.

First, we calculate the branch circuit across each device. For
the system shown in Figure 1, the current of each branch can be
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TABLE 1 Results of modal analysis and robust stability margin in DVC
timescale.

bH,L Dominant poles Modified control parameters

0.7882 −3.97 ±j5.85 kp1a= 8; kPpllr= 50

0.8413 −4.08 ±j31.40 kp1a= 8.5; kPpllr= 20; kIpllr= 150

0.8037 −4.00 ±j43.37 kp2a= 0.4; kPpllr= 20; kIpllr= 150

0.5965 −0.99 ±j6.97 kPpllr= 2; kp1a= 50

0.4138 −0.98 ±j31.60 kPpllr= 20; kp1a= 2.3

expressed as

̇I1 =
Ė1 − U̇t

jX1
,

̇I2 =
Ė2 − U̇t

jX2
,

̇I3 = ̇I3,

̇Ig =
U̇g − U̇t

jXg
.

(8)

According to the Kirchhoff ’s Current Law, the current flowing
through the rectifier is

̇I1 + ̇I2 + ̇Ig = ̇I3. (9)

Based on (8) and (9), the AC voltage on the bus can be calculated as

U̇t =
−jX1X2Xg ̇I3 + Ė1X2Xg + Ė2X1Xg + U̇gX1X2

X2Xg +X1Xg +X1X2
. (10)

By substituting (10) into (8), the current of the two GSCs can be
obtained as

̇I1 = Y11 ̇E1 +Y12 ̇E2 +G13 ̇I3 +Y1g ̇Ug,
̇I2 = Y21 ̇E1 +Y22 ̇E2 +G23 ̇I3 +Y2g ̇Ug,

(11)

where Y11,Y12,G13,Y1g ,Y21,Y22,G23,Y2g are the elements of the
admittance matric as shown in Supplementary Appendix SA. The
internal voltage of the rectifier can be described as

Ė3 = U̇t − j ̇I3X3. (12)

By substituting (10) into (12), we have

Ė3 = Y31 ̇E1 +Y32 ̇E2 +G33 ̇I3 +Y3g ̇Ug, (13)

where the elements of the admittance matric Y31,Y32,G33,Y3g are as
shown in Supplementary Appendix SA.

Then, the apparent power of the GSCs and the rectifier can be
calculated as.

S1 = ̇E1 ̇I1 = Pout1 + jQ1, (14)

S2 = ̇E2 ̇I2 = Pout2 + jQ2, (15)

S3 = ̇E3 ̇I3 = Pout3 + jQ3, (16)

where ̇I1, ̇I2, ̇I3 are conjugate of ̇I1, ̇I2, ̇I3.
According to (11) and (13) into (14), the active power and

reactive power of each branch can be expressed as.

Pout1 = G13E1I3 cos(θ1 − θ3) − jY12E1E2 sin (θ1 − θ2)

− jY1gE1Ug sinθ1, (17)

Q1 = jY11E1
2 +G13E1I3 sin(θ1 − θ3) + jY12E1E2

× cos (θ1 − θ2) + jY1gE1Ug cosθ1, (18)

Pout2 = G23E2I3 cos(θ2 − θ3) − jY21E1E2 sin (θ2 − θ1)

− jY1gE2Ug sinθ2, (19)

Q2 = jY22E2
2 +G23E2I3 sin(θ2 − θ3) + jY21E1E2

× cos (θ2 − θ1) + jY2gE2Ug cosθ2, (20)

Pout3 = Y31E1I3 cos(θ1 − θ3) +Y32E2I3 × cos(θ2 − θ3)

+Y3gI3Ug cosθ3, (21)

Q3 = Y31E1I3 sin(θ1 − θ3) +Y32E2I3 sin(θ2 − θ3)

−Y3gUgI3 sinθ3 − jG33I3
2. (22)

Linearizing (17) at the steady-state operating point yields.

ΔPout1 = KPθ11Δθ1 +KPθ12Δθ2 +KPθ13Δθ3
+KPE11ΔE1 +KPE12ΔE2 +KPI13ΔI3, (23)

ΔQ1 = KQθ11Δθ1 +KQθ12Δθ2 +KQθ13Δθ3 +KQE11ΔE1
+KQE12ΔE2 +KQI13ΔI3, (24)

ΔPout2 = KPθ21Δθ1 +KPθ22Δθ2 +KPθ23Δθ3
+KPE21ΔE1 +KPE22ΔE2 +KPI23ΔI3, (25)

ΔQ2 = KQθ21Δθ1 +KQθ22Δθ2 +KQθ23Δθ3
+KQE21ΔE1 +KQE22ΔE2 +KQI23ΔI3, (26)

ΔPout3 = KPθ31Δθ1 +KPθ32Δθ2 +KPθ33Δθ3
+KPE31ΔE1 +KPE32ΔE2 +KPI33ΔI3, (27)

ΔQ3 = KQθ31Δθ1 +KQθ32Δθ2 +KQθ33Δθ3
+KQE31ΔE1 +KQE32ΔE2 +KQI33ΔI3. (28)

In (23), KPθ11 ∼ KPθ33,KPE11 ∼ KPI33,KQθ11 ∼ KQθ33,KQE33 ∼ KQI33
are shown in Supplementary Appendix SA. Denote

KPθ (s) =
[[

[

−KPθ11 −KPθ12 −KPθ13

−KPθ21 −KPθ22 −KPθ23

KPθ31 KPθ32 KPθ23

]]

]

,KPE (s) =
[[

[

−KPE11 −KPE12 −KPl13

−KPE21 −KPE22 −KPl23

KPE31 KPE32 KPl33

]]

]

,

KQθ (s) =
[[

[

KQθ1 KQθ12 KQθ13

KQθ21 KQθ22 KQθ23

KQθ31 KQθ32 KQθ33

]]

]

, KQE (s) =
[[

[

KQE11 KQE12 KQl13

KQE21 KQE22 KQl23

KQE31 KQE32 KQl33

]]

]

.

(29)
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TABLE 2 Results of modal analysis in DC voltage control timescale.

kIpllr= 50; kPr= 1, kIr= 60;

ki1a= 1000; kp2a= 2, ki2a= 100;

kp1b= 50, ki1b= 1000; kp2b= 2, ki2b= 100; kp7= 0.05, ki7= 20

kPpllr= 2; kp1a= 50 kPpllr= 20; kp1a= 2.3

λ1,2 −0.99 ±j6.97 −0.98 ±j31.60

λ3,4 −18.76 ±j40.62 −10.15 ±j7.36

λ5,6 −19.27 ±j39.44 −19.30 ±j39.48

λ7,8 −21.10 ±j31.48 −20.07 ±j39.42

λ9,10 −24.73 ±j19.65 −22.37 ±j29.76

λ11,12 −25.00 ±j19.37 −24.81 ±j19.55

λ13 −26.17 −26.22

λ14 −26.22 −26.48

λ15 −808.96 −808.77

Then, the feedback channel (23) can be written as

ΔS = L (s)ΔV . (30)

where L(s) = [

[

KPθ(s) KPE(s)

KQθ(s) KQE(s)
]

]
.

Then, the entire model of the system represented by transfer
function matrix can be illustrated by Figure 6. In this model, ΔS
represent the set of the input signals and ΔV represent the set of
the output signals.H(s) and L(s) represent the forward and feedback
channels, respectively.

4 Relative stability analysis and stable
region computation

To analysis the relative stability of the system, we calculate the
robust stability margin of the system first.Then, the methodology of
assessing the stable region of parameters is illustrated.

4.1 Robust stability margin

In this subsection, we propose a new index, i.e., the robust
stability margin based on the ν-gap metric to evaluate the relative
stability of the MIMO system.

For a standard feedback system as depicted in Figure 6A, if the
system is stable, the robust stability margin bH,L of Figure 6A are

defined as

bH,L = max
ω∈R∪∞
̄σ(‖

‖

[

[

H (jω)

I
]

]
(I − L (jω)H (jω))−1 [−L (jω) I]‖

‖
)
−1

.

(31)

where ̄σ refers to the maximum singular value. For a MIMO
system represented by the transfer function matrix G(s), the
maximum singular value equals to the maximum eigenvalue
of the product of the transfer function matrix G(jω) and its
conjugate transpose G ∗ (jω). In addition, H∞ norm denotes the
maximum singular value of a system represented by transfer
function matrix. Therefore, for the MIMO system with H(s) as
the forward channel and L(s) as the feedback channel as shown
in Figure 6A, if the system is stable, the robust stabilitymargin can be
expressed as

bH,L = (‖

‖

[

[

H (s)

I
]

]
(I − L (s)H (s))−1 [−L (s) I]‖

‖∞
)
−1

. (32)

The proposed robust stability margin can be used to assess the
relative stability of the system. If the system is stable, bH,L is in
the interval (0,1]. The larger bH,L is, the more stable the system
is. When the system is unstable, bH,L equals to 0. Compared with
other stability margin, i.e., phase margin and amplitude margin,
the proposed robust stability margin can be directly computed in
a MIMO systems.

4.2 Stable region of parameters

In this subsection, we will clarify themethodology of calculating
the stable region of parameters. From the point view of control, the
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FIGURE 8
Time domain responses of θ3of the rectifier with different kPpllr.

FIGURE 9
Time domain responses of θ1of GSC 1 with different kp1a.

TABLE 3 Variation of arcsin rH,L under different parameters of kp1a.

kp1a arcsin rH,L

8 0

0.6 0.1791

0.1 0.2118

stable region for the control systems can be obtained by calculating
the ranges of uncertain parameters preserving the system stability.
In this paper, we mainly focus on assessing the stable region of
the control parameters in DVC, DCC and PLL of the GSCs and
the rectifier. The structure and the power flow of the network
are considered to be fixed. It means that the uncertainties exist
only inH(s).

Consider the feedback system with uncertainties as shown
in Figure 6B. Denote H̃(s) as the set of uncertainties around
the given system H(s). Denote the distance between H(s)
and H̃(s) as ν[H(s),H̃(s)]. According to the theory of ν-
gap (Zhou, 2010), the ν-gap between the uncertain system
in Figure 6B and the nominal system in Figure 6A can be
calculated as

ν[H (s) ,H̃ (s)] = (1−‖[
H (s)
I
](I +H(−s)TH (s))−1 [H(−s)T I]‖

−2

∞

)

1
2

.

(33)

Now, we present the stability criterion of the MIMO system
with uncertainties in Figure 6B. Suppose the nominalMIMO system
in Figure 6A is stable with the stability margin ν[H(s),H̃(s)]. The
uncertain system in Figure 3B is stable if and only if

arcsinν[H (s) ,H̃ (s)] < bH,L. (34)

Otherwise, the uncertain system is unstable.
We can use the proposed stability criterion in (34) to assess

the stable region of parameters. Figure 7 shows the algorithm for
calculating the stable region of parameters. Specifically, the flowchart
is divided into three steps as follows.

Step 1Check the stability of the system. If the system is unstable,
set bH,L = 0. Otherwise, compute bH,L of the nominal MIMO system
in Figure 6A and continue.

Step 2 Assume the parameter k = k0 in the nominal H(s) and
the corresponding uncertain parameter k = k1. Calculate the ν-gap
distance ν[H(s),H̃(s)].

Step 3 If arcsinν[H(s),H̃(s)] < bH,L, the uncertain system with
k = k1 is stable. Otherwise, the system with k = k1 is unstable.

Step 4 Using the incremental search, find the smallest k1 and
the largest k1 so that the system is stable. Then the stable region for
parameter k is (k1smallest ,k1largest).
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FIGURE 10
Nonlinear time-domain simulation.

TABLE 4 Variation of SCR and arcsinrH,L under different parameters of Xg.

Xg SCR arcsinrH,L

0.35 4.29 0

0.43 3.49 0.1846

0.44 3.41 0.1972

5 Simulation results

This section presents the simulation results to demonstrate the
superiority of this method. We first calculate the robust stability
margin of the MIMO system and compare with the results of
eigenvalue analysis. Then, we present how to calculate the stable
region of the parameters of PLL and Xg utilizing the method.

5.1 Relative stability evaluation

Recall the HVDC system connected with GSCs as shown in
Figure 1. Common operation points and control parameters are
provided in Supplementary Appendix SA. With five different sets
of control parameters, we calculate the robust stability margin of
the systems. The results are shown in Table 1. We can see that
the second system has the largest robust stability margin, which
means it has the best stability performance. The fifth system has the
smallest robust stability margin, which indicates the worst stability
performance.

Next, we compare the results with eigenvalue analysis. Table 2
shows the results of the eigenvalues and participation factors with
two given sets of parameters.We can see that both of the two systems
are stable since the eigenvalues are all in the left half plane. In
addition, the real parts of the dominant poles of the two systems
are close to each other. It seems that the relative stability of the
systems are close. However, the relative stability of the systems are
different according to the robust stability margin calculated by our
proposed method. It can be verified by time-domain simulation

based on detailed nonlinear model. According to the participation
factors, kPpllr and kp1a have the greatest influence on the dominant
poles of the two systems, respectively. Figure 8 shows the time
domain response of θ3 of the rectifier with different kPpllr . When
kPpllr changes from 2 to 0.05, the system remains stable. Figure 9
shows the time domain responses of θ1 of GSC 1 with different
kp1a. When kp1a changes from 2.3 to 0.23, the system changes from
stable to unstable. The results show that the system with kPpllr = 2
and kp1a = 50 can tolerate a larger range of parameter variation than
the system with kPpllr = 20 and kp1a = 2.3, which means the former is
more robust.

5.2 Stable region of the parameters

In this subsection, we show how to calculate the stable region of
the parameters of kp1a and Xg in the MIMO system.

First, we focuse on the proportional parameter kp1a of PLL
control in GSC 1. Consider the MIMO system with parameters
given in Supplementary Appendix SA. According to the expressions
of robust stability margin (32), the robust stability margin of the
system is 0.19. Based on the algorithm proposed in Section 2.3.2,
when kp1a varies, we can compute the ν-gap ν[H(s),H̃(s)] between
H(s) and H̃(s). The results are shown in Table 3. It can be seen that
ν[H(s),H̃(s)] gradually increases when kp1a decreases. ν[H(s),H̃(s)]
equals to 0.1791, which is close to 0.19 when kp1a = 0.6. ν[H(s),H̃(s)]
is slightly over the stability margin 0.19 when kp1a = 0.1. Time-
domain simulation based on the nonlinear model in Figure 10
verifies the results. The system is in a critically stable state when
kp1a = 0.6. The system oscillates when kp1a = 0.1. Therefore, to
maintain the stability of the system, the value of the proportional
parameter kp1a of PLL control of GSC 1 should be greater
than 0.6.

Then, we compute the stable region of the reactance between
the infinite bus and the point of interconnection Xg . As we
know, Xg affects the short-circuit ratio (SCR) of the system.
With the parameters shown in Supplementary Appendix SA (where
Xg = 0.35), the robust stability margin of the system is 0.19. Table 4
shows the ν-gap ν-gap ν[H(s),H̃(s)] betweenH(s) and H̃(s)whenXg
changes. We can see that ν[H(s),H̃(s)] increases when Xg increases.
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FIGURE 11
Nonlinear time-domain simulation.

ν[H(s),H̃(s)] equals to 0.1846, which is close to 0.19 whenXg = 0.43.
It indicates that the system is critically stable with the corresponding
SCR = 3.49. Then, when Xg = 0.44, ν[H(s),H̃(s)] is larger than
0.19, which means that the system is unstable. Time domain
simulation shown in Figure 11 based on the nonlinearmodel verifies
the results.

The above two cases show the effectiveness of the proposed
method to compute the stable regions of parameters. It is worth
noticing that the results do not have conservatism since the stability
criterion is a necessary and sufficient condition.

6 Conclusion

This paper analyzes the relative stability of a HVDC system
connected with WFs utilizing the ν-gap metric. We build a MIMO
system model of such a system represented by transfer function
matrix. Then, a new stability index, which is called the robust
stability margin, is proposed to assess the relative stability of
a HVDC system connected with WFs. It can indicate how far
the system is from instability. The larger the robust stability
margin, the more stable the system performs. Next, a method
to compute the stable region of control parameters is presented
based on the sufficient and necessary stability criterion of the ν-gap
metric. Simulations demonstrate the effectiveness of the proposed
method. In future research, we would utilize this method to other
MIMO systems containing renewable energies, for instance, to
analyze the stability of a system with multiple wind turbines.
Moreover, we will further explore parameter design methods for
other MIMO systems to reach the maximize stability margin
of the system.
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