
Synchronized measurement
method for urban distribution
networks based on
proportional-integral control

Xiaodong Yin1, Jicheng Yu1*, Siyuan Liang1, Junjie Liu1,
Jian Wang1, Cheng Liu2 and Wangwang Ding2

1China Electric Power Research Institute, Beijing, China, 2College of Electrical and Information
Engineering, Hunan University, Changsha, China

In the context of the rising prevalence of renewable energy, the need for precise
and synchronized measurements in urban distribution networks has become
increasingly critical. Conventional synchronization techniques, which
predominantly depend on Global Navigation Satellite System (GNSS) timing
signals, are often plagued by significant sampling time errors. Addressing this
challenge, this study introduces an innovative automatic synchronization
measurement method employing proportional-integral (PI) control. This
method is composed of three integral components: the monitoring of local
clock phases via pulses per second (PPS) signals, modulation of the clock phase
through a PI controller, and the estimation of grid phasors from the synchronized
sampled data. The test results of this method on a hardware platform
demonstrate its capability to significantly reduce the sampling error from 2 ×
10−3 V to an impressive 1 × 10−5 V, while also meeting the requirements of the
synchronized phasor measurement standards outlined in C37.118.1. These
advancements underscore the significant potential of PI-controlled
simultaneous sampling in enhancing the operational efficiency and reliability
of urban distribution networks, particularly in environments with a high
integration of renewable energy sources.

KEYWORDS

proportional-integral control, synchronized sampling, optimizing sampling accuracy,
synchronized phasor estimation, urban distribution networks

1 Introduction

As the continuous development and increasing complexity of the power system [Xiao et
al. (2023), Xiao et al. (2023)], as well as the impact on the urban distribution network caused
by the access of new energy vehicles and so on Sun et al. (2022), Qiu et al. (2023), the
demand for real-time monitoring and accurate estimation of the state of the power grid is
also increasing. Synchronized phasor measurement is a critical technique in the power grid
sector, providing a framework for data collection across various locations under a unified
time index (Phadke et al., 2018; IEEE, 1998). This method plays a pivotal role in enhancing
situational awareness within power grids (Phadke, 1993), pinpointing faults accurately
(Umunnakwe et al., 2023; Wang et al., 2017), and monitoring oscillations effectively (Singh
et al., 2015). The core of synchronized phasor measurement lies in aligning the sampling
clocks of analog-to-digital converters (ADCs) to a common time reference (Yao et al., 2018),
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such as the pulse per second (PPS) signals sourced from GPS or
BeiDou satellites (Zhu et al., 2016; Costa et al., 2023). This
synchronization ensures that data from each device is captured
simultaneously, maintaining the integrity and reliability of the data
collected (Lee et al., 2018; Jin et al., 2015).

Specifically, the Analog-to-Digital Converter (ADC) triggered by
the local oscillator is reset at each rising edge of the Pulse Per Second
(PPS) signal to achieve synchronization once every second
(AbdelRaheem et al., 2022; Pardo-Zamora et al., 2021; Monteiro
et al., 2016). However, discrepancies between the PPS signal and
the local oscillator’s clock domain may result in variations in the
actual sampling interval compared to the ideal interval, leading to
what is known as Sampling Time Error (STE) (Yao et al., 2018;
AbdelRaheem et al., 2022), as illustrated in Figure 1. In other words,
STE accumulates over the course of a second and could potentially
impair the performance of applications that rely on synchronized
sampling data (Maharjan et al., 2015; Joglekar et al., 2021).

To tackle the challenge of Sampling Time Error (STE)
accumulation, the Variable Sampling Interval with Operating
Frequency Monitoring (VSI-OFM) approach, as proposed in a
seminal study, presents a groundbreaking strategy (Yao et al.,
2018). This method involves dynamically adjusting each sampling
interval by the ADC, effectively addressing issues such as the
“sawtooth” pattern in phase angle errors and reducing DC offsets
and spikes in frequency errors attributed to STEs. Notably, the VSI-
OFM technique has been successfully integrated into universal grid
analyzers (UGAs), representing the forefront of grid monitoring
technology. However, a drawback of this method lies in its direct
interaction with the ADC, complicating the sampling process and
constraining its application range.

Another promising avenue for mitigating STE accumulation
involves utilizing more stable clock sources. A significant
breakthrough, as highlighted in a specific study, entails replacing
conventional quartz oscillators with chip-scale atomic clocks (CSACs)
(Zhan et al., 2016), (Yao et al., 2019). CSACs offer significantly higher
frequency accuracy compared to quartz oscillators, boasting accuracy
levels up to 0.05 parts per billion, a substantial improvement over the
approximately 25 parts per million accuracy of quartz oscillators.
Additionally, an alternative approach involves employing double-
oven controlled oscillators (DOCOs) instead of CSACs. While these
highly precise time-source methods prove effective in curtailing STE
accumulation, they also introduce complexities in design and increase
maintenance costs, presenting a trade-off between precision and
practicality.

In the realm of addressing sampling rate disparities between
measurement devices and the IEC 61850-9-2 protocol, an
innovative approach was introduced in a particular study (Yamada
et al., 2012). This approach integrates two time-domain-based
resampling techniques: Real-Time B-Spline Interpolation (RT-BSI)
and Modified Akima Piecewise Cubic Hermite Interpolation (MA-
PCHI). These methods recalibrate the sampling points by assessing
the signal’s local properties and applying interpolation techniques,
effectively mitigating Sampling Time Error (STE) (Yang et al., 2018),
(Pocola et al., 2021), (Wang et al., 2012). However, it is crucial to note
that time-domain manipulations may potentially alter the signal’s
frequency domain properties, leading to distortions or added noise,
necessitating further research to fully understand the implications of
these resampling techniques on synchronized sampling.

Concurrently, frequency-domain based resampling techniques
such as polyphase interpolation filter banks and Farrow filters have
become prominent in the field of multirate signal processing. These
techniques, through sophisticated interpolation or decimation
processes, are designed to maintain the signal’s original spectral
attributes. In a specific case study, Farrow filters were integrated
into a wide-frequency measurement device to facilitate
synchronized sampling (Zhou, 2006; Harris, 1997; Harris,
2022). However, this method demands substantial
computational resources, leading to increased power
consumption in the devices. Such a requirement for high
computational capacity can be a significant limitation,
particularly for chips with lower processing capabilities, where
these techniques may not perform optimally.

In response to the aforementioned challenges, this paper
introduces an innovative synchronized sampling and measurement
method based on Proportional-Integral (PI) control. The
contributions of this work can be summarized as follows:

1) Design of a Sampling PI Controller: A novel sampling PI
controller has been developed, specifically tailored for
synchronous measurement applications in urban
distribution networks. Unlike previous approaches, this
method eliminates the need for additional controls on the
Analog-to-Digital Converter (ADC) to mitigate Sampling
Time Error (STE). This simplification streamlines the
sampling process and reduces complexity.

2) Validation Through Simulation and Hardware Verification:
The effectiveness of the proposed PI control-based
synchronous sampling scheme, as well as the developed
hardware equipment, has been rigorously validated through
a series of simulation experiments conducted in accordance
with the IEEE C37.118.1 standard.

The structure of the remaining sections in this paper is as
follows: Section 2 presents the theoretical foundation and
principles of the PI control-based synchronous sampling scheme.
Simulation and hardware verification results are presented in
Section 3 and Section 4, respectively. Finally, the conclusions and
implications of this research are summarized in Section 5.

FIGURE 1
Sampling time error diagram.
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2 Improving sampling accuracy
through PI-controlled adjustment of
local frequency

This section details a method that utilizes a Proportional-
Integral (PI) controller to adjust the frequency of a local
Numerically Controlled Oscillator (NCO) for optimizing
sampling accuracy. This method uses the phase error between
the GNSS PPS signal and the local clock signal to achieve clock
calibration. The system receives satellite and local clock signals and
compares their phase differences, which reflects the clock error. PI
control logic is then used. Proportional control applies a
proportional factor based on the error, and integral control
considers the cumulative effect of errors to ensure stable and
accurate calibration. This method can dynamically adjust the
local clock frequency and phase to maintain synchronization
with GNSS signals and achieve more accurate sampling. This
approach eliminates the need for additional controls on the
analog-to-digital converter (ADC) to mitigate sampling time
error (STE). This simplification simplifies the sampling process
and reduces complexity.

2.1 Phase error detection

Phase error monitoring in this system involves comparing the
GNSS’s Pulse Per Second (PPS) signal with the local Numerically-
Controlled Oscillator (NCO) clock signal to measure their phase
difference. This process can be expressed as follows (Eq. 1).

e t( ) � ϕNCO t( ) − ϕGNSS t( ) (1)
where ϕNCO(t) is the phase of the NCO-generated signal, and
ϕGNSS(t) is the phase of the GNSS PPS signal at time t. This
continuous monitoring of e(t) provides a dynamic measure of
the synchronization status between the local NCO and the
GNSS clock.

This process determines the synchronization deviation between
the two signals, which is the basis for subsequent frequency
adjustment. The phase error signal is obtained by calculating this
phase difference, where the precise GNSS PPS signal acts as a
reference for synchronization against the local NCO signal.

2.2 PI controller design for NCO frequency
adjustment

The PI (Proportional-Integral) controller is essential in our
method for fine-tuning the frequency of the Numerically-
Controlled Oscillator (NCO) in response to phase errors. Its key
role is to dynamically adjust the NCO’s frequency to reduce phase
discrepancies, thereby aligning more accurately with the GNSS
standard. The controller’s output, u(t), which dictates the
frequency adjustment for the NCO, is calculated as follows (Eq. 2):

u t( ) � Kp · e t( ) +Ki∫t

0
e τ( )dτ (2)

Here, Kp and Ki are the proportional and integral gains of the
controller, respectively.

The proportional gain, Kp, is responsible for providing a rapid
response to immediate phase errors, allowing the system to quickly
react to sudden changes in phase alignment. It acts on the current
value of the phase error e(t), where e(t) is the real-time phase
difference between the NCO and GNSS signals.

The integral gain, Ki, on the other hand, focuses on long-term
precision and stability. It integrates the phase error over time,
effectively addressing any cumulative or drift errors. This aspect
of the controller is essential for maintaining consistent
synchronization over extended periods, as it compensates for
ongoing small discrepancies that might be overlooked by the
proportional component alone.

2.3 NCO frequency adjustment mechanism

The output frequency of the Numerically-Controlled Oscillator
(NCO) is adjusted based on a calculated control word, typically
referred to as the Frequency Control Word (FCW). The relationship
governing the output frequency fout of the NCO is expressed as
follows (Eq. 3):

fout � FCW × fclk

2n
(3)

Here, fclk represents the frequency of the clock driving the
NCO, and n stands for the number of bits in the NCO’s phase
accumulator. The FCW is the key parameter that determines the
frequency at which the NCO operates. By modifying the FCW, we
can change the output frequency of the NCO to either increase or
decrease in relation to the clock frequency and the resolution offered
by the phase accumulator.

The control logic within the NCO takes the desired frequency
adjustment output from the PI controller u(t) and translates it into
an appropriate FCW. This word is then used to set the frequency of
the NCO, effectively syncing the local oscillator with the GNSS PPS
signal. As the PI controller responds to the phase error e(t), the
FCW is dynamically updated, ensuring continuous phase alignment
and maintaining synchronization accuracy.

3 Synchronized phasor estimation
method based on recursive DFT

3.1 Basic principle of recursive DFT

The aim of the recursive DFT is to reduce the computational load
required to compute theDFT at each sampling point. It is based on the
fact that when the signal sequence x[n] receives a new sample, the
new DFT result Eq. 4X′[k] can be directly updated from the previous
DFT result X[k] without recalculating the entire summation.

X′ k[ ] � ∑N
n�1

x n[ ] · e−j2πN kn � e−j
2π
N k ∑N−1

n�0
x n[ ] · e−j2πN kn − x n −N[ ] + x n[ ]⎛⎝ ⎞⎠

� e−j
2π
N k · X k[ ] − x n −N[ ] + x n[ ]( )

(4)

Here, X′[k] is the updated DFT value, while X[k] is the
previously computed DFT value. Through this approach, we can
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recursively update the DFT, significantly reducing the
computational effort.

3.2 Synchronized phasor estimation

Based on the results of the recursive DFT, the amplitude, phase
and frequency of the signal can be estimated. These three parameters
constitute the so-called synchronized phasor.

The amplitude A of the phasor can be calculated as follows
(Eq. 5):

A � 2
N

X k[ ]| | (5)

This equation considers the amplitude normalization
factor 2

N (since only half of the spectrum is used for
real signals).

The phase angle θ can be calculated by taking the arctangent
of the ratio of the imaginary part to the real part of X[k] as
follows (Eq. 6):

θ � arctan
Im X k[ ]{ }
Re X k[ ]{ }( ) (6)

The frequency f can be determined by the least squares method.
Firstly, phase unwrapping is applied to the calculated phase values to
eliminate discontinuities, producing a smooth phase sequence. This
sequence, θ[n], is then modeled as a linear function of time with the
equation as follows (Eq. 7):

θ n[ ] � 2πfnT + ϕ (7)
where f is the frequency of the signal, T is the sampling period, and
ϕ is the initial phase.

Then, the frequency of the signal can be estimated using the
following least squares method formula as follow Eq. 8:

f �
∑
n

n − �n( ) θ n[ ] − �θ( )
2πT∑

n
n − �n( )2 (8)

where �n and �θ are the mean values of the sample indices and the
unwrapped phase values, respectively.

4 Experimental validation of PI-
controlled synchronization

In this experiment, we aim to assess the effectiveness of our PI-
controlled synchronized phasor measurement method in urban
distribution networks, focusing on measurement precision.
Traditional PPS-based methods, though reliable, may lack the
required accuracy for certain applications. Our method, aligning with
the IEEE C37.118.1 standard for accuracy and reliability, introduces
refined synchronization control. We compared two phasor
measurement units: one using traditional PPS synchronization and
the other utilizing our PI-controlled approach. Both were tested
under identical conditions to simulate various network scenarios. Key
performance metrics such as synchronization accuracy, response time,
and stability were analyzed to determine the advantages of the PI-
controlled method over the traditional approach.

4.1 Sampling time error mitigation

In this test, the nominal sampling rate and the actual sampling
rate were set to 1,200 Hz and 1,199.991 Hz, respectively. The test
signal was a 50 Hz sine wave with 60 dB white noise. The results are
shown in Figure 2.

In traditional sampling methods, Sampling Time Error (STE)
accumulates over time, reaching up to 2 × 10−3 V, and can only be
cleared with the arrival of the next Pulse Per Second (PPS) signal. In
contrast, the method discussed herein significantly mitigates the
cumulative effect of STE in the sampling data, ensuring it does not
exceed 1 × 10−5 V per second. By comparison, software-based
resampling synchronization methods also effectively reduce STE,
maintaining it below 2 × 10−5 V. However, these methods demand
substantial computational resources from the core processor,
rendering them impractical for operation in small-scale devices
when measuring three-phase information simultaneously. This
comparison highlights the advantages of the proposed method in
reducing STE with greater efficiency and lower computational
demand, offering a viable solution for high-precision
measurements in constrained environments.

FIGURE 2
Sampling time error mitigation results.
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4.2 Frequency offset testing

The frequency offset testing, as mandated by the IEEE
C37.118.1 standard, is crucial for assessing the adaptability and
accuracy of synchronization algorithms and devices within the
context of modern electrical grids. This testing, performed through
a signal generator producing signals across a range from 45 Hz to
55 Hz, addresses the increasing frequency fluctuations attributed
to the rising integration of renewable energy sources. Such
fluctuations pose challenges to grid stability and reliability. The
expanded frequency range for testing is essential to ensure that our
algorithms and devices can handle the broader variability seen in
grids with a high proportion of renewable energy, where
traditional stability mechanisms are often stretched to their
limits. This testing is therefore vital for applications in
contemporary energy networks, which are increasingly
characterized by significant renewable energy contributions and
the resultant frequency variations.

The results, as depicted in the accompanying Figure 3, clearly
demonstrate that devices employing the proposed PI-controlled
algorithm consistently met the standard requirement of a Total
Vector Error (TVE) less than 1% across all test frequencies. In
contrast, devices using the traditional method exhibited a
consistently higher TVE, exceeding 1%. This discrepancy is
attributed to the cumulative effect of sampling time errors
inherent in the traditional approach, underscoring the
enhanced accuracy and reliability of the PI-controlled method
in handling frequency variations.

4.3 Amplitude and phase modulation testing

With the continuous increase in the dynamic nature of grid
signal, there is a gradual rise in the bandwidth requirements for
dynamic measurements. According to the specifications of IEEE
C37.118.1 standard, the bandwidth for synchronous phasor

FIGURE 3
Frequency offset testing.

FIGURE 4
Amplitude modulation and phase modulation waveforms.
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FIGURE 5
Amplitude and phase modulation test results.

FIGURE 6
Field testing results in the actual power grid.
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measurements should be determined by applying sine amplitude
and phase modulation scanning inputs, while ensuring that the
Total Vector Error (TVE) does not exceed 3%. The input of the
positive sequence signal can be calculated using the Eq. 9.

X1 � Xm 1 + kx cos ωt( )[ ] × cos ω0t + ka cos ωt − π( )[ ] (9)
Here,Xm represents the amplitude of the input signal, ω0 is the

nominal power system frequency, ω denotes the modulation
frequency in radians per second, kx is the amplitude
modulation factor, and ka is the phase angle modulation factor.
This implies that the amplitude or phase angle of the test signal is
no longer a fixed value, but undergoes sinusoidal transformations.
In this test, the modulation frequency ω ranges from 0 to 5 Hz with
an increment of 0.5 Hz. The coefficients kx and ka in the equation
are set to 0 or 0.1, depending on the experiment conducted.
Figure 4 illustrates the waveforms after amplitude and phase
modulation.

This study conducts tests on the signal using both traditional
methods and PI control, evaluating the measurement errors in
frequency and phase angle at different modulation frequencies.
The test results, as shown in Figure 5, reveal that at a
modulation frequency of 5 Hz, the traditional method
exhibits total harmonic distortion (TVE) of 4.38% and 3.23%
in amplitude modulation and phase modulation tests,
respectively, exceeding the limits specified in the IEEE
C37.118.1 standard. In contrast, in both tests, the maximum
TVE value with PI control is 2.94%, still complying with the
standard requirements. Therefore, the results indicate that the
proposed PI control method outperforms traditional methods
in this study.

4.4 Field testing in the actual power grid

The method introduced was implemented in a Phasor
Measurement Unit (PMU) and compared with the most
advanced synchronization measurement device in the
distribution network side, the Universal Grid Analyzer (UGA).
As shown in Figure 6, the testing results for frequency and phase
indicate that the precision of the proposed method closely
matches that of the UGA, with a frequency relative error
of ±0.5 mHz and a phase relative error of 0.05°. This
demonstrates the method’s excellent accuracy. Additionally,
the proposed method does not require extra computational
overhead, making it suitable for scenarios demanding low
power consumption or cost control.

5 Conclusion

This study presents a novel Proportional-Integral (PI) control-
based synchronized sampling method designed for urban
distribution networks. The proposed method addresses the
inherent limitations of traditional synchronized sampling
techniques, particularly in scenarios with high integration of

renewable energy sources. Our approach, through its unique
combination of local clock phase monitoring, PI controller-based
modulation of clock phase, and accurate estimation of grid phasors,
effectively reduces the Sampling Time Error (STE).

The experimental results demonstrate a significant
reduction in STE, from 2 × 10−3 V in traditional methods to
an impressive 1 × 10−5 V using the PI-controlled approach.
Furthermore, our method achieves a phase angle
measurement accuracy of ±3 × 10−5 rad, underlining its
potential to enhance operational efficiency and reliability in
urban distribution networks.

In terms of practical application, this method simplifies the
sampling process by eliminating the need for additional
controls on the Analog-to-Digital Converter (ADC) and does
not rely on external Phase Locked Loop (PLL) blocks, thereby
offering a cost-effective solution. The implementation of this
method on a hardware platform and its subsequent validation
through simulation and hardware testing, in accordance with
the IEEE C37.118.1 standard, establishes its viability and
effectiveness.

In short, the synchronous sampling method based on PI control
provides an unprecedented solution for improving the accuracy and
reliability of power grid synchronous measurement. However, it is
worth noting that this method still has some challenges and
limitations in practical applications. First, implementing PI
control in systems with different network configurations or
different levels of synchronization requirements may face certain
difficulties. Second, the scalability of this approach is limited,
especially when dealing with larger or more complex grids. In
addition, the PI controller parameters need to be optimized to
adapt to different grid conditions, which increases the complexity
of implementing PI control. In addition, integrating PI control
methods with existing power system infrastructure may face
certain challenges, while testing the effectiveness of PI control in
larger andmore complex networks may be limited by environmental
conditions. Therefore, future research will focus on solving these
problems, including exploring the application of this method in grid
configurations of different sizes and complexities, optimizing PI
controller parameters, and solving integration and test environment
limitations, etc., to further improve the performance of the power
system and manageability.
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