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A transformer inter-turn fault identification method is proposed based on the
digital twin concept to tackle the challenges of high operational complexity and
low accuracy associated with traditional transformer fault identificationmethods.
Initially, the Bald Eagle Search algorithm is employed to optimize the critical
parameters of the Extreme Learning Machine (ELM), determining the optimal
input layer weight and hidden layer threshold of the Extreme Learning Machine.
Subsequently, leveraging the digital twin concept, a digital replica of the physical
transformer is established, enabling multi-physical field coupling simulation
encompassing electrical, thermal, and acoustic domains to elucidate the
variation patterns of various physical parameters across different operational
scenarios and fault scenarios. Furthermore, key physical characteristic
parameters such as sound pressure and winding hot spot temperature are
carefully selected to drive a fault identification model tailored to inter-turn
faults within the framework of the digital twin concept. Through a detailed
investigation using 630 kV A/10 kV transformers as a case study, the results
exhibit an impressive fault identification accuracy of 95.24% for the proposed
method. Comparative analysis reveals notable enhancements in fault
identification accuracy of 12.22%, 7.85%, and 3.73% for ELM, Support Vector
Machine and Tuna Swarm Optimization—ELM models, respectively. These
findings underscore the effectiveness and practicality of the transformer inter-
turn fault identification method based on the digital twin concept, offering
valuable insights for the real-time monitoring and diagnosis of inter-turn faults
in transformers.
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1 Introduction

Winding faults in oil-immersed transformers are a prevalent type of fault encountered
in power transformers (FAIZ and SOLEIMANI, 2017), with inter-turn faults accounting for
over 60% of all such faults (MORADZADEH et al., 2021). In the initial stages of inter-turn
faults in transformers, they are often characterized by partial discharge and local high
temperatures. However, if left unaddressed for an extended period, these faults can escalate
and lead to more severe issues like inter-turn short circuits and phase faults. This can
ultimately result in a reduced insulation life of transformers and even equipment damage
(Liu et al., 2023), leading to significant losses in transformers and power systems. Therefore,
accurately and promptly identifying faults in oil-immersed transformers during the early
stage of inter-turn faults is of considerable research significance.
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In modern times, the identification of inter-turn faults in oil-
immersed transformers primarily involves the analysis of key
parameters such as winding current, magnetic flux distribution,
and hot spot temperature (Etumi and Anayi, 2016; CUI et al.,
2020). While an inter-turn fault identification method utilizing
electric-thermal fusion analysis has been proposed, its accuracy in
detecting low-voltagemild faults is limited to 77% (Zhang et al., 2023).
This limitation arises from the fact that during minor inter-turn faults
in a transformer, the fault current within the coil is minimal, resulting
in subtle changes in the magnetic field, low sensitivity, and
insignificant temperature variations. Research has delved into the
distribution characteristics of vibration acceleration andmagnetic flux
density in inter-turn fault windings of single-phase transformers,
comparing findings with experimental data (Pan et al., 2020).
Moreover, the monitoring of frequency response function
distribution during inter-turn faults in transformers through pulse
short circuit tests has provided valuable insights (Lin et al., 2018). The
occurrence of inter-turn faults in transformers triggers abrupt changes
in current and magnetic fields, leading to elevated internal
temperatures and intensified mechanical vibrations (SOLEIMANI
et al., 2020). Through a comprehensive examination of the
interplay among multiple physical parameters and the judicious
selection of key parameters as identification signals, the accuracy
of inter-turn fault detection can be significantly enhanced. Reference
(Zhang et al., 2021) has pioneered the establishment of a digital twin
of a physical transformer using digital twin technology, enabling the
deduction of inter-turn faults and offering a novel avenue for studying
the identification of such faults in transformers.

With the advancement of digital twin technology, rapid and
efficient artificial intelligence concepts have been integrated into
traditional transformer fault identification methods. Conventional
approaches to transformer fault identification primarily involve
genetic algorithms, SVM, BP neural networks, among others.
References (WU et al., 2019; WANG and HAN, 2021; XU et al.,
2022) have introduced a fault identification method based on residual
BP neural network, demonstrating superior diagnostic accuracy
compared to traditional BP neural networks (ZHAO et al., 2020).
While this method performs well with small sample data, it is less
suitable for large data samples. Meanwhile, references (Kari et al., 2018;
LIJ et al., 2021) have proposed a fault identification method that
combines genetic algorithms and SVM, with research indicating that
the fusion algorithm yields more accurate identification results than
traditional methods. In another vein, references (YUAN et al., 2013;
MENGL et al., 2016) have utilized Extreme Learning Machine (ELM)
to identify and analyze inter-turn faults in the gas content of
transformer oil. Owing to its formidable computing power and
swift training speed, ELM enjoys broader application. However,
given the random generation of input layer weights and hidden
layer thresholds during its training process, it becomes imperative
to judiciously optimize its key parameters (Xin et al., 2016). Enter the
Bald Eagle Search Algorithm (BES) (ALSATTAR et al., 2020), a novel
metaheuristic algorithm renowned for its robust search capabilities in
optimizing key parameters and effectively addressing complex
parameter optimization problems.

This article introduces a multi-physical parameter identification
method for detecting inter-turn faults in transformers, leveraging the
BES-ELM framework. The approach involves using the Bald Eagle
Search Algorithm (BES) to optimize the key parameters of Extreme

LearningMachine (ELM), thereby attaining optimal input layer weights
and hidden layer thresholds for ELM. In line with the digital twin
concept, a digital twin model mirroring a physical transformer is
meticulously crafted. Through the creation of a multi-physical field
coupling encompassing electricity, heat, and sound, simulations are
conducted to deduce the physical parameters across various operational
and fault scenarios. Subsequently, a fault identification model driven by
inter-turn fault data is developed, selecting key parameters showcasing
multiple physical traits like sound pressure and winding hot spot
temperature. These parameters are harnessed to establish a robust
diagnostic model for transformer faults. In the experimental phase,
12 multi-physical feature parameters are utilized as input signals for the
transformer fault diagnosis model, while the inter-turn fault type serves
as the output signal for the identification model. Following rigorous
training and testing, the results demonstrate that the proposed research
methodology exhibits enhanced speed and accuracy in identifying inter-
turn faults within transformers.

2 BES-ELM principle

ELM is a classic single hidden layer feedforward neural network,
which consists of three layers: input layer, hidden layer, and output
layer. The schematic diagram of the network structure is shown
in Figure 1.

The operational process is as follows: Initially, the number of
neurons in the hidden layer is inputted. Subsequently, the connection
weights between the input layer and the hidden layer, along with the
threshold of the hidden layer neurons, are randomly set. Then, an
activation function is selected, and the output matrix of the hidden layer
neurons is calculated, followed by computing the output weights.

For D samples (xi,ti), ELM with L hidden layers can be
represented as (Eqs 1–3):

FIGURE 1
Schematic diagram of extreme learning machine.
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Ti � ∑L

i�1βif ωipxj+bi( ) j � 1, 2, . . . ,D (1)

Its matrix form is represented as:

Hpβ � T (2)

In the formula:

Η �
h1 x1( ) / hL x1( )

..

.
1 ..

.

h1 xD( ) / hL xD( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D×L

� (3)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1 ω1px1 + b1( ) / fL ωLpx1 + bL( )

..

.
1 ..

.

f1 ω1pxD + b1( ) / fL ωLpxD + bL( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D×L

In the formula: H is the output matrix for hidden layers,β is the
output weight matrix, T is the output matrix for the objective
function. F is the Activation function used for hidden layer
neurons, we use sigmoid (MATIAST et al., 2014), Obtain the
output weight matrix by inverting the generalized matrix.

It can be seen that the values of Wi and bi have a significant
impact on the accuracy and effectiveness of fault identification. As
they are randomly generated and have a lot of uncertainty, the BES
algorithm is introduced to optimize their key parameters and obtain
the best weights to construct a fault identification model.

BES algorithm is an innovative intelligent optimization
technique renowned for its robust global search capabilities and
rapid convergence speed. It emulates the hunting process of bald
eagles for segmented optimization, delineated into three distinct
stages: initially, the algorithm randomly selects the search space;
subsequently, it scours the space for prey; and finally, it swoops
down to capture the quarry (Long et al., 2022).

1) Randomly select the search space and update the best search
position according to the number of prey. The position update
formula is (Eq. 4)

Pi,new � Pbest + aRp Pmean − Pi( ) (4)

Where:Pi,new is the position of the ith vulture after updating; Pi is
the position of the ith vulture before updating; R is a random
number within (0, 1); A is the control parameter, and the range is
(1.5, 2); Pmean is the average distribution position; Pbest is the current
best search location.

2) The update formula (Eqs 5–8) for the spiral flight position of a
bald eagle in the search space is

θ i( ) � πδr (5)
γ i( ) � θ i( ) + rR (6)

x i( ) � γ i( ) sin θ i( )( )
max γ i( ) sin θ i( )( )∣∣∣∣ ∣∣∣∣ (7)

y i( ) � γ i( ) cos θ i( )( )
max γ i( ) cos θ i( )( )∣∣∣∣ ∣∣∣∣ (8)

Where: θ (i) is the polar angle equation of flight; γ(i) is the polar
diameter equation of flight. The optimal diving capture position
update formula at this time is (Eq. 9)

Pi,new � Pi + x i( )p Pi − Pmean( ) + y i( )p Pi − Pi+1( ) (9)

3) The equation of state for a bald eagle flying from its optimal
diving position to its prey is (Eqs 10–12)

x1 i( ) � θ i( ) sin θ i( )( )
max θ i( )| sin θ i( )( )| (10)

y1 i( ) � θ i( ) cos θ i( )( )
max θ i( ) cos θ i( )( )| | (11)

Pi,new � rPbest + x1 i( )p Pi − c1Pmean( ) + y1 i( )p Pi − c2Pbest( ) (12)

Where:c1 and c2 is the movement intensity of the vulture toward
the center, their value range is (1, 2).

The process for the BES-ELM fault diagnosis model is illustrated
in Figure 2. The specific steps for conducting a fault diagnosis are
as follows:

Step 1: Normalize the multi-physical characteristic parameters
of the oil-immersed transformer and establish them as model inputs.

Step 2: Set the fitness function by utilizing BES-ELM to predict
the accuracy of sample output as a fitness function, which is used to
compute the initial individual’s fitness value.

Step 3: Conduct the Bald Eagle Search Algorithm process,
updating the bald eagle position, spiral flight position, and diving
and predation position.

Step 4: Calculate the fitness of the offspring andmerge it with the
parent individual, leaving only individuals with better fitness.

Step 5: Iteratively repeat steps 3 and 4 until reaching the
maximum number of iterations.

FIGURE 2
Flow Chart of BES-ELM Fault identification Model.
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Step 6: Output the optimized input weight (Wi) and hidden
layer bias matrix (bi), and construct the BES-ELM fault
diagnosis model.

Step 7: Train the model for classification and prediction of inter-
turn fault diagnosis in oil-immersed transformers.

3 Identification method for inter-turn
faults in transformers based on
digital twin

The fundamental concept of the inter-turn fault identification
method for transformers, grounded in the digital twin paradigm, is
depicted in Figure 3. The research inquiry is segmented into four
modules as follows: 1) Development of a digital space model for
transformers. 2) Execution of multi-physics field coupling
simulations under normal operational circumstances. 3)
Derivation of multi-physics characteristic parameters in the
presence of inter-turn faults. 4) Implementation of data-driven
techniques using twin data for inter-turn fault identification in
transformers.

3.1 Construction of transformer digital mode

This article focuses on a three-phase oil-immersed transformer
with a 630 kVA capacity and high and low winding voltages of 10/
0.4 kV. The COMSOL finite element simulation software is utilized
to construct a digital model of the physical transformer. Figure 4A
illustrates the comprehensive architecture of the transformer,
comprising primarily an iron core, winding, oil tank, and heat
sink. To enhance the realism of the simulation results, the study
encompasses not only the winding and iron core within the
transformer, but also considers the oil, support bars, and clamps.

Figure 4B presents the essential internal structure of the transformer.
Owing to the substantial quantity of windings, accurately
segmenting the digital model grid poses a challenge, leading to
extensive computation times. To expedite calculations and conserve
memory, it is imperative to examine and process the windings in
blocks. Additionally, taking into account the physical properties of
transformer oil, parameters such as density, specific heat capacity,
dynamic viscosity, and thermal conductivity are established as
temperature-dependent functions.

3.2 Multi-physical coupling simulation
during normal operation of transformers

Examining 630 kV A/10 kV oil-immersed transformers as the
focal point of study, the inter-turn faults under diverse conditions
are inferred. Upon referencing pertinent historical data, it was
ascertained that the transformer’s load factor k predominantly
ranges between 0.7 and 1.2. To this end, six load segments were
established with an increment of 0.1. The environmental
temperature typically clusters within the range of −10°C–40°C. By
employing a 5°Cinterval, 11 temperature segments were defined.

FIGURE 3
Flowchart of Transformer inter-turn Fault Identification Based on
Digital Twin.

FIGURE 4
(A) Overall architecture diagram of transformer. (B) Key internal
structure diagram of transformer.
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Furthermore, fluctuations in ambient wind speed can impact the
convective heat transfer coefficient on the transformer’s surface. In
this regard, ambient wind speeds of 3 m/s and 12 m/s were selected.
Consequently, 18 distinct practical scenarios were formulated,
enabling an exploration of the electrical, mechanical, thermal,
and acoustic interactions in normal transformers across various
operational scenarios. This investigation sought to derive the multi-
physical characteristic parameters of transformers during routine
operation within their respective operational contexts.

3.3 Simulation and deduction of multiple
physical characteristics under inter-
turn faults

As seen in Figure 5, in light of this article’s three-phase
symmetrical structure model of the transformer, coupled
simulation analysis was performed on the inter-turn fault
configuration of the B-phase winding. This is also applicable to
inter-turn faults in windings A and C, although not discussed here.
Considering the actual circumstances surrounding inter-turn faults,
six fault locations and three fault grades were designated for fault
settings. The severity of the fault is defined as the percentage of
defective turns relative to the total number of windings. Through
randomly selecting the composition of working sections between
environmental temperature, wind speed, and load coefficient,
corresponding boundary conditions were established to simulate
the occurrence of inter-turn faults.

3.4 Inter-turn fault identification based on
BES-ELM and multi-physical feature
parameter fusion analysis

When a transformer encounters an inter-turn fault, its primary
characteristics manifest as partial discharge and localized high
temperature. The magnetostrictive effect of the iron core is
heightened under the influence of electromagnetic and temperature
fields. Concurrently, due to electrical and thermal stresses, the
vibration of the iron core and winding amplifies, culminating
in noise generation. Through an examination of the interplay of
multiple physical fields during inter-turn faults in transformers,

various physical characteristic parameters encompassing current,
temperature, and sound pressure were extracted. Specifically, the
pivotal characteristic parameters selected for identifying inter-turn
short circuit faults include:Environmental parameters, such as
ambient temperature and wind speed; Electrical parameters such
as encompassing the current flow on the high-voltage and low-
voltage sides of the B-phase winding, along with the current ratio
between the high-voltage and low-voltage sides); Temperature
parameters such as comprising the top oil temperature, bottom oil
temperature, and hot spot temperature of the high and low voltage
windings of phase B; Sound pressure metrics such as including the
maximum and minimum sound pressures on the surface of the
transformer oil tank, as well as the ratio of the maximum to
minimum sound pressure on the tank’s surface.

By employing the aforementioned key characteristic parameters
for transformer fault identification, a total of 550 sets of actual scene
characteristic parameters were obtained through simulation and
deduction of multiple physical traits during inter-turn faults. Out of
these, 440 sets of data were allocated for the training set of the fault
identification model, while 110 sets were designated for testing
purposes. These encompass six distinct degrees of corresponding
fault types. The BES-ELM fault identification model was utilized as
the fault classifier, with the input node set to 12 and the output node
set to six based on key feature parameters and fault types. To
mitigate the impact of numerical fluctuations in key multi-
physical characteristic parameters on the training process, a
normalization method was uniformly applied to process each
paired dataset. Through this standardization process, parameter
information with relatively minimal absolute numerical
fluctuations was obtained.

4 Example simulation analysis

4.1 Coupling simulation of transformer
rated operation.

This study focuses on a 630 kV A/10 kV three-phase oil-
immersed transformer as the subject of research, with its main
parameters detailed in Table 1. Initial conditions were established,
with an ambient temperature of 20°C, wind speed of 3 m/s, and a
load factor of K = 1.0. A comprehensive multi-physical field

FIGURE 5
Inter-turn Fault Circuit Diagram.

Frontiers in Energy Research frontiersin.org05

Aiqing et al. 10.3389/fenrg.2024.1376306

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1376306


coupling analysis of the electric, thermal, and acoustic fields was
conducted using finite element software. The coil was uniformly
configured with multiple turns, and a sine source power supply was
selected for excitation, operating at a frequency of 50 Hz with a
phase difference of 2/3. Initial temperature values for the internal
components and shell heat sinks of the transformer were set to align
with the ambient temperature. The iron core, composed of
magnetostrictive material, was defined as nonlinear isotropic. The
background sound pressure was set to Pa, with the sound
propagation boundary established as a perfectly matched layer
(Bing et al., 2021). The winding material was specified as copper
from the material library. Furthermore, the transformer oil was
characterized using a linear elastic model and described as a weakly
compressible fluid. The surface heat flux at the bottom of the
transformer oil tank was set to h = 4w/(m2·K), while the heat
flux on other surfaces of the transformer oil tank was designated as
h = 10w/(m2·K), and the heat flux of the heat sink was defined as h =
15w/(m2·K).

Taking the occurrence of a single inter-turn fault on the low-
voltage side of a three-phase transformer as an example for in-depth
analysis. When the insulation performance between turns of a
transformer is good, the resistance is high and the current is
almost zero. As the insulation performance decreases, the
resistance decreases, and the energy loss on the resistance will
significantly increase. When a short circuit occurs due to
insulation breakdown between turns, the resistance rapidly
decreases, and the equivalent parallel capacitance branch can be
ignored. Each winding can be equivalent to a series model of
resistance and inductance. According to the figure below, IA, IB,
and IC respectively represent the phase current on the high voltage
side of an oil immersed transformer during a inter-turn fault on the
low voltage side; Ia, Ib, and Ic represent the phase current during
low-voltage inter turn faults; Is represents inter turn fault short
circuit circulating current; Is represents the current flowing through
the inter turn fault coil; Ras represents the resistance of the faulty

coil; Rs represents the equivalent fault resistance of inter turn faults;
M represents the mutual inductance between each winding. Due to
the presence of inter turn faults, mutual inductance between the
same winding cannot be ignored.

Figure 6 presents the current variation curve in the three-phase
winding of the transformer during regular operation. Given the
symmetrical distribution structure of the three-phase winding, let’s
consider the B-phase winding for analysis. From the illustration, it is
evident that the maximum current on the high-voltage side of the
B-phase during normal operation reaches 36.803A, while the
maximum current on the low-voltage side of the B-phase is
902.17A. Notably, the rated current of this transformer stands at
36.37/909.33A, falling well within the permissible operating
error range.

AUtilizing the inherent FFT function (time-domain to
frequency-domain conversion) within the COMSOL software, the
analysis delves into the time-domain vibration acceleration serving
as the excitation source for the sound field. Adhering to the
established research protocols outlined in pertinent literature, the
investigation focuses on the sound pressure distribution map at
100 Hz. The simulation results unveil the sound pressure
distribution across the surface of the fuel tank, as depicted in
Figure 7. Noteworthy findings reveal a maximum sound pressure
of 31.6 Pa and a minimum sound pressure of −59.4 Pa on the fuel
tank’s surface.

After 3–4 h of continuous operation, if the temperature variation
remains below 1°C, it indicates that the model has achieved a steady
state. The simulation outcomes during rated operation are visually
represented in Figures 8, 9. Specifically, the temperature span of the
high-voltage winding ranges from 27°C to 42.2°C, while the low-
voltage winding registers temperatures between 36.9°C and 46.9°C.
Notably, with an increase in the winding height, there is a gradual
rise in the winding temperature, although a slight decrease is
observed at the top, aligning with pertinent research findings.

To ascertain the accuracy and rationality of the established
model, a comparative analysis was conducted between the
simulated values of the winding’s hot spot temperature and the
calculated values in accordance with GB/T 1094.7-2008 guideline
(China Standards Press, 2008). Moreover, the simulated surface
sound pressure of the fuel tank was compared with the experimental
verification method for load noise outlined in reference
(REIPLINGER, 1988). As illustrated in Table 2, the obtained
results reveal that the multi-physical characteristic parameters
derived from simulation and the numerical errors obtained from
analytical experiments both fall within 6%, signifying that the digital
twin model established in this paper can effectively and accurately
reflect the multi-physical characteristic parameters of real
transformers.

4.1 Coupling simulation of transformer
inter-turn fault

Using a 1% inter-turn fault scenario positioned at the apex of the
B-phase high-voltage winding as a case study, various physical
characteristic parameters under such fault conditions were
derived and thoroughly analyzed. As seen in Figure 10, notably,
it was observed that the occurrence of a 1% inter-turn fault within

TABLE 1 Main parameters of transformer.

Parameters and units Numerical value

Rated capacity/kVA 630

Rated voltage/kV 10/0.4

Rated current/A 36.37/909.33

Connection method Yyn0

Cooling method ONAN

voltage winding turns 1550/62

Frequency/Hz 50

Inner diameter of high-voltage winding/mm 120

Outer diameter of high-voltage winding/mm 150

Inner diameter of low-voltage winding/mm 85

Outer diameter of low-voltage winding/mm 115

High voltage winding height/mm 470

Low voltage winding height/mm 470
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the high-voltage winding of phase B in the transformer led to
minimal changes in the winding current before and after the AC
two-phase fault. However, in the event of a inter turn short circuit
fault, a reverse current surged within the faulty coil, reaching a peak
amplitude of 252.12A, representing an escalation of 6–7 times in
comparison to the coil current under normal operating conditions.

Figure 11 illustrates the surface sound pressure distribution
diagram of the transformer winding in the event of a 1% inter-
turn fault on the high-voltage side of phase B. The depicted

results indicate that when such fault occurs, the sound pressure
distribution across the transformer oil tank surface ranges
from −148 to 65.9 Pa. Upon comparison with values recorded
during non-fault conditions, it is evident that the maximum
sound pressure on the transformer oil tank’s surface increases
from 31.6 to 65.9 Pa, while the minimum sound pressure
decreases from −59.4 to −148 Pa.

Figures 12–14 depict the temperature simulation results
3 hours subsequent to the occurrence of the inter-turn fault.
These results reveal that the temperature of the coil located at the
inter-turn fault site is substantially higher than that of the
surrounding winding, with the maximum temperature of the
winding escalating from 42.2°C to 80.1°C - an increase of 37.9°C.
Similarly, the maximum temperature of the low-voltage winding

FIGURE 6
Diagram of current variation during rated operation of transformer.

FIGURE 7
Sound pressure distribution diagram during rated operation of
transformer.

FIGURE 8
Temperature diagram of high-voltage winding during rated
operation of transformer.
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increased from 46.9°C to 56.4°C, signifying an elevation of 9.5°C.
This temperature variation can be attributed to the loss of the
winding, which is directly proportional to the magnitude of the
current upon inter-turn fault occurrence. As such, the current

within the faulty coil amplifies by a factor of six to seven, leading
to an increase in loss. Furthermore, the heat transfer process in
the high-voltage winding also causes a rise in temperature for its
low-voltage counterpart. An analysis conducted on the surface
temperature of the oil tank post-transformer failure corroborates
these findings, with the maximum temperature on the
transformer oil tank’s surface surging from 36.3°C to 46°C - an
increase of 9.7°C.

4.2 Analysis of transformer inter-turn fault
identification results based on digital
twin concept

BThrough the meticulous recording and organization of
multiple physical characteristic parameters pertaining to
inter-turn faults extracted from the digital twin model, a fault
identification model is meticulously trained using Matlab. The
results of the identification tests conducted on its test set are then
thoroughly compared and analyzed. Upon scrutinizing the
iteration curves of SVM, ELM, TSO-ELM, and BES-ELM, it
becomes apparent that the fault identification model proposed in
this study, utilizing BES-ELM, exhibits a notably swifter
convergence rate. Remarkably, it attains the convergence state
by the 24th attempt, boasting the highest fitness value among the
various algorithms assessed, with merely two instances of
veering into local optima. Contrastingly, other algorithms
experience multiple occurrences of falling into local optima,
underscoring the efficacy of the identification method
predicated on BES-ELM and the fusion analysis of multiple

FIGURE 9
Temperature diagram of low-voltage winding during rated
operation of transformer.

TABLE 2 Comparison of multiple physical parameters.

H-hot spot temperature/°C L- hot spot temperature/°C Maximum surface sound/Pa

Simulation value 42.2 46.9 31.6

Calculated value 40 44.8 29.8

error 5.5% 4.7% 6.0%

FIGURE 10
Current diagram of transformer B phase high-voltage winding after fault.
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physical parameters for inter-turn fault identification in the
transformers under study.

CConducting a comprehensive comparative analysis and
research on the identification outcomes of transformer inter-

turn faults utilizing BES-ELM, ELM, SVM, and TSO-ELM
models, Figures 15, 16 unveil insightful findings. Employing
the SVM model for fault diagnosis resulted in 1 ①error,
5 ②errors, 1 ③error, 3 ④errors, 5 ⑤errors, and 1 ⑥error,
yielding a commendable comprehensive fault diagnosis accuracy
rate of 85.85%. Conversely, employing the ELM model for fault

FIGURE 11
Surface Sound Pressure of Oil Tank after Transformer inter-
turn fault.

FIGURE 12
Temperature diagram of high-voltage winding after transformer
inter-turn fault.

FIGURE 13
Temperature diagram of low-voltage winding after transformer
inter-turn fault.

FIGURE 14
Temperature diagram of oil tank after transformer inter-
turn fault.
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diagnosis led to 1 ①error, 3 ②errors, 1 ③error, 1 ④error, and
5 ⑤errors, culminating in a notably higher comprehensive fault
diagnosis accuracy rate of 87.74%. Through a meticulous
comparison and analysis of the identification results obtained
from ELM and SVM, it is deduced that within the framework of
the transformer inter-turn fault identification model established
under the digital twin paradigm in this study, ELM surpasses
SVM, showcasing superior identification performance.

Subsequently, the critical parameters of ELM undergo iterative
optimization utilizing the TSO and BES optimization algorithms.
Illustrated in Figures 17, 18, the application of the TSO-ELM model
for fault diagnosis yielded 1①error, 3②errors, 1④error, 1⑤error,
and 3 ⑥errors, resulting in an impressive comprehensive fault
diagnosis accuracy rate of 91.51%. Conversely, employing the
BES-ELM model for fault diagnosis led to 1 ①error, 1 ②error,
2 ④errors, and 1 ⑤error, showcasing a notably higher
comprehensive fault diagnosis accuracy rate of 94.34%. These
results underscore the efficacy of the optimization algorithms in
enhancing the fault diagnosis accuracy of the ELM model,
particularly highlighting the superior performance achieved
through the utilization of the BES optimization algorithm.

Conducting a detailed analysis of the identification outcomes
derived from the four algorithms, the fault identification accuracy of
the BES-ELMmodel attains an impressive 94.34%. In comparison to
the identification results obtained from the other three algorithms, a
substantial enhancement in diagnostic accuracy is observed, with
improvements of 8.49%, 6.61%, and 2.83% noted, respectively. This
notable progress underscores the marked advancements in
diagnostic precision and convergence achieved through the
implementation of the BES-ELM model and the fusion of
multiple physical feature parameters for inter-turn fault diagnosis
as proposed in this study. Consequently, this method emerges as
highly suitable for early fault detection and diagnosis in instances of
inter-turn faults occurring in transformers.

5 Conclusion

The methodology presented in this paper introduces a novel
approach to identifying transformer inter-turn faults, leveraging the
concept of a digital twin. Through the utilization of BES for optimizing
the pivotal parameters of ELM and the integration of digital twin
technology, a virtual counterpart of the actual transformer is created to
replicate its operational processes accurately. This simulation facilitates
the extraction of multiple physical characteristic parameters during
inter-turn fault occurrences, which are subsequently harnessed for
model training and identification purposes. As a result, the following
conclusions can be derived:

FIGURE 15
Svm diagnosis results.

FIGURE 16
ELM diagnosis results.

FIGURE 17
TSO-ELM diagnostic results.
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1) The fault identification approach, which employs the BES
algorithm to optimize the critical parameters of ELM,
demonstrates superior and expedited convergence capabilities.
Remarkably, the BES-ELM model achieves convergence by the
24th iteration and encounters local optima setbacks only twice,
contrasting with other algorithms that frequently face challenges
with local optima in fault diagnosis models.

2) Create a digital twin of a physical transformer utilizing digital
twin technology. Through a comparison of simulated hot spot
temperatures and sound pressures with analytically derived
values, it is evident that the discrepancies are consistently
below 6%. This outcome underscores the validity and precision
of the model developed in this study.

3) Upon scrutinizing the identification outcomes from the four
algorithms, it is evident that the accuracy of the BES-ELM fault
model identification stands at an impressive 95.24%. In contrast to
the identification results of the remaining three algorithms, there
has been a notable enhancement in diagnostic accuracy by 12.22%,
7.85%, and 3.73%, respectively. Furthermore, the computational
time is notably accelerated, thereby affirming the superiority of the
BES-ELM model for transformer inter-turn fault diagnosis,
showcasing enhanced diagnostic performance.
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