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Load models have a significant influence on power system simulation. However,
current load modeling approaches can hardly satisfy the diversity and time-
varying characteristics of loads [including electric vehicles (EVs) and battery
storage] in terms of model accuracy and computing efficiency. An online
modeling method for composite load models based on measurement
information is proposed in this paper. Firstly, the dominant factors in load
model output are analyzed based on the active subspace of parameter space.
Then the clustering algorithm is applied to cluster the large number of underlying
loads based on the characteristics of load daily output curves. Finally, the
underlying loads are equivalently aggregated from the low voltage levels to
the high voltage levels to construct the composite load model. Simulation
results obtained based on PSCAD/EMTDC demonstrate that the load model
constructed by the proposed approach can accurately reflect the actual load
characteristics of a power system.
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1 Introduction

Simulation analysis is an important means to study the steady state and transient
characteristics of the power system, which is carried out through the establishment of the
power system source, network, and load simulation model, taking the initial trend results as
a starting point, and using numerical methods to iteratively solve for each state response
quantity of the system so as to carry out the inversion of accidents or fault preview (Zhang
et al., 2022). Therefore, the accuracy of the simulation model is an important guarantee for
the reliability of the simulation analysis results (Zhang et al., 2021; Qian et al., 2023).

However, the models used in the current simulation analysis have not been able to
accurately reflect the real characteristics of complex power systems, and it is difficult to
accurately invert and reproduce the real faults occurring in some actual power grids by
means of simulation (Zhang et al., 2017). Among them, the accuracy of the load model is
doubtful, which is an important reason affecting the simulation results, and the diversity
of the power system network structure and the expansion of the scale of new load access
further increase the difficulty of load modeling (Xu et al., 2023). Compared with
traditional vehicles, new energy vehicles have the advantages of low pollution, high
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energy efficiency, and low operating costs. The operation benefit of
order charging is verified by constructing order charging on the
power grid side.

Currently, a large number of studies have been carried out for
load modeling. The comprehensive load model composed of static
constant impedance, constant current, constant power
components, and dynamic induction motor components is
widely used in power system simulation due to its good
generalization ability (Overbye, 1994; Zalok and Eduful, 2013;
Camille et al., 2021). On this basis, related studies have proposed
model construction and parameter identification methods, which
can be mainly categorized into two types based on constituent
components (Chen et al., 1997; Zhang et al., 2023) and
measurement information (Ma et al., 2008; Zhang et al.,
2020a). Component-based methods divide the loads according
to types and then characterize different types of loads with typical
static loads or motor loads, but the statistical work efficiency is
low and the dynamic changes of loads are ignored. The method
based on measurement information regards all kinds of loads as a
black box model and makes the simulation response output
consistent with the measured response by identifying its
parameters so as to reflect the real dynamic characteristics of
the system and be used for power system simulation analysis, but
the complex structure of the load model and its high-dimensional
nonlinear parameter space lead to computational speed and
efficiency that are still low. The vigorous development of
electric vehicles is of the utmost significance to adjust the
optimal design of industrial structures and promote the
sustainable development of industry. In view of the problems
existing in the development of electric vehicles at the present
stage, the state focuses on the research and development of
charging problems for electric vehicles and carries out research
on the safety and power supply of charging equipment at the
present stage so as to form a safe and effective charging
safety system.

In order to reduce the complexity of load modeling, literature
(Zhang et al., 2021b) proposes a comprehensive load
simplification model based on the dominant parameter
selection, which transforms the induction motor model into a
second-order equation of state; literature (Han et al., 2022)
proposes a fast calculation method for the parameters of the
comprehensive load model based on the sensitivity analysis; and
some researchers use intelligent optimization algorithms (Wang
et al., 2018; Hu et al., 2022) or machine learning algorithms (Cui
et al., 2019; Bu et al., 2020; Hu et al., 2023) for the overall
identification of the model parameters. These studies aim to
reduce the parameter space of the load model or increase the
parameter calculation rate to simplify the complexity of load
modeling. However, the electrical quantity measurement is
usually targeted at nodes of higher voltage levels, and it is
difficult to obtain all the underlying load information of the
lower voltage levels of the distribution network, and its iterative
or training process often requires sample labels, i.e., the exact
values of the parameters to be measured corresponding to the
observed quantities, which are usually difficult to know in
advance in practical applications especially in the transmission
system (Tsekouras et al., 2007; Zhang et al., 2020b; Zhang et al.,
2020c; Zhang et al., 2021c).

Aiming at the above problems, this paper proposes an online
modeling method for integrated load models based onmeasurement
information. On the basis of analyzing and identifying the dominant
factors of the external characteristics of the comprehensive load
model, the bottom load is clustered according to the load curve, and
the comprehensive load equivalent aggregation model is constructed
by aggregating equivalently from the low voltage level to the high
voltage level step by step. The proposed method is simulated,
analyzed, and validated based on the PSCAD/EMPDC platform.

2 Identification of dominant factors for
external characterization of integrated
load models

2.1 Activation subspace of the
parameter space

The integrated load model generally refers to a load model
composed of induction motors and static loads in a certain
proportion. Obviously, the external characteristics of the
integrated load model are related to the composition ratio of
each type of load and the parameters of its internal model, and it
is necessary to analyze and identify the dominant factors affecting
the external characteristics of the integrated load model before
carrying out the integrated load equivalent modeling. This
section identifies the dominant factors in the characteristics of
the integrated load model based on the activation subspace
approach. The activation subspace is a low-dimensional linear
subspace of the parameter space that allows for a global
assessment of the sensitivity of the output variables with respect
to the parameters.

Consider a parameterization function that maps the parameters
of the system to the scalar output of interest, where C denotes the
canonical set of parameter values:

C � ∫
χ
∇�θg �θ( )) ∇�θg �θ( ))Tρ �θ( )d�θ(( (1)

�θ∈ χ � x ∈ im | −1≤ xi ≤ 1, i � 1, K,m{ } (2)

In Eq. 3, the joint probability function of the parameters satisfies:

∫
χ
ρ �θ( )d�θ � 1 (3)

For any smooth function, in the reduced-dimensional case, the
matrix C is called the average generalized derivative, which weights
the input values according to the density. A single normalization
parameter is a random variable with values in the range [−1, 1] that
represents a parameter in the original model. The matrix C is the
average of the gradient and its own outer product.

From Eq. 1, the elements of C are the average of the product of
partial derivatives, which can be regarded as the parameter
sensitivity:

Cij � ∫
χ

∂g
∂�θi

( ) ∂g
∂�θj

( )ρd�θ, i, j � 1, K,m (4)

In (4), Cij is the (i,j) element of C and m denotes the number of
parameters. Since the matrix C is symmetric, the spectral eigen-
decomposition can be performed, as shown in Eq. 5.
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C � WΛWT (5)
where W is a column of the orthogonal matrix, is the standard
orthogonal eigenvector of C, Λ � diag([λ1, K, λm]) and λ1 ≥K≥ λm.
λ1, λm are the largest and smallest eigenvalues of the matrix C.

It can be seen that the eigenvalue of matrix C is the mean square
directional derivative in the direction of the corresponding
eigenvector. If the eigenvalue is very small, it indicates
insensitivity in the direction of the corresponding eigenvector.
On the contrary, the larger the eigenvalue, the more significant
the change in the direction of the corresponding eigenvector.

The eigenvalues can be separated from the eigenvectors based on
the magnitude of the eigenvalues, shown in Eq. 6:

Λ � Λ1 0
0 Λ2

[ ],W � W1 0
0 W2

[ ] (6)

where Λ1 and W1 contains the first n larger eigenvalues and
corresponding eigenvectors, Λ2 and W2 contains the other m-n
smaller eigenvalues. To determine this separation, the spectral gap
between the nth and (n + 1)th eigenvalues can be found on the log-
log plot in order of magnitude. It is worth noting that the presence of
a spectral gap directly indicates the presence of an
activation subspace.

The integrated load model in our study includes parameters like
Distributed Network Reactance, Inductive Motor Active Power
Proportion, Load Ratio, Stator Reactance, Constant Reactance
Load Proportion, Direct Current Side Capacitor, and
Photovoltaic Output Equivalent Reactance. These parameters
significantly shape the external characteristics of the load model
and should be compared with the model discussed in this paper.

SinceW is orthogonal, any parameter vector can be expressed as:

θ � WWTθ � W1W
T
1 θ +W2W

T
2 θ (7)

In Eq. 7, θ represents the parameter vector in the model.
Then any parameter vector-sensitive output is shown in Eq. 8:

g θ( ) � W1θ1 +W2θ2 (8)

From the definitions of W1 and W2, it can be seen that a small
perturbation has little effect on the value of On the contrary, small
perturbations can significantly change Based on this property, the
range of W1 is defined as the activation subspace, and the range of
W2 is defined as the corresponding inactivation subspace of the
model. The above subspaces describe the sensitivity of the model
outputs to parameter changes.

Distributed Network Reactance affects the load’s impedance, while
Inductive Motor Active Power Proportion and Load Ratio determine
the proportion of induction motors and static loads, influencing
dynamic behavior. Stator Reactance and Constant Reactance Load
Proportion impact impedance and power consumption, and the
Direct Current Side Capacitor and Photovoltaic Output Equivalent
Reactance represent auxiliary component influences. By analyzing these
parameters alongside our model, the sensitivity can be extended to
understand their impact on external behavior. This comparative
approach enhances our understanding and informs system design.
Incorporating these parameters allows for a comprehensive
comparison, identifying key factors influencing the load
model’s behavior.

2.2 Key parameters identification

The integrated load model is accessed in the WSCC-9 node
system and tested based on the Python-PSASP simulation platform.
The test parameters are the internal parameters of the static load or
the induction motor load and their composition ratios, and all
parameters are uniformly distributed by default. The voltage, active
power, and reactive power of the observation point are used as the
response output trajectory, and the change of the internal
parameters of the integrated load model under the observation
point will cause the change of the response trajectory. The degree
of change of the dynamic trajectory after the parameter change is
used as the sensitivity index, and a sample contains the numerical
sensitivity of all the parameters at a randomized point in the
parameter space (which is a composite index after the average of
the voltage and the power), and the set of the sample set is 2,000.

Among the 2,000 samples generated at the end of the simulation,
noisy samples due to transient instability (the model is prone to
instability under certain parameter compositions) are sifted out by
analysis, and for the column vectors of sensitivity in the samples the
corresponding variational generalized function matrices are
computed and the mean value C is found in Eq. 9:

C � 1
2000

∑2000
i

∇�θg �θ( )) ∇�θg �θ( ))T(( (9)

In this paper, the method for separating eigenvalues from
eigenvectors is called the “Variational Generalized Function
Matrices Approach.”

The eigendecomposition of C is performed to calculate the
eigenvalues and eigenvectors of C. If C can be understood as a
variational generalized function matrix with the parameter space as
the independent variable, the parameter’s own sensitivity, and the
correlation between the parameters as the dependent variable, then
there must be a parameter space that has a high sensitivity distribution
under a certain subspace after some kind of linear transformation. The
diagonal array of eigenvalues generated by the eigendecomposition of C
is understood as a new function space transformed by the coordinates of
these eigenvectors. These eigenvectors after the coordinate
transformation of the new function space, these eigenvectors for the
function space of the coordinate axes, the function space of the function
value, are also the correlation coefficient and the parameter’s own
sensitivity to the size of the numerical value, except that the
corresponding independent variable is no longer a parameter value
of physical significance but the parameter space after the coordinate
transformation of some kind of independent variable. Obviously, the 1st
eigenvalue of C is much larger than the other eigenvalues, i.e., in the
transformed function space, the change of the function value in the
direction represented by the first eigenvector is much larger than that in
the direction pointed by the other eigenvectors; therefore, the activation
subspace of C is a 1-dimensional space, and the value of eigenvectors
corresponding to the 1st eigenvaluemultiplied by the parameter vectors
is the coordinate of the parameter vectors on this space. The distribution
of eigenvectors corresponding to the first eigenvalue is shown in
Figure 1. The analysis reveals that the composition ratios of static
load and inductionmotor exhibit larger sensitivity weights compared to
the internal parameters of the model. Thus, the primary factors
influencing the external characteristics of the integrated composite
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model are identified as the composition ratios of static load and
induction motor load. Diagram of converting load model to
highvoltage side considering the EVs and fuel betteries is shown in
Figure 2 and structure of the simulation system is depicted in Figure 3.

2.3 Exploration of advanced modeling
techniques

In this section, we delve into the integration of advanced
modeling techniques to augment the accuracy and robustness of
integrated load models. Specifically, we adopt deep learning

architectures, including deep neural networks (DNNs),
recurrent neural networks (RNNs), and convolutional neural
networks (CNNs), alongside data-driven parameter estimation
techniques. Our choice of these methodologies is driven by
their capacity to capture intricate nonlinear relationships within
load dynamics and to accurately estimate model parameters based
on historical operational data. By leveraging the capabilities of
these advanced techniques, we aim to refine load modeling
accuracy and contribute to the advancement of computational
methodologies in this domain.

With the rapid advancement in computational methodologies,
exploring advanced modeling techniques becomes imperative for

FIGURE 1
Sensitivity weights corresponding to different parameters.

FIGURE 2
Diagram of converting load model to high-voltage side considering the EVs and fuel betteries.
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refining the accuracy and robustness of integrated load models.
One promising avenue is the incorporation of machine learning
algorithms, particularly deep learning architectures, to capture
intricate nonlinear relationships within the load dynamics. Deep
neural networks (DNNs) offer unparalleled capabilities in
handling complex data structures and learning high-
dimensional mappings, which could significantly enhance the
fidelity of load modeling.

2.3.1 Integration of deep learning models
To leverage the potential of deep learning, integrating DNNs

within the integrated load modeling framework presents an
intriguing prospect. By training DNNs on extensive datasets
comprising diverse operational scenarios and load profiles,
these models can learn intricate patterns and correlations,
thus enabling more accurate predictions of load behavior.
Moreover, recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) can capture temporal
dependencies and spatial features, respectively, further
enriching the modeling capabilities.

2.3.2 Data-driven parameter estimation
Another avenue for enhancing integrated load modeling is

through data-driven parameter estimation techniques. By
leveraging historical operational data and advanced optimization
algorithms such as genetic algorithms or Bayesian inference
methods, accurate estimation of model parameters can be
achieved. These data-driven approaches offer a pragmatic means
to calibrate model parameters in real-time, thereby ensuring
adaptability to evolving system dynamics and load characteristics.

3 Online modeling method of
integrated load based on measurement
information

3.1 Load clustering based on output curves

Since the dominant factor affecting the external characteristics
of the integrated load model is the load composition ratio, it can be
assumed that users with similar daily load profiles have similar load

FIGURE 3
Structure of the simulation system.
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composition ratios. After clustering the loads using the clustering
algorithm, the typical load composition ratio at the center of the
clusters is used to characterize the composition of the loads in the
class. The specific steps are as follows: 1) The load clustering process
involves the following steps:

1) Processing the load data into daily load profiles and normalizing
them based on Eq. 9 to create a library of daily load profiles:

x′
i �

xi − min X( )
max X( ) − min X( ) (10)

In Eq. 10 xi denotes the ith daily load profile sampling point data and
X denotes all sampling point data of the daily load profile There are
two common Copula families, the Archimedes Copula and the
Elliptic Copula. The three most common types of Archimedes
Copula functions are Gumbel Copula, Clayton Copula and Frank
Copula, and elliptic Copula functions mainly include normal Copula
and t-Copula. Because t-Copula is extremely time-consuming to fit
multidimensional random variables and the Gumbel-Copula form is
complex, only the remaining three Copula functions are considered
in this paper.

2) Clustering the daily load profiles of a large number of users
using the k-means algorithm (Zhang et al., 2020b), for a given
N daily load profile data, k cluster centers are randomly
generated, the Euclidean distances of all the load profiles to
the k cluster centers are calculated, respectively, and the cluster
centers with the closest distances are selected as the groups to
which they belong.

3) Recalculate the center of clustering for each cluster,
i.e., average all load profiles in the load cluster and use it as
the center of clustering for the next iteration;

4) Repeat the above steps until the center of clustering does not
change anymore or the clustering reaches the convergence
condition, which here corresponds to the mathematical
problem of minimizing the number of 2-parameters:

minE � ∑k
i�1

∑
x∈Ci

x − μi
���� ����2 (11)

In Eq. 11, Ci denotes the ith user group, μi is the clustering center of
user group Ci.

3.2 Load model equivalent aggregation

For loads within the same cluster, they are aggregated
equivalently to characterize the underlying large number of user
loads in terms of a typical load model.

3.2.1 Induction motor load aggregation
In the actual power system, not all induction motors under the

same bus may be in a working state, and one motor may
correspond to multiple working states. Therefore, there are
uncertainties and time-varying characteristics of load
aggregation, and the model established based on the traditional
capacity weighting method is single and fixed, which cannot reflect
the real-time state and time-varying characteristics of load. In this

paper, the real-time measured power of nodes is used instead of
capacity for weighted aggregation, and the weighting coefficients
are calculated according to Eq. 11:

σ i � Pi

∑n
i�1
Pi

(12)

In Eq. 12, Pi denotes the real-time measured power of the ith single
motor load node. Following the calculation of weight coefficients
using real-time measured power, Eqs 13, 14 are utilized to compute
the inertia time constant of the aggregation model and the
conductance of each branch of the equivalent circuit:

T′ � ∑n
i�1
σ iTi (13)

1
Z′ � ∑n

i�1
σ i
1
Zi

(14)

where Ti and Zi are the inertia time constant and branch impedance
of the ith individual motor load, respectively, and the specific form
of resistance and reactance of Zi varies depending on whether it is a
stator branch, rotor branch, or excitation branch that is
being expressed.

3.2.2 Static load aggregation
The static load is usually described by a polynomial consisting of

constant impedance, constant current, and constant power as shown
in Eq. 15:

P � P0 ap U/U0( )2 + bp U/U0( ) + cp[ ]
Q � Q0 aq U/U0( )2 + bq U/U0( ) + cq[ ]

⎧⎨⎩ (15)

where P0 and Q0 denote the rated active and reactive power
consumed by the load, U and U0 denote the actual and rated
voltage of the load bus, respectively, and ap, bp, cp, and aq, bq, cq
denote the active and reactive power coefficients of each part of the
model, respectively.

a′p � ap1P01 + ap2P02 +/ + apnP0n( )/P0

b′p � bp1P01 + bp2P02 +/ + bpnP0n( )/P0

c′p � 1 − a′p − b′p

⎧⎪⎪⎨⎪⎪⎩ (16)

In Eq. 16, P0 denotes the rated active power consumed by the single
static load, ap, bp, cp denote the active power coefficients of each part
of the model, and the subscripts 1-n denote the serial number of the
single static load.

3.3 Loadmodeling step-by-step equivalence

When simulating and analyzing the power system, the load
model is difficult to cover the lower voltage levels of the distribution
network and is often connected to the higher voltage level buses,
such as 110 kV or even 220 kV for simulation. Taking EVs and
batteries into consideration, from the point of view of vehicle
charging, to provide more electricity in the shortest time, the
equipment needs to be optimized. The safety problems of
charging on the side of the charging vehicle are mainly the
adverse effects of the charging behavior of the electric vehicle on
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the battery or battery management system, including BMS (Battery
Management System) safety protection measures out of control,
poor consistency of the BMS communication protocol, poor
collision coefficient, and leakage. Therefore, reasonable planning
and selection of charging facilities increase battery safety and the
anti-collision safety factor. From the point of view of an electric
vehicle power collision, not only the voltage will change, but also the
shape will deform and lead to the battery. The electrolyte of the part
is splashed. Therefore, after the load model is aggregated, it is
necessary to equate it step by step from the low voltage level to
the high voltage level, as shown in the figure below:

In the figure, and denote the bus voltage of HV side and LV
side, respectively, PH and PL denote the active power flowing
into HV side and LV side, respectively, QH and QL denote the
reactive power flowing into HV side and LV side, respectively,
and denote the current of HV side, the current flowing into the
motor load and the static load, respectively, and ZD is the
equivalent impedance. The increasing charging load and the
discordance in structure design increase the operating pressure
of the power grid, but compared with fuel vehicles, electric
vehicles have energy savings and emission reductions to
maximize the benefits.

3.3.1 Induction motor load equivalence
The following mathematical relationships of electrical quantities

can be written as below:

_UH � ZD
_IML + _ISL( ) + _UL

_ISL � _ULYS � _UL YZ + YI + YP( )
_I � _IML + _ISL

⎧⎪⎪⎨⎪⎪⎩ (17)

Where: YZ, YI and YP denote the conductance of the constant
impedance, constant current and constant power parts of the static
load, respectively.

_UL � 1
ZD YZ + YI + YP( ) + 1

_UH − ZD
_IML( ) (18)

According to the third order model of induction motor, it can be
expressed as:

_UL � _E′ + Rs + jX′( ) _IML (19)
where: Rs is the stator resistance, and is the short circuit reactance
when the slew rate is zero.

The joint solution of Eqs 17, 18 can be obtained:

_UH � ZD

ZDYS + 1
+ Rs + jX′( )[ ] ZDYS + 1( ) _IML + ZDYS + 1( ) _E′

(20)
Order is shown in Eq. 21:

ZD/ ZDYS + 1( ) � λ1 + jλ2
ZDYS + 1 � _λ3
_E
′
H � _λ3 _E′
_IMH � _λ3 _IML

RsH + jX′
H � Rs + λ1( ) + j X′ + λ2( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(21)

Substituting Eq. 20 into Eq. 19 yields the high voltage side bus
voltage shown in Eq. 22:

_UH � _E′H + RsH + jX′
H( ) _IMH (22)

Substituting Eq. 20 into the low voltage side motor transient
electromotive force equation Eq. 23:

d _E′H
dt

� jω0 ω − 1( ) _E′H − 1
T0H
′

_E′H − j XH −X′
H( ) _IMH[ ] (23)

This gives the equivalent to the high voltage side induction
motor excitation reactance, stator reactance, and rotor resistance
and rotor reactance, as shown in Eq. 24:

XmH � Xm

XsH � Xs + λ2
RrH + jXrH � Rr + jXr

⎧⎪⎨⎪⎩ (24)

Substituting Eq. 20 into the low voltage side induction motor
electromagnetic moment equation yields the equivalent motor
electromagnetic moment on the high voltage side as shown in
Eq. 25:

TEH � Real _E′HI*H( ) � λ23TE (25)

Then the time constant of inertia of the induction motor load
equaled to the high-voltage side is shown in Eq. 26:

HH � λ23H (26)

3.3.2 Static load equivalence
From the circuit relationship, it can be obtained Eq. 27:

_I � _IML + _ULYS � 1
ZDYS + 1

_IMH + _UH − ZD
_I( )YS (27)

Simplification leads to Eq. 28:

_IMH � ZDYS + 1( ) _I − _UH − ZD
_I( )YS[ ] (28)

Therefore, the static load conductance equated to the high-voltage
side can be calculated by Eq. 29, where the proportion of constant
impedance, constant current, and constant power components is
determined according to the typical load composition in the clustering.

YH � YS ZDYS + 1( ) − ZDYS ZDYS + 2( )P − jQ

U2
H

(29)

4 Case study

Based on the WSCC-9 node system in PSCAD/EMTDC, the
example system is built, and a distribution network containing
integrated load models of low voltage levels is accessed at node 6,
and each integrated load model characterizes a class of customer
loads. The specific parameters of the load model and the example
system are shown in the Tables 1-4.

Themethod of this paper and the traditional overall measurement
and discrimination method are used to construct the integrated load
model of the high-voltage side, in which the method of this paper
aggregates the loads of each voltage level of the low-voltage side and
equates them step by step to the nodes of the 110 kV buses, and the
overall measurement and discrimination method is based on the
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measurement information of the 110 kV nodes, and the optimization
algorithm is used for the overall optimization of the load parameters
under the nodes. Some of the parameters of the high-voltage side
equivalent aggregated load model obtained by the method of this
paper and the overall measurement and discrimination method
(control) are shown in the Tables 5-7.

From the above table, it can be seen that there is not much
difference in the parameters of the equivalent integrated load model
obtained by the two methods. However, the overall measurement
method cannot track and reflect the real-time changes in the system
state and load. If the load model 1 of the load model of the system is
cut off, the model parameters obtained by the overall measurement
method remain fixed, while the model parameters obtained by the
method of this paper will be changed accordingly, as shown in the
table below:

These tables reflect the proportion of the induction motor before
and after the load change. When the load composition changes, the
identification result of this paper’s method for the induction motor
is adjusted from 43.0% to 41.4%, while the identification result of the
control method remains unchanged at 41.0%. It can be seen that the
method of this paper can track the real load changes compared with
the overall measurement and identification method, and the error of
the identification results of the load proportion of the induction
motor is relatively small. When the battery is overcharged, the
electrode materials with different chemical properties will have
different effects. At the beginning of charging, most of the
electric energy is stored by a reversible reaction, and the heating
power is small. But in the later stage of charging, because of the
irreversible chemical reaction, the electric energy becomes heat
energy. Causing the battery temperature to rise rapidly, resulting
in a series of chemical reactions. The following reactions occur when
the battery is out of control: the battery cathode material loses
lithium and releases oxygen to oxidize the electrolyte, and the

battery negative electrode cannot be embedded with lithium due
to the decomposition of the diaphragm, which is deposited into
lithium metal. These processes release heat accumulation beyond
heat dissipation. Therefore, electric vehicles and the power grid are
in a state of balance in order to protect the charging safety of
electric vehicles.

Setting a short-time ground fault based on the load model
obtained by different modeling methods, the simulation response
curve of the relevant electrical quantities at the 110 kV node is shown
in Figure 4. From the response curves of node voltage and active
power, it can be seen that the simulation curves obtained from the
loadmodel established based on the method of this paper are closer to
the actual real response and can more accurately reflect the real-time
operation status and dynamic changes of the system load. The average
errors of nodal voltage and active power are 1.88% and 2.17%,
respectively, and the average errors of the simulation curves
obtained from the load model based on the overall measurement
and discrimination method are larger, 3.16% and 3.54%, respectively.
The random charging of electric vehicles on a large scale is bound to
cause the conventional load of the power grid to be “peak plus peak.”
If electric vehicle charging is introduced and an effective charging
control strategy is formulated to charge the electric vehicle at a
relatively low power grid load, this will play a positive role in
cutting the peak and filling the valley. To reduce the variance of
the load curve and reduce the peak load as the charging target of the
power grid side to manage the charging load of electric vehicles. A
safety assessment model is established to analyze the charge-discharge
process of electric vehicles and study the interaction characteristics of
power batteries, charge and discharge equipment, and power supply
equipment. At present, the mainstream charging modules on the
market usually use a Vienna rectifier circuit because of the advantages
of low cost, high power density, and a simple control strategy.

5 Conclusion

This paper proposes an online modeling method for a
comprehensive load model (including electric vehicles (EVs) and
battery storage) based on measurement information, based on the

TABLE 1 Parameters of the generalized SLM.

Parameter name Parameter symbols

Distributed Network Reactance XD

Inductive Motor Active Power Proportion PMP

Load Ratio KL

Stator Reactance Xs

Constant Reactance Load Proportion KZ

Direct Current Side Capacitor C

Photovoltaic Output Equivalent Reactance XPV

TABLE 2 Model parameters of the induction motor load.

Rs Xs Xm Rr Xr H

IM1 0.023 0.126 3.39 0.0136 0.126 1.07

IM2 0.032 0.096 2.69 0.032 0.096 0.50

IM3 0.083 0.095 2.10 0.046 0.095 0.47

IM4 0.018 0.117 3.60 0.009 0.117 1.40

TABLE 3 Parameters of static load and impedance.

Z% I% P% RD XD M%

load1 0.33 0.32 0.35 0.002 0.042 0.35

load2 0.20 0.50 0.30 0.001 0.04 0.20

load3 0.20 0.55 0.25 0.001 0.04 0.45

load4 0.10 0.85 0.05 0.003 0.04 0.60

TABLE 4 Parameters of static load and impedance.

Rs Xs Xm Rr Xr H

Article 0.034 0.152 3.166 0.020 0.113 1.05

Contrast 0.027 0.116 3.302 0.019 0.116 1.25
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analysis and identification of the dominant factors of the external
characteristics of the comprehensive load model, clustering the
bottom load according to the load curve, and constructing the
comprehensive load isoaggregation model by stepwise
isoaggregation from the low voltage level to the high voltage
level. The load model based on the proposed method can track
and reflect the real-time changes of the system load and can reflect
the real characteristics of the load more accurately than the
traditional overall measurement and classification methods. The
charging of electric vehicles affects the power quality of the power
network and produces about 6 k harmonics, which lead to the loss of
the power network, affect the life of the equipment, interfere with the
circuit, and then affect the normal operation of the equipment.
Therefore, only by avoiding these effects can the impact of electric
vehicles on the power grid be minimized. However, the proposed
method is only oriented toward the integrated load model composed
of static loads and induction motor loads and does not consider the
characteristics of new types of loads, such as distributed new energy.

This study elucidated the critical factors influencing the external
characteristics of integrated loadmodels, emphasizing the significance
of load composition ratios and parameter sensitivities. Through the
activation subspace approach and spectral analysis, we identified the

TABLE 5 Parameters of static load and impedance.

Rs Xs Xm Rr Xr H

Article 0.034 0.152 3.166 0.020 0.113 1.05

Contrast 0.027 0.116 3.302 0.019 0.116 1.25

TABLE 6 Model parameters after load changes.

Rs Xs Xm Rr Xr H

0.034 0.150 3.174 0.021 0.116 1.09

22.1 3 5 2 8 2

24.72 0.24 0.50 0.26 16.21 0.414

TABLE 7 Ratio of induction motors before and after load changes.

Rs (%) Xs before (%) Xm after (%)

Real load 43.6 41.9 43.6

Article 43.0 41.4 43.0

Contrast 41.0 41.0 41.0

FIGURE 4
Comparison of simulation curves of electrical variables.
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dominant factors shaping integrated load behavior, laying the
groundwork for more comprehensive modeling techniques.

With a large number of new types of loads connected to the
power system, the load characteristics are more complex and
variable. The electric vehicle is connected to the distribution side
of the power grid, which has the characteristics of random and
extensive access. The performance and charging mode of each
vehicle are different, and there will be different characteristics in
the management of the dispatching center. Considering the future,
electric vehicle ownership will be considerable. In order to access any
electric vehicle randomly on a large scale, a hierarchical architecture
is adopted to construct the integrated structure of intelligent
charging, charging, and power monitoring.

The grid voltage is divided into several grades in the stratified
area, and the power supply capacity is divided into several power
supply areas at different structural levels. The supply is carried out in
each area according to the different power loads. The high-
dimensional nonlinear characteristics of the model parameters
are more prominent, so how to consider this factor to construct
a more accurate integrated load model is the focus of the next
research work.

Looking ahead, future research directions encompass the
exploration of advanced modeling techniques, including deep
learning and data-driven parameter estimation, to further refine
the accuracy and adaptability of integrated load models.
Additionally, efforts should be directed towards integrating these
advanced models into practical power system applications,
facilitating enhanced load forecasting, grid optimization, and
resilience analysis in the face of evolving energy landscapes and
demand patterns.
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