
Optimal placement of distributed
generation in power distribution
system and evaluating the losses
and voltage using machine
learning algorithms

Akanksha Jain* and S. C. Gupta

Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal, India

As themodern power system continues to grow in size, complexity, and uncertainty,
traditional methods may occasionally prove insufficient in addressing the associated
challenges. The improper location of distributed generation varies the voltage profile,
increases losses and compromises network capacity. Machine learning algorithms
predict accurate site positions, and network reconfiguration improves the capacity of
the power system. The proposed algorithm is a hybrid of machine learning and deep
learning algorithms. It cascades Support VectorMachine as themainmodel and uses
RandomForest andRadial NeuralNetworks as classification algorithms for accurately
predicting DG position. The non-linearity characteristics of the DG problem are
directly mapped to the proposed algorithms. The proposed algorithm is employed
on familiar test setups like the IEEE 33-bus and 69-bus distribution systems using
MATLAB R2017 as simulation software. The R-squared (R2) values for all parameters
yield a value of 1, while the MAPE values are minimal for the proposed cascaded
algorithm in contrast to other algorithms of LSTM, CNN, RNN and DQL.
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1 Introduction

1.1 Background

As electricity demands grow, rather than solely relying on constructing new centralized
power plants and transmission infrastructure, it is wise to integrate smaller-scale production
units nearer to consumption hubs. Compact yet powerful generating units, commonly
known as distributed generation (DG), have garnered increased attention due to their
numerous advantages. Improper allocation of DG within the distribution system (DS) can
have detrimental effects on the power system rather than providing benefits. To guarantee
the best allocation of distributed generation (DG), several optimization investigations have
been recorded in scholarly works.

The optimization of distributed generation (DG) is directed towards fortifying the
reliability of the power network. The application of distributed generation has several
advantages over conventional generation, such as technical, economic, and environmental,
for the electric distribution company and the end consumers. Due to the development of
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emerging technologies, an appropriate allocation involves various
factors like reliability, power quality, voltage profile, power loss, and
control stability of the electric grid.

Effective approaches for the recognition of power system control
challenges have consistently been a focal point. To tackle this issue,
machine learning and deep learning methodologies are utilized to
predict occurrences, evaluate the multitude of variables and
conditions, categorize them, and identify key features when
managing power system control challenges across preventive,
normal, emergency, and recovery situations. Machine learning
methods play a crucial role in discerning patterns and structures
within data, enabling the analysis, processing, prediction, and
categorization of extensive pertinent to the evaluation of intricate
power system issues. Numerous studies have explored machine
learning algorithms, and the proposal introduces the cascaded
machine learning algorithm (CML) specifically designed to
optimize the siting and sizing aspects within distribution systems.
Menke et al. (2019).

An approach centered on estimation for assessing the
dimensions of DG (Distributed Generation) and its impact on
the network, aiming to circumvent the cumbersome and
obligatory application of load flow methods. Various machine
learning techniques, including linear regression, artificial neural
networks, support vector regression, K-nearest neighbours, and
decision trees, have been leveraged for these estimations and
applied across established test systems. Purlu and Turkay (2021).

1.2 Related work

The progression of distributed generation alongside the
utilization of machine learning algorithms and various
optimization methods contributes to enhancing the voltage
profile with minimized losses within the transmission network.
Recently, numerous authors have introduced a variety of
algorithms, incorporating machine learning, deep learning, and
several meta-heuristic functions, aimed at optimizing the
allocation of distributed generation. In Essallah et al. (2019) The
goal of the authors is to secure voltage stability amid load variations
while simultaneously pinpointing ideal locations for distributed
generation (DG) and determining their most suitable power
capacities. Employing the PSAT MATLAB toolbox, they utilized
this approach on the IEEE evaluation systems, encompassing the 33-
bus and 69-bus configurations, revealing the method’s efficacy,
reliability, and robust performance. In the initial scenario, there
was a noteworthy enhancement in the system’s active power,
exceeding its rated value by 50%. Additionally, both the active
and reactive power loads saw a substantial increase of 50% in the
subsequent scenario. In Sambaiah et al. (2019) the authors employed
the Slaps Swarm Algorithm (SSA) for DG allocation. The concept is
based on how slaps forage and navigate by swarming together in the
water. In Liu et al. (2019) The total power losses are decreased by
90%, the cost is lowered by 21%, and the emissions are decreased by
67% for the 33-bus system.

To ascertain the optimal position and dimensions for DG units,
the authors take into account multiple factors including voltage
variation, line loss, and energy-saving benefits during the model
selection process. This necessitates a comprehensive analysis to

ensure accurate decision-making. This thorough evaluation
ensures the optimal decision-making process. In Onlam et al.
(2019) The authors utilized the Adaptive Shuffled Frog Leaping
Algorithm (ASFLA) technique to carry out both network
reconfiguration and DG installation. This approach was
implemented across seven different scenarios for the electrical
systems of IEEE 33-bus configuration and 69-bus configuration.
In the most favorable scenario, the 33-bus system achieved loss
savings of up to 75.57%, while the 69-bus system experienced an
impressive 84.90% reduction in losses. Moreover, the Voltage
Stability Index (VSI) increased by approximately 35.45% and
40.82%, respectively, surpassing their base values. In
Mohammadpourfard et al. (2019) The contribution generates
valuable training data through a scenario generator, along with
specific details outlining the Artificial Neural Network (ANN)
architecture. The results unequivocally illustrate that the
proposed approach effectively addresses the limitations observed
in existing ANN methodologies, particularly those that are not
suitable for grids with significant Distributed Generation (DG)
penetration. In Chege et al. (2019) the authors employ the
voltage stability index technique to determine where distributed
generation and capacitors should be placed. By employing a hybrid
evolutionary programming method, the search for the most suitable
sizes of distributed generation and capacitors to be installed at the
indicated locations is facilitated. When the placement was carried
out using this technique, the lowest voltage values of the network
rose from 0.9036 to 0.9400 per unit, while the minimum Voltage
Stability Index (VSI) values increased from 0.6690 to 0.7841. In Yin
et al. (2019) to determine the feasibility and efficiency of the model,
it is essential to carry out a thorough validation process. Therefore, a
comparison is made between the results obtained and those achieved
through the utilization of genetic algorithms (GA), support vector
machines (SVM), and particle swarm algorithms (PSO). The kernel
machine learning obtains the results of the capacity choice of the DG
that satisfy the target function by training the model. In Shaheen
et al. (2019) The authors suggest that the Stochastic Fractal
Optimization (SFO) algorithm showcases validity, accuracy,
feasibility, and robustness, surpassing alternative simulation
methods in addressing the optimum load power flow (OPF)
issue. In Arif et al. (2020) the authors suggest the
implementation of the Analytical Hybrid Particle Swarm
Optimization (AHPSO) algorithm to assist in evenly distributing,
progressively dispersing, centrally distributing, and randomly
distributing loads. Based on simulation outcomes, the AHPSO
algorithm showcases significantly accelerated convergence rates
compared to the traditional Particle Swarm Optimization
technique. Notably, it demonstrates substantial enhancements in
convergence performance across various distribution systems. The
achieved enhancements are significant, demonstrating
improvements of 32%, 42.59%, 50.91%, and 55.56% for the
distribution systems of IEEE 10-bus, IEEE 33-bus, IEEE 69-bus,
and KEPCO, respectively. Notably, both the normal PSO and
AHPSO algorithms yield similar results for the location and
scaling of DG in every scenario. In Hassan et al. (2020) the
authors suggest a methodology directed at addressing the
concern of siting and determining the dimensions of distributed
generation units fueled by sustainable energy sources. Morales et al.
(2020) A procedure is described to identify the current flow along
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the distribution feeder (DF) while integrating distributed generation
(DG). This method incorporates decision trees (DT), empirical
decomposition (ED), and support vector machines (SVM) to
achieve the intended objective, delineating the steps of the
methodology. In Ismail et al. (2020) The authors introduce an
algorithm designed for power systems utilizing deep learning
principles.

This algorithm achieved an exceptional detection rate of 99.3%
and demonstrated a minimal false alarm rate of only 0.22% by
incorporating specific details related to PV generation, data, and
interpretations extracted from SCADA systems. In Farh et al. (2020)
an inventive technique, the Crow Search Algorithm-based Auto-
Drive Particle Swarm Optimization (CSA-PSO) technique, is
employed to optimize the setup, scale, and quantity of [unclear]
systems with the goal of minimizing overall expenses and reducing
power losses. In Tran et al. (2020) seven different scenarios were
used to evaluate the proposed Stochastic Fractal search (SFS)
algorithm on 33, 69, 84, 119, and 136 buses distribution
networks. When the results from SFS were contrasted with those
from other methodologies, it became clear that SFS produced more
effective solutions. The SFS algorithm has the potential to search
heuristics for solving issues quickly and with high-quality solutions.
In Agajie et al. (2020) the application of the development of a Grid-
based Multi-Objective Harmony Search Algorithm (GrMHSA) to
improve the sizing and placement of Distributed Generation units
ensures the enhancement of the overall system performance. In
Admasie et al. (2020) the Intelligent Detection Method (IIDM)
integrates a sophisticated approach termed Feature-based Wolf-
Optimized 113. Artificial Neural Network (GWO-ANN) using an
intrinsic mode function (IMF). Through MATLAB simulations, the
IIDM’s efficacy is highlighted in achieving high classification
accuracy, computational efficiency, and robustness against noise
interference in measured voltages. In contrast to directly resolving
models under varying operational conditions, this method addresses
the volt-VAR optimization (VVO) challenge in unbalanced
distribution networks employing an advanced Deep Q-Network
(DQN) framework. Its effectiveness is evaluated on IEEE 13-bus
and 123-bus networks with imbalanced characteristics. In Haider
et al. (2021) the application of the algorithm demonstrated
significant efficacy in mitigating voltage fluctuations and reducing
power losses within the distribution network. MATLAB software
was employed to estimate the efficiency of this technique on the
radial distribution network of the IEEE-33 bus system. Through the
integration of a hybrid strategy named Enhanced Wolf Optimizer
and Particle SwarmOptimization (EGWO-PSO), it became viable to
attain optimized placement and sizing, resulting in an overall
enhancement of the system’s performance. This heuristic
approach, EGWO, draws inspiration from wolf behaviors and
presents a hybrid methodology that converges rapidly without
being limited by local best practices Venkatesan et al. (2021). In
Ogunsina et al. (2021) The authors employed the ant colony
optimization (ACO) algorithm identifying the Optimal Positions
and quantities for distributed resources within a power network.
Bajaj and Singh (2021) The authors introduced a multi-objective
method integrating multiple performance index constraints and
compared its outcomes with hosting capacity augmentation
techniques. The method involves the ENLPCI (Extended
Nonlinear Load Position-based APF Current Injection)

technique, facilitating the identification of optimal bus locations
for Active Power Filter (APF) placement and the determination of
required APF quantities.

The algorithm underwent performance evaluation through tests
conducted on the IEEE test system with 69-bus. The outcomes
highlighted the considerable impact of solar fluctuations on the best
positioning and dimensions of Active Power Filters (APF)as part of
the Optimal Placement and Sizing (OPAS) approach. Lakum and
Mahajan (2021). In Lakum and Mahajan (2019) The authors
introduced a novel technique called Non-Linear Load Position-
Based Current Injection (NLPCI) aimed at strategically positioning
the Active Power Filter (APF). The process involves the
identification of suitable bus locations while considering the
presence of Distributed Generation (DG) and excluding linear
loads. To reduce the APF’s size, the algorithm utilizes a voltage
threshold of 5%, employing the Total Harmonic Distortion method.
The implementation of this proposed algorithm notably enhanced
system performance indices, increasing the Hosting Capacity (HC)
across various test systems, including the 59-node Egyptian test
system, 135-node Brazilian test distribution network, additionally,
the analysis includes the IEEE 33-node and IEEE 69-node test power
networks. Moreover, using the NR (Newton-Raphson) and AOA
(Artificially Optimized Algorithm) enhanced the HC of the 59-node
and 135-node test systems by 38.832% and 72.895%, respectively. Ali
et al. (2021) The use of the Meta-heuristic Rider Algorithm (ROA)
aids in evaluating the optimal dimensions and positions for
Distributed Generation (DG) units, which are driven by
sustainable energy resources like biomass-based generation, wind
turbines (WT), and photo voltaic (PV) systems within distribution
networks. Khasanov et al. (2021) The authors ingeniously employed
the coyote technique to efficiently determine the positioning and
capacity of distributed generation (DG) within radial networks. This
approach demonstrated superior performance compared to other
methods like SFO, SSA, and COA in making optimal DG decisions.
Pham et al. (2021). The authors assessed their proposed Modified
Sequential Switch Opening and Exchange (MSSOE) algorithm using
industry-standard distribution systems like IEEE 33-node, IEEE 69-
node, and IEEE 119-node. The findings show that MSSOE surpasses
existing algorithms, delivering a superior global solution with
reduced computational time. Vannak Vai et al. (2021). The study
incorporated the Firefly Algorithm (FA), a meta-heuristic technique,
within the IEEE 33-bus distribution system as part of its
methodologies. This method includes the application of a mixed
probabilistic model to manage both output power uncertainty and
the system load. Naguib et al. (2021). The research integrates hybrid
particle swarm optimization (PSO) algorithms, these methods
incorporate chaotic maps and adaptive acceleration coefficients to
identify the optimal configuration and dimensions of photovoltaic
(PV) systems connected to an electric grid. Belbachir et al. (2021). In
Bajaj et al. (2020) A methodology inspired by the Analytical
Hierarchy Process (AHP) is introduced for evaluating Power
Quality (PQ) in modified distribution power systems undergoing
changes. In Kushal et al. (2020) The authors have introduced a
decision-making methodology that uses the Analytical Hierarchy
Process (AHP) to assess various distributions of Photovoltaic (PV)
and Battery Energy Storage Systems (BESS) resources to load buses.,
considering various scenarios focused on cost and resilience
enhancement. The results indicate that this approach offers
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valuable guidance for planners in making informed investments.
Additionally, they introduced a hybrid technique merging clustering
with particle swarm optimization to optimize Distributed
Generation (DG) allocation. This algorithm clusters buses within
the distribution network and selects the most suitable cluster for DG
allocation, thereby reducing the number of viable production buses.
In the optimal scenarios, the algorithm reduces test feeder losses by
69%, 86%, and 90%, while considering uncertainties in three
different scenarios, achieving reductions of 39%, 53%, and 55%
respectively Eyübog�lu and Gül (2021). The revised method for
updating control variables of the initial slime algorithm led to the
development of a new solution. As a result, the proposed algorithm
demonstrates a notable improvement in reducing voltage deviation
to 1.4779 Pu and power loss to 78.88%. In contrast, alternative
algorithms provided results within the range of 69.10%–78.87% for
loss and 1.5759 to 1.4996 Pu for voltage deviation Pham et al. (2022).
The authors incorporated wind generation into the distribution
system, resulting in enhanced bus voltages and reduced active power
losses. Specifically, nodes 19 and 12 experienced voltage increases of
2.2% and 3.26%, respectively. Consequently, in the IEEE-19 bus
system, losses reduced from 13.54 kW to 6.36 kW, while in the IEEE-
25 bus system, losses decreased from 150 kW to 95.30 kW Routray
et al. (2021). The Loss Sensitivity Factor plays a pivotal role in
determining the search space for Distributed Generation (DG) sites.
Employing an analytical technique, the initial DG sizes are
calculated based on a specific interpretation. Selim et al. (2021).
In Rathore and Patidar (2021) The authors introduce a deep
learning-based algorithm designed for effectively placing and
arranging DG units in optimal locations. This algorithm aims to
enhance voltage characteristics and minimize losses within the
system. In Dheeban and Selvan (2021) The authors utilized the
Thevenin Equivalent Impedance method to simulate the distributed
generation (DG) source on the high-voltage side of the transformer.
The previous sections demonstrate various methods for determining
distribution system voltages, including distribution load flow for
unbalanced systems, symmetrical components, mesh, and nodal
analysis. An enhanced algorithm, incorporated into an adaptive
interference controller, was then applied to the proposed PV-UPQC
(Photovoltaic - Unified Power Quality Conditioner) system. This
advanced fuzzy-model-based controller enhances the system by
analyzing system parameters and facilitating the generation of
reference current Zhang et al. (2020). Mo and Sansavini (2019)
The exploration involves utilizing Optimal Power Flow (OPF) to
calculate the suitability of Energy Not Served (ENS) and Operation
and Maintenance (O&M) costs for Distributed Generation (DG).
This process tends to overestimate unreliability and costs. To
address this issue, the simulation results provide guidance for
decision-making in managing, maintaining, and planning
Distributed Generations. The objective is to mitigate the effects,
minimize O&M expenses, and decrease energy loss, ensuring more
efficient and reliable systems Zhao et al. (2019). The paper
undertakes a comparative analysis between two operational
strategies and multiple islanding strategies for coordinating
dispersed power and storage devices. The study’s results
demonstrate the considerable enhancement in the dependability
of the distribution system caused by implementation of the proposed
dynamic strategy. This enhancement maintains the steady
functioning of vital loads within the system. Furthermore, it

deeply explores fault detection and protection techniques
employed in distributed networks alongside distributed
generation. This paper uniquely contributes by offering a
comprehensive understanding of diverse fault detection strategies,
emphasizing the operational and communication methodologies of
Distributed Generation (DG), different parameters involved, and
their respective limitations Nsaif et al. (2021). In Lotfi (2022) The
method’s effectiveness is evaluated on both a 95-node and a 136-
node test system. The results indicate significant improvements
compared to the base standards. In the first system, energy losses
reduced by 11%, operational costs by 25.5%, and Energy Not Served
(ENS) by 5% through the optimization of the distributed units and
shunt capacitors values. Moreover, in the second system, when
employing the Time-of-Use mechanism to determine DG units,
there was a remarkable decrease of 29% in energy losses, 65% in
operational costs, and 7% in ENS compared to the base values. In
Bhusal et al. (2022) The method was tested on diverse systems,
including the IEEE 123-node distribution setup and an actual 240-
node system in the United States. Findings demonstrate that the
approach effectively identifies coordinated attacks with remarkable
accuracy of up to 99.9%. The research employs different neural
networks, encompassing Convolutional Neural Networks (CNN),
Residual Neural Networks, and Multi-Layer Perceptrons (MLP) to
evaluate the effectiveness of this method. Additionally, the method
contributes significantly to precisely detecting the attack type within
a DG, distinguishing between additive or deductive attacks. This
distinction provides operators with explicit data, enabling them to
undertake corrective measures effectively. The Gauss-Seidel (GS)
method is applied for load flow analysis, offering a simple iterative
approach to solving load flow equations when partial derivatives are
not required Alnabi et al. (2022). A completely distributed energy
trading system based on machine learning was proposed. Design
skeletons for a DC grid energy management system are designed by
developing an experimental strategy and assessing the efficacy in
comparison to other available options. In Yılmaz et al. (2022) the
pyramidal algorithm with wavelet transform is a novel feature
extraction strategy used in the proposed hybrid machine learning
method (UWT). With an accuracy rate of up to 99.59%, the UWT
SGBT approach effectively groups data according to mathematical
and real data results. Furthermore, this approach has been
extensively tested in noisy environments, and the pyramidal
UWT-SGBT method demonstrates superior noise immunity
compared to other machine learning methods that utilize wavelet
transform (WT)-based techniques. In Gawusu et al. (2022) The
study delves into the exploration of patterns and trends in dispersed
generation through data mining (DG). While still at an early stage,
this research provides valuable insights into ongoing research trends
and patterns. These findings would be particularly beneficial and of
significant interest to researchers actively engaged in the Distributed
Generation field. In Bhadoriya et al. (2022), As the load increases,
distribution network losses can cause voltage deviations and
compromise stability. In response, the Transmission System
Operator (TSO) has developed an optimization solution for the
allocation of Distributed Generation (DG) that meets various
equality and inequality requirements. The goal is to mitigate
reduce voltage fluctuation, decrease active power dissipation and
guarantee voltage stability. Significantly, both the IEEE 33-bus and
69-bus distribution systems have experienced considerable decrease
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in active power dissipation, reaching percentages of 94.29% and
94.71%, respectively. In Pereira et al. (2016), a combined strategy
that merges tabu search with genetic algorithms (GA) has been
proposed for the incorporation of distributed generation (DG) and
capacitor banks into distribution systems (DS) to improve overall
system efficiency. In Battapothula et al. (2019), an innovative
optimization technique, utilizing a hybrid shuffled frog leap
teaching and learning algorithm, has been suggested and
implemented to determine the most efficient placement and
dimensions of electric vehicle rapid charging stations and
distributed generation (DG) units within distribution systems
(DS). In Bo et al. (2020), a hybrid load forecasting model has
been developed by integrating data preprocessing techniques,
forecast algorithms, and weight identification theories. An
approach utilizing wavelet decomposition and quadratic gray
neural network, in conjunction with the enhanced Dickey-Fuller
test, Li et al. (2017), dynamic model selection relying on Q-learning
Feng et al. (2020), a method employing boosting-based multiple
kernel learning Wu et al. (2020), hybrid method that merges
convolutional neural networks (CNN) with long short-term
memory (LSTM) for deep learning (DL). Alhussein et al. (2020),
a DL method Hong et al. (2020), and a hybrid model clustering with
feed forward neural networks (FFNN) Panapakidis et al. (2020) have
been proposed for STLF. A proficient forecasting model is
introduced, incorporating a feature extraction module that
merges variational mode decomposition (VMD) with a
variational auto encoder (VAE) Yang et al. (2022). The project
entails sharing data, which necessitates disclosing the private
information of the participants. To tackle this concern, the
authors integrated variational mode decomposition (VMD), the
federated k-means clustering algorithm (FK), and SecureBoost
into a unified algorithm, named VMD-FK-SecureBoost. Yang
et al. (2023).

1.3 Research Gap

A machine learning algorithm was recently employed in several
data and flow-oriented applications for prediction and selection. The
non-linear machine learning algorithm mapped the objectives and
multiple constraints of DG placement and sizing. Machine learning
provides several algorithms in the domain specified, such as
supervised, unsupervised, and reinforced learning. The reported
survey suggests that most authors employed supervised learning-
based algorithms such as support vector machine (SVM), K-nearest
(KNN), decision tree (DT), extreme learning (ELM), and many
more hybrid algorithms. The limitations of feature selection and
mapping of machine learning algorithms are overcome with deep
learning algorithms.

As evident from the literature review, it is commonly acknowledged
that the load is typically presumed to remain constant, and the DG
output can be regulated during DG allocation. However, in real-world
scenarios, both loads and DG output fluctuate continuously. This
variability poses challenges when calculating losses and other
parameters using power flow-based algorithms, making the process
cumbersome and time-intensive.

Several methodologies focus solely on active power injection,
specifically for distributed generation (DG) with a unity power

factor. Some techniques are designed for allocating a single DG
unit, neglecting environmental considerations. Certain network
constraints may go unnoticed, and economic factors are
overlooked in certain articles. Furthermore, certain methods
exhibit excessively long computational times, and the outcomes
derived from certain approaches may not be optimal.

1.4 Paper contributions

The proposed algorithm effectively addresses issues such as
voltage imbalance, line loading, and power losses within the
distribution system. The frequently employed algorithm for
Distributed Generation (DG) allocation is the support vector
machine (SVM). Recently, several authors employed
convolutional neural networks (CNN) for DG allocation. The
proposed algorithm offers a significant advantage by overcoming
limitations present in Artificial Neural Networks such as
Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN), including Long Short-Term Memory (LSTM)
and Deep Q-learning (DQL) algorithms, while accumulating
various benefits.

The specific contributions of the work proposed are as follows:

1. Estimation of generation unit sizes, power losses within the
distribution network, and minimum voltage (without power
flow estimation)utilized in the test scenarios of IEEE 33-bus
and IEEE 69-bus distribution systems.

2. Evaluation and comparison of RNN, CNN, LSTM, and DQL
algorithm performances on similar test systems, utilizing
metrics like Mean Absolute Percentage Error (MAPE) and R2.

1.5 Paper organization

The forthcoming sections of this manuscript will follow this
structured approach:

Section II: Methodology description detailing DG allocation
and sizing.

Section III: Experimental analysis, presenting the results.
Section IV: Comprehensive overview of the entire study.
Section V: Exploration of potential future avenues in this field

of research.

2 Methodology

The application of Machine Learning for predicting the optimal
locations for distributed generation is explored in this study. The
paper delves into four key algorithms: Recurrent Neural Networks
(RNN) and Convolutional Neural Networks (CNN) under the
Neural Network category, Deep Q-Learning (DQL) as a
Reinforcement Learning method, and Long Short-Term Memory
(LSTM) representing Supervised Machine Learning.

In a quest to enhance distribution system performance, a novel
approach named the cascaded machine learning algorithm is
introduced. This algorithm combines Random Forest, Radial
Neural Network, and Support Vector Machine (SVM). Its
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primary goal is to enhance the placement of Distributed Generation
(DG)with the intention of minimizing power dissipation within the
distribution system. The investigation comprehensively evaluates the
impact on various aspects such as Distributed Generation power
injection, minimum voltage for, and both active and reactive electrical
losses. The study employs test systems based on the IEEE 33-bus and

69-bus configurations. In the method presented, the division of data is
random, with a ratio of 80:20 for training and validation.

The process encompasses various key steps, including feature
selection (input), training and testing phases, as well as validation.
Within this framework, multiple ML models—specifically RNN,
CNN, Proposed model, DQL, and LSTM are constructed to facilitate

FIGURE 1
Flowchart for the process.
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predictions. The validation of the final model is conducted using the
method of hours to ensure accurate predictions for both the testing
setups of IEEE 33-bus and 69-bus systems. Furthermore, the entire
process is elucidated through a flowchart in Figure 1, outlining the
comprehensive process.

2.1 Machine learning algorithms applied

TheMachine Learningmodels were constructed using generated
data sets to facilitate training. Regression-based training algorithms,
including Support Vector Machine (SVM), CNN, and CML, were
utilized. Subsequently, their respective R2 scores and MAPE were
computed to predict reactive power losses and minimum busbar
voltages. The outcomes of Mean Absolute Percentage Error (MAPE)
and R-squared (R2) values for all five models are showcased in
Tables 1–4. These models allow the extraction of output parameters
for forthcoming input data. The study applied the following
machine learning algorithms:

2.1.1 Support vector Machines
Support vector machines (SVM) were created for empirical data

as regression models and binary classifiers as prediction models. The
operation of a support vector machine maps input data onto a two-
dimensional space via a hyperplane. The significance of this
hyperplane lies in its ability to classify data into distinct
categories. The effectiveness of support vector machines relies
heavily on the appropriate choice and maximization of
hyperplanes. Optimization enhances the optimal scope of the
hyperplane, leading to improved predictions by the support
vector machine. The equation for hyperplane is given as Eq. 1

min
1
2
|w|2 + C ∑l

i�0
Ti

⎛⎝ ⎞⎠ (1)

Here data to yi (w.xi + b)≥1-Ti, Ti ≥ 0 for all i
where yi stands in for the class label, which is either +1 or −1,

and xi represents the i
th example. The issue’s dual form is used to

solve it, given in Eq. 2

TABLE 1 DG sizing estimation analysis.

Distribution for test system Algorithm applied R2 MAPE [%]

33-bus RNN 0.9785 0.0247

CNN 0.9678 0.0666

LSTM 0.9885 0.0657

DQL 0.9857 0.0013

Proposed 1 0.0012

69-bus RNN 0.9851 0.0300

CNN 0.9845 0.0578

LSTM 0.9852 0.0789

DQL 0.9734 0.0025

Proposed 1 0.0017

TABLE 2 Active power loss estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-bus RNN 0.7078 26.0063

CNN 0.9685 1.4671

LSTM 0.9865 26.0765

DQL 0.7846 1.4854

Proposed 1 0.1917

69-bus RNN 0.5978 26.5257

CNN 0.9871 1.4745

LSTM 0.9784 26.1838

DQL 0.9257 1.1570

Proposed 1 0.1918

Frontiers in Energy Research frontiersin.org07

Jain and Gupta 10.3389/fenrg.2024.1378242

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1378242


max LD � ∑
i
αi − 1

2
∑

i,j
αi αj y iyj xiTxj( ) (2)

Where 0 ≤ αi ≤ C for all i, ∑iαiyi

2.1.2 Convolutional neural network (CNN)
A Convolutional Neural Network (CNN) is structured with

multiple layers that serve distinct roles in data processing. This
architecture comprises input layers, a convolutional layer, a pooling
layer, a fully connected layer, and an output layer. The effectiveness
of CNN classifiers in data classification and detection is attributed to
the diverse capabilities of these layers.

The convolutional layer, through various window sizes, extracts
different feature information from the data matrix by employing
convolution kernels. Utilizing this convolution operation enables
parameter sharing, wherein the same weight and offset are shared
across the network. As a result, this parameter-sharing technique
substantially diminishes the total number of parameters required by
the neural network, thereby amplifying its efficiency.

After the convolutional layer, the pooling layer implements
diverse sampling techniques to down sample the feature map,

typically using mean or maximum values within specified
window regions. This down-sampling process reduces the size of
the features, effectively diminishing the impact of redundant
information and aids in managing computational complexity.

Consider that the input features of CNN are a map of layer x,
Mx (M0 = F)

The convolutional process can be expressed in Eq. 3 as Li et al.
(2017); Wu et al. (2020)

Mx � f Mx-1 ⊗ Wx + bi( ) (3)
Here Wx is the convolutional kernel weight vector of the x layer,
Symbol ⊗ represents convolutional approach,
bi is the offset vector of x layer. F(x) represents the activation

function. By employing diverse window values, the convolutional layer
extracts varied feature information from the data matrix, utilizing
different convolution kernels. Embracing the concept of ‘parameter
sharing,’ the convolution operation involves using the same weight and
offset for all convolution kernels, thereby significantly reducing the total
number of parameters in the neural network. Subsequent to the
convolutional layer, the pooling layer typically conducts feature map

TABLE 3 Reactive power loss estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-Bus RNN 0.9952 2.3209

CNN 0.9973 1.4870

LSTM 0.6009 25.0065

DQL 0.9570 8.1056

Proposed 1 0.1718

69-bus RNN 0.9952 2.330

CNN 0.9973 1.7835

LSTM 0.588 25.5358

DQL 0.9558 8.2616

Proposed 1 0.1906

TABLE 4 Minimum busbar voltage estimation analysis.

Distribution system for test Algorithm applied R2 MAPE [%]

33-bus RNN 0.9933 0.0412

CNN 0.9957 0.0477

LSTM 0.9983 0.0246

DQL 0.9997 0.0079

Proposed 1 0.0011

69-bus RNN 0.9933 0.0430

CNN 0.9957 0.0497

LSTM 0.9977 0.0400

DQL 0.9996 0.0096

Proposed 1 0.0018
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sampling through various algorithms. The pooling layer can be
expressed as follows, where

Mx is the input, and Mx+1 is the output of the pooling layeras
given in Eq. 4

Mx+1 subsampling Mx( ) (4)
The sampling criterion typically involves selecting the mean or

maximum value within the window region. The main objective of
the pooling layer is to reduce the size of the features, thereby
mitigating the impact of redundant features on the model.

2.1.3 Recurrent neural network
The Recurrent Neural Network (RNN) distinguishes itself as a

specialized variant of an artificial neural network designed particularly
for analyzing sequential time series data. One of its key advantages lies
in its ability to process data in a sequential manner through the
establishment of signal pathways both forward and backwards. This is
accomplished by creating internal loops within the network, enabling
connections among hidden components.

RNNs, due to these internal connections, are adept at leveraging
information from past data to predict future data points, a capability
that becomes particularly useful when exploring temporal correlations
among diverse data sets. These networks excel in capturing and
understanding sequential patterns within data sequences, making
them highly suitable for tasks involving time-dependent data
analysis and predictions. Wang et al. (2019) Wang et al. (2020).

2.1.4 Long short-term memory
The inception of Long Short-Term Memory (LSTM) was driven

by a specific aim: to address the challenge of vanishing gradients that
conventional Recurrent Neural Networks (RNNs) encounter when
handling long-term dependencies. Unlike the simple chain-like
structure of a regular RNN consisting of a series of recurrent
units forming a single layer, the architecture of LSTM’s hidden
layers is more intricate and involves a sequence of
repeating modules.

LSTM (Long Short-Term Memory) incorporates gate mechanisms
and memory cells within each hidden layer, forming a memory block
with essential components: an input gate, an output gate, memory cells,
and a gate. Each element fulfils specific functions in regulating
information flow within the network. The input gate controls which
data to preserve in the memory cell, while the output gate determines
when to transmit this information to the next layers. The forget gate, on
the other hand, aids the network in discarding unnecessary or outdated
information, essentially resetting the memory cells.

Crucially, LSTM employs multiplicative gates that facilitate the
retention and access of information over longer time intervals. By
strategically incorporating these gates, LSTM significantly mitigates
the problem of vanishing gradients, ensuring the network can
effectively capture and retain relevant information over extended
sequences, thereby enhancing its ability to handle long-term
dependencies in data. Hu et al. (2020) Qiao et al. (2020).

2.1.5 Deep Q learning
Deep Learning holds significant promise in transforming power

load forecasting methodologies. Its impact on the energy sector’s
data processing methods is noteworthy. Artificial Neural Networks
(ANNs) specifically engineered for this objective include multiple

layers positioned among the input and output strata. These layers
enable the seamless transmission of information forward across the
network through a process known as feed-forward propagation.
This architecture enables the ANN to process forecasting data
effectively, contributing to the growing acceptance and
application of deep neural networks within the energy sector.
Eyübog�lu and Gül (2021).

2.1.6 Proposed Algorithm
The Cascaded Machine Learning algorithm enhances data

training and minimizes network errors by integrating three
supervised learning algorithms: Random Forest, Radial Neural
Network and Support Vector Machine (SVM). Within this
context, the Support Vector Machine serves as the central
processing model. Meanwhile, the Random Forest and Radial
Neural Network serve as classification algorithms. The Random
Forest classifier operates for variable feature selection from DG data,
whereas the Radial Neural Network is responsible for predicting the
optimality of the DGs. This amalgamation enables improved data
processing and accurate prediction within the network.

The processing of the cascaded machine-learning algorithm is
described in Eq. 5 as

Mc x( ) � sgn m1 x( ))sgn m2 x( ) sgn mn xn( )( )( ) (5)
HereMc (x) is themultiple-stage function of the support vectormachine.
The processing of multiple stages is carried out on the feature data of
DGs on distributed networks. For the optimality of DGs, this employs
support vector machine function SVM (fsvm) to separate the hyperplane
of optimal and non-optimal data, as given in Eq. 6.

F x( ) � { −1 if Mc x( ) < 0
sgn f svm x( )( ) if Mc x( )≥ 0

(6)

The selection of features data from DGs matrix is given in Eq.
7 as

Rf x( ) � (P1, . . . , Pm] (7)
Here p1,. . ., pn are the vectors of selected DGs matrix data.

Estimate the entropy of class by variable selector,as mentioned
below in Eq. 8

LX x( ) � (Ei1, . . . , Eik ] (8)
Here E is entropy of variables of DGs matrix.

The training set is derived pairwise (s, [E1,. . ., Ek])
Where s represent the input variable and [P1,. . ., Pk] the

target variable.

ej � { 1, if j � k
0, otherwise

(9)

Eq. 9 signifiesmultiple support vectors. The optimal process of the
variable is selected, and then the process pattern on the radial neural
network call adjusts the weight factor of the cascading process.

Mc ∈ ejd~ ← mapping of optimal data in kernel function.
Call kernel function as described in Eq. 10

k xi, xj( ) � exp
‖ xi − xj ‖2

γ( ), γ ∈ R (10)

End if.
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3 Simulation and results analysis

The simulation of the entire process is conducted through
MATLAB R2017 software. It includes information regarding DG
power injection, bus bar voltages, load variations, as well as both
active and reactive power losses. The evaluation of these
parameters is conducted using the IEEE 33-bus and IEEE 69-
bus distribution networks as case studies. Figure 2 depicts the
single-line diagram for the 33-bus distribution system, and
Figure 3 illustrates the diagram for the 69-bus distribution
system. This simulation methodology enables a comprehensive
examination and assessment of the system’s performance across

various scenarios and conditions. Arif et al. (2020). The power
load data obtained varies based on the time of day and seasonal
changes. These data can be found in the GitHub repository Lotfi
(2022). The assessment of the algorithms’ performance involves
the utilization of MAPE and R-squared indices. The results in the
upcoming figures illustrate the distributed generation (DG)
power injection, active power losses, reactive power losses, and
minimum busbar voltage for both the IEEE 33-bus and 69-bus
networks, respectively. The gathered R2 and MAPE values used
for prediction are presented in Tables 1–4. Each case is
thoroughly explored in the subsequent section, systematically
analyzing the results and observations.

FIGURE 2
IEEE 33-bus test system.

FIGURE 3
IEEE 69-bus test system.
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3.1 DG power injection

Figures 2, 3 illustrate the single-line diagram of the 33-bus and
69-bus distribution systems, respectively. Distributed generation
(DG) sizing is determined through the utilization of normalized
load variation (NLV).

PDtt = 2566.1833 x Load Level - 53.5766 for 33-bus
distribution system.

PL = 286.3641 x Load Level - 97.0291 for 33-bus
distribution system.

Figure 4 depicts the optimal power injection at different intervals of
scheduled working hours. The methodology for power injection
prediction encompasses the utilization of diverse deep learning
algorithms, including long short-term memory networks (LSTM),
convolutional neural networks (CNN), deep Q-learning (DQL),
recurrent neural networks (RNN), and the defined algorithm.
Comparatively, the sequential algorithm of RNN demonstrates
superior performance when compared to the CNN algorithm, leading
to a notable 7% enhancement in prediction accuracy. Additionally, the
proposed algorithm exhibits superiority over existing algorithms in terms
of prediction ratio, which falls within the range of 5%–7%.

PDtt = 1827.2793 x Load Level - 4.711 for bus
69 distribution system

PL = 318.0325 x Load Level - 108.6808 for bus
69 distribution system.

Figure 5 depicts the optimal power injection at different intervals
of scheduled working hours. The 69-bus system exhibits a diverse
prediction compared to the 33-bus system. The figure illustrates the
deep learning-based approaches employed for the assessment of
optimal DG prediction to enhance the distribution systems. The
proposed algorithm for DG optimal prediction reached the
maximum prediction of the actual value of DG sizing. The
proposed algorithm overcomes the limitations of LSTM, RNN,
CNN, and DQL. The RNN and LSTM algorithms suffer from
training error rates; however, the prediction rate of RNN and
LSTM is less than the actual value of prediction. The CNN

algorithm is better than RNN and LSTM. The overall
improvement in the prediction ratio of DG sizing is 4%–8%
compared to existing algorithms.

3.2 Active power loss estimation

Figure 6 displays the predictions for active power losses in the
33-bus systems based on normalized load variation (NLV). We
employed deep learning based algorithms such as RNN, LSTM,
CNN, DQL, and the proposed algorithm to predict active power loss.
The variation of algorithms employed in deep learning is estimated
in different hours of optimal DG sizing. The LSTM algorithm
exhibits inferior performance compared to both CNN and RNN
algorithms. The LSTM algorithm suffers from the problem of
training errors in prediction data. The conventional RNN
algorithms are better than LSTM. The cascaded proposed
algorithm overcomes the training errors and improves the
prediction of active power loss.

Figure 7 illustrates the forecasts for active power loss by utilizing the
normalized load variation (NLV) of 69-bus systems. The employed
DQL algorithm for deep learning is inferior to other algorithms for
prediction. The primary concern lies in the sluggish training rate of
Deep Q-Learning (DQL), which adversely affects the prediction rate of
active power loss compared to CNN, RNN, and LSTM. To address this
limitation, the proposed algorithm is introduced, markedly enhancing
the accuracy of active power loss prediction andmaximizing accuracy in
forecasting actual values. In the context of 69-bus systems, optimal
sizing results in a notable 5%–10% improvement in the predictive
performance for active power loss.

3.3 Reactive power loss estimation

Figure 8 displays the forecasted reactive loss for the 33-bus
systems, where the CNN algorithm utilized for deep learning shows

FIGURE 4
A comparative analysis of distributed generation (DG) sizing predictions for a 33-bus distribution system.

Frontiers in Energy Research frontiersin.org11

Jain and Gupta 10.3389/fenrg.2024.1378242

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1378242


inferior performance compared to other deep learning algorithms in
prediction accuracy. The challenge primarily arises from the
selection of the filter matrix for DG sizing data, resulting in
errors and a reduction in active power loss prediction rates when
compared to DQL, RNN, and LSTM. However, with the integration
of the proposed algorithm, there’s a notable enhancement in active
power loss prediction and a substantial improvement in actual value
prediction. For the 33-bus systems, achieving optimal sizing results
in a notable enhancement of 7%–12% in the prediction ratio of
reactive power loss.

Figure 9 showcases the predictions of reactive power loss based on
actual values specifically for the 69-bus system. The predictive analysis
utilized various deep learning algorithms, namely, RNN, LSTM, CNN,
and DQL. The variance in prediction results stems from the training

sequence applied to the DG sizing data, significantly influencing the
outcome. The training process significantly shapes and exacerbates
errors, consequently affecting the performance of RNN. Moreover,
alternative deep learning algorithms like DQL, CNN, and LSTM show
divergent predictions for reactive power loss. The implementation of the
designated algorithm results in an enhancement of the predictive
accuracy for reactive power loss by 2%–8% in comparison to the
observed reactive power loss.

3.4 Minimum busbar voltage estimation

The precise estimation of Minimum Busbar voltages in the 33-
node and 69-node distribution systems has been successfully

FIGURE 5
Comparing DG sizing predictions for the 69-bus distribution system.

FIGURE 6
Comparative analysis of active power loss forecasts for a 33-bus distribution system.
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accomplished by deploying the advanced Cascaded Machine
Learning model. Figure 10 displays the prediction of minimum
busbar voltages specifically related to the 33-bus distribution system.
Various deep-learning algorithms of RNN, LSTM, CNN, and DQL
were employed for minimum voltage prediction. Since busbar
voltage is a time-series data, RNN and LSTM are more suitable
for its prediction. However, due to slow training error rates, the
LSTM’s prediction rate is relatively lower compared to other deep
learning algorithms. The proposed algorithm successfully addresses
the issue of slow training error rates and notably enhances the
prediction rate, improving the actual prediction rate by 5%.

Figure 11 depicts the forecast of minimum busbar voltage
focusing on the 69-bus grid system. In this investigation,
analogous to the 33-bus system, RNN, LSTM, CNN, and DQL
models were employed to perform predictions for minimum voltage.
With busbar voltage being a time-series data, RNN and LSTM are
considered more effective for prediction. Nevertheless, due to slow
training error rates, the DQL’s prediction rate is inferior to other
deep learning algorithms. The proposed algorithm effectively
overcomes the challenge of slow training error rates, significantly
enhancing the prediction rate and improving the actual prediction
rate by 7%.

FIGURE 7
Comparative analysis of active power loss forecasts for a 69-bus distribution system.

FIGURE 8
The predictive analysis of reactive power loss in the 33-bus distribution system.
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3.5 Performance evaluation metrics

The assessment of the cascaded machine learning algorithm’s
performance is conducted using MATLAB software, comparing it
with existing algorithms. This evaluation focuses on DG sizing
placement, minimum busbar voltage, active power loss, and
reactive power loss. The evaluation metrics employed to measure
the algorithm’s performance include R-squared/Coefficient of
Determination and Mean Absolute Percentage Error (MAPE).

The objective is to assess the effectiveness of the cascaded
machine learning algorithm in forecasting DG sizing placement,
minimum busbar voltage, as well as both active and reactive power
losses. This assessment involves comparing the algorithm’s

performance with established methods, utilizing R-squared and
MAPE as crucial metrics.

This structured approach highlights the specific focus on
evaluating and comparing the strength of the cascaded machine
learning algorithm across several parameters against the existing
algorithms.

3.5.1 R-squared/coefficient of determination
The evaluation of the model’s performance and reliability

involves calculating R-squared error metrics. In this evaluation,
real values are utilized to confirm the precision of the model.
R-squared (R2), known as the coefficient of determination, acts
as a statistical indicator in regression models. It denotes the portion

FIGURE 9
The predictive analysis of reactive power loss in the 69-bus distribution system.

FIGURE 10
Minimum busbar voltage predictions for 33-bus distribution system.
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of the variability in the reliant variable clarified by the independent
one. R2 gauges how well the data fits the regression model, ranging
between 0 and 1.

3.5.2 Mean Absolute Percentage Error (MAPE)
The assessment of forecast accuracy and outcome calculation is

performed employing theMean Absolute Percentage Error (MAPE).
MAPE measures the correlation among absolute prediction
inaccuracies and the real values. These metrics quantifies the
accuracy of predictions relative to the actual data.

Tables 1–4 offer a comprehensive analysis of DG sizing, active
power loss, reactive power loss, and minimum voltage estimation.

The results from the proposed model suggest that proposed
algorithm surpasses CNN, RNN, LSTM, and DQL by 5.7%, 6.6%,
13.2%, and 14.2%, respectively, in estimating DG sizing within the
33-bus system, thereby enhancing the model’s efficiency. Similarly,
in the 69-bus system, the proposed model predicts DG sizing better
by 5.6%, 9.3%, 15.8%, and 18.7% for CNN, RNN, LSTM, and DQL,
respectively.

Comparing the proposed method with other state-of-the-art
methods for active power loss estimation reveals significant
performance improvements: 9.1% for CNN, 16.7% for RNN,
24.2% for LSTM, and 28.8% for DQL in the 33-bus test system.
Likewise, in the 69-bus system, the proposed algorithm outperforms
by 4.6%, 6.1%, 10.7%, and 23% for CNN, RNN, LSTM, and DQL,
respectively.

Analyzing reactive power using the proposed method indicates
superior performance over RNN, LSTM, DQL, and CNN with 5.3%,
10.5%, 13.2%, and 23.7%, respectively for the 33-bus test system.
Similarly, in the 69-bus system, improvements over LSTM, CNN,
DQL, and RNN are 3.6%, 7.1%, 10.7%, and 14.3%, respectively.

Predictions for Minimum Busbar voltage in the 33-bus system
using LSTM, RNN, DQL, and CNN are less accurate compared to the
proposedmethod by 0.2%, 0.3%, 0.4%, and 0.8%, respectively. Similarly,
estimations for the 69-bus test systemwith the proposedmethod exhibit
superiority by 0.1%, 0.3%, 0.5%, and 0.8%, respectively.

This section begins by analyzing the data relevant to the issue at
hand. It then proceeds to compare the results obtained from the
newly introduced models with those of the previously utilized ones.
The efficacy of the proposed algorithm surpasses that of CNN, RNN,
LSTM, and DQL across both the 33-bus and 69-bus systems. The
utilization of the proposed algorithm for parameter estimation
showcases superior effectiveness compared to relying on CNN,
RNN, LSTM, and DQL. MAPE values indicate that the proposed
algorithm consistently outperforms other algorithms for all
parameters. R2 values exceeding 0.9 for various parameters
underscore the effectiveness of the developed model. These
findings affirm that the newly proposed model exhibits enhanced
performance and can be relied upon to effectively address the
challenge of predicting distribution system.

4 Conclusion

The study proposed the utilization of a cascaded machine
learning algorithm for distributed generation (DG) allocation
within distribution systems. It found that machine learning (ML)
delivers impressive results for estimations based on single inputs.
The CNN model exhibited significant effectiveness in forecasting
different parameters like distributed generation (DG) sizing, system
inefficiencies, and minimum voltage levels, especially in systems
before incorporating the integration of distributed generation (DG).

The study aimed to assess the electrical distribution system by
analyzing diverse factors, such as distributed generation (DG) power
injection, active and reactive power losses, and minimum voltage,
across both test systems, namely, IEEE 33-bus and IEEE 69-bus.
Various machine learning (ML) models, such as CNN, RNN, LSTM,
DQL, and Cascaded ML algorithm-based models, were developed
and assessed using MAPE and R2 values. Notably, the Cascaded ML
model exhibited high R2 values close to 1, indicating its suitability
for accurate estimations. Validation with test data confirmed the
effectiveness of these models. The findings emphasize the

FIGURE 11
Minimum busbar voltage predictions for 69-bus distribution system.
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effectiveness of the proposed method in precisely assessing the DG
dimension and its consequential impacts on the power
distribution network.

5 Future scope

To further enhance forecasting capabilities, the approach can be
expanded by integrating additional features like line current or voltage
drops during the model’s development. These additional factors can be
incorporated as extra inputs (features) in the input-output design to
improve predictive accuracy. Moreover, the Machine Learning codes
created in this study are versatile and can be adapted for other methods
by adjusting the input data and utilizing the modified data to train
different Machine Learning models.

However, in cases where there is a nonlinear correlation
between input and output data, this model may not be
appropriate for estimating DG integration. It is most effective
for single-input predictions. Additionally, the suggested
algorithm can be utilized to attain the most accurately
predicted outcomes, including the distributed generation unit
size, system losses, and minimum voltages in systems prior to the
integration of DG.
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