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The intricate internal structure of fuel rods results in a non-uniform mass
distribution, making it imperative to employ analytical methods for accurate
assessment. The study utilizes Euler beam theory to derive the transverse
vibration equation for beams with varying mass distribution. The approach
involves transforming the non-uniform mass beam into a multi-segment
beam with concentrated mass points. Modal function relationships between
adjacent uniform segments are established based on continuous conditions at
connection points. This transformation leads to the conversion of the variable
coefficient differential equation into a nonlinear matrix equation. The Newton-
Raphson method is then applied to calculate the characteristic equation and
mode shapes, essential for determining natural frequencies. To validate precision,
the results obtained are compared with those derived from the finite element
method. Furthermore, the developedmethod is employed to assess the impact of
gas plenum location and length on the natural frequency of fuel rods. The
proposed methodology serves as a rapid design tool, particularly beneficial
during the design phase of fuel rods with non-uniform mass distribution,
aiding in configuring structural aspects effectively.
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1 Introduction

Small modular reactor (SMR) has aroused extensive attention because of the low-cost
and high fitness (Hussein, 2020). Among various Gen IV reactors, the Lead-based Fast
Reactor (LFR) is known for its favorable neutron properties, superior heat transfer
capability (Bandini et al., 2011), excellent fuel breeding performance, and inherent
safety. These characteristics make LFR particularly promising for miniaturized
applications (Takahashi and Sekimoto, 2007; OECD Nuclear Energy Agency, 2014).
Recent years have seen the proposal of various Lead-based Fast Reactor (LFR) concepts
worldwide. These include the SVBR-100 (Grape et al., 2014) and BREST-OD-300 projects
(Zrodnikov et al., 2011) in Russia, the MYRRHA project (Orlov et al., 2005) in Belgium, the
ELFR and ALFRED projects (Hamid et al., 2001) in the European Union, and the CLEAR-I
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project in China (Roberto et al., 2014; Wang et al., 2015; Wu, 2016a;
Wu, 2016b; Wu et al., 2016).

The fuel rod is a crucial component in a nuclear reactor, primarily
serving to contain nuclear fuel, regulate neutron flux, induce nuclear
fission reactions, and generate heat energy. Within fuel rods, Fission
Gases (FG) are continuously generated during burn-up, escaping to
the fuel-to-cladding gap and eventually reaching the gas plenum. The
release of FG increases the internal pressure, potentially accelerating
the degradation of the mechanical properties of the cladding that
surrounds the fuel. The gas plenum serves as a crucial component in
the fuel rod design, intended to mitigate pressure changes and
minimize their impact. The mass of the gas plenum section is
significantly lighter than the other parts of the fuel rod, resulting
in an uneven axial distribution of mass in the fuel rod. The fuel rod is a
typical beam model with variable cross-sectional parameters.

Numerous scholars have extensively delved into theoretical and
numerical investigations concerning beams with arbitrary variable
cross-sectional parameters. Early researchers predominantly explored
diverse methodologies to address the natural frequencies of specific
configurations of such beams. Heidebrecht (Ramesh and Rao, 2013),
for instance, extended the vibration equation of variable cross-
sectional parameters beams into a Fourier series, thereby deriving
approximate natural frequencies and modes for simply supported
instances. Bailey (Bailey, 1978), by integrating the Hamiltonian
principle with numerical methods, resolved the frequency equation
and determined the natural frequencies of cantilevered variable cross-
sectional parameters beams. Gupta (Gupta, 1985) employed the finite
element method to obtain numerical solutions for the natural
frequencies and modes of circular beams with linearly varying
diameters. Olver (Olver, 1974), utilizing the WKB (Wentzel,
Kramers, Brillouin (Avdoshka and Mikhasev, 2001)) method,
addressed the natural frequencies and modes of free vibrations in
variable cross-sectional parameters Euler beams. Given that the WKB
method fundamentally relies on a small parameter, introducing a
parameter representing the reciprocal of the natural frequency, its
limitations become apparent when dealing with beams of low natural
frequencies, leading to inaccuracies in frequency solutions.
Consequently, the WKB method is best suited for variable cross-
sectional parameters Euler beams characterized by substantial
stiffness; however, for beams with low stiffness, significant errors
arise in the computations. Moreover, numerous studies have
scrutinized circular cone beams with linearly varying cross-
sectional radii, employing methodologies such as orthogonal
analysis (Spigler and Vianello, 2007), Bessel equations (Caruntu,
1996; Auciello and Nolè, 1998), infinite series (Rosa and Auciello,
1996), Frobenius power exponent method (Ö and Kaya, 2006), and
Differential Transform Method (DTM) (BanerjeeSuJackson, 2006).

Upon analyzing the current research landscape regarding the
calculation of vibration characteristics in beams with variable cross-
sectional parameters, it becomes evident that diverse methods are
employed. The utilization of these mathematical approaches for
calculating the vibration characteristics of such beams entails a
cumbersome and intricate solving process, making it less
conducive to engineering applications. Additionally, the
establishment and computation process of finite element models
require a considerable amount of time.

This paper investigates the calculation method for the transverse
vibration characteristics of Euler beams with non-uniform mass.

Based on Euler beam theory, non-uniform mass is equivalently
represented as a uniform mass beam with multiple concentrated
mass points. The transverse vibration equations for beams with
concentrated masses are derived, and the resulting equations are
validated through comparisons with results obtained using the finite
element software ANSYS in various instances. The accuracy of the
method is confirmed through these comparisons. Additionally, the
study explores the impact of mass distribution on the natural
frequencies of fuel rods.

2 General theoretical formulations for
non-uniform beam

Assuming the length of the beam is L, the mass per unit length is
ρ, and the bending stiffness is a constant EI. Consider the beam as a
Bernoulli-Euler beam. The Euler-Bernoulli beam theory satisfies
some fundamental assumptions, including a length-to-thickness
ratio greater than 10, neglecting shear deformation of the beam,
as well as ignoring the influence of the rotational inertia of the cross-
section about the neutral axis.

The bending equation of the beam can be used to describe the
behavior of lateral bending. For free vibration, neglecting external
loads, the bending equation is given by Eq. 1.

∂2y
∂x2

EI
∂2y x, t( )

∂x2
( ) + ρ

∂2y x, t( )
∂t2

� 0 (1)

Where y(x, t) represents the lateral displacement at point x of the
beam at time t.

The free vibration of the curved beam is a fourth-order partial
differential equation. To solve the differential equation, the
separation variable method can be employed resulting in Eq. 2:

y x, y( ) � Y x( )T t( ) (2)

In Eq. 2, T(t) is a sinusoidal function, which can be expressed as
given in Eq. 3.

T t( ) � sin ωt − φ( ) (3)

In Eq. 3, ω represents the natural frequency of the system. ω
signifies the natural circular frequency of lateral vibrations, and φ

represents the phase angle determined by the initial conditions of
the vibration.

Y(x) is the mode function of the transverse vibration of the
beam, which can be expressed in Eq. 4.

Y x( ) � A1 sinh λx + A2 cos λx + A3 sinh λx + A4 cosh λx (4)

In Eq. 5, λ is the eigenvalue, typically represented as a solution to
the modal equation and can be obtained through Eq. 5.

λ4 � ρ

EI
ω2 (5)

A1, A2, A3, and A4 are undetermined coefficients determined by the
boundary conditions at the left and right ends of the beam. For an
equal cross-section beam under specified boundary conditions. The
analytical solution of its mode functions can be obtained from Eq. 4,
and the characteristic equation for calculating its natural frequencies
can be derived from Eq. 4.
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The fuel rod contains internal fillers with non-uniform mass
distribution, making it impractical to calculate using the above-
mentioned methods. By simplifying the internal fillers into
concentrated mass points, the fuel rod is then modeled as a
beam with concentrated mass points.

2.1 Theory formula for beam with single
concentrated mass point

The beam is divided into two parts at a concentrated mass point,
as shown in Figure 1. The lengths of the two beam segments are
denoted as a and b. Both beams have consistent density ρ, bending
stiffness EI, and a concentrated mass M.

Assume that the two beams have different vibration mode
functions, denoted as Y1x) and Y2x), as shown in Eq. 6 and Eq. 7).

Y1 x( ) � C1 cosh λx + C2 sinh λx + C3 cos λx + C4 sinh λx (6)
Y2 x( ) � D1 cosh λx +D2 sinh λx +D3 cos λx +D3 sinh λx (7)

Each mode function involves four parameters to be determined.
The presence of concentrated mass points influences the boundary
conditions of the two equations. Taking a cantilever beam as an
example (as shown in Figure 2), the boundary conditions are
expressed as Eqs 8–15:

1) At the clamped support, both the deflection and the rotation of
the beam are zero. The boundary conditions for the fixed end
are written as Eq. 8 and Eq. 9:

Deflection: Y1 0( ) � 0 (8)
Rotation: Y1

′ 0( ) � 0 (9)

2) At the concentrated mass point, both beams exhibit the same
deflection, rotation, bending moment. The sum of the
generated shear forces is zero. The boundary conditions of
the concentrated mass point are written as Eqs 10–13:

Deflection: Y1 a( ) − Y2 0( ) � 0 (10)
Rotation: Y1

′ a( ) − Y2
′ 0( ) � 0 (11)

Bendingmoment: Y1
″ a( ) − Y2

″ 0( ) � 0 (12)
Shear force: EI Y1

‴ a( ) − Y2
‴ 0( )[ ] −MY1

″ a( ) � 0 (13)

3) At the free end, both the bending moment and shear force of
the beam are zero. The boundary conditions of the free end are
written as Eq. 14, Eq. 15:

Bendingmoment: Y2
″ b( ) � 0 (14)

Shear force: Y2
‴ b( ) � 0 (15)

Bring the boundary conditions into Eq. 6 and Eq. 7 to get Eq. 16,
and the final coefficient matrix is given as shown in Eq. 17.

C1 + C3 � 0
C2 + C4 � 0
C1 cosh λa − cos λa( ) + C2 sinh λa − sin λa( ) −D1 −D3 � 0
C1λ sinh λa + sin λa( ) + C2λ cosh λa − cos λa( ) −D2 −D4 � 0
C1λ

2 cosh λa + cos λa( ) + C2λ
2 sinh λa + sin λa( ) −D1 +D3 � 0

C1 EIλ3 sinh λa − sin λa( ) −Mλ2 cosh λa + cos λa( )[ ]+
C1 EIλ3 cosh λa + cos λa( ) −Mλ2 sinh λa + sin λa( )[ ] −D2 +D4 � 0
D1 cosh λb +D2 sinh λb −D3 cos λb −D4 sin λb � 0
D1 sin hλb +D2 cosh λb +D3 sin λb −D4 cos λb � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

A �

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 cosh λb sinh λb − cos λb − sin λb
0 0 0 0 sinh λb cosh λb sin λb − cos λb

cosh λa sinh λa cos λa sin λa −1 0 −1 0
λ sinh λa λ cos λa −λ sin λa λ cos λa 0 −1 0 −1
λ2 cosh λa λ2 cos λa −λ2 cos λa −λ2 cos λa −1 0 1 0
EIλ3 sinh λa
−Mλ2 cosh λa

EIλ3 cosh λa
−Mλ2 sinh λa

EIλ3 sin λx
+Mλ2 cosh λx

EIλ3 cos λa
+Mλ2 sin λa

0 −EIλ2 0 EIλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(17)

The coefficient matrix Eq. (17) in row-column form must be
zero, resulting in the characteristic equation of a simply supported
beam with non-uniform mass.

det A( ) � 0 (18)

Organize the determinant and get Eq. 19

FIGURE 1
Single concentrated mass point model.

FIGURE 2
Cantilever beam model with a single concentrated mass point.
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− M

4EI
� λ 1 + cosh λl cos λl( )

sinh λa + sin λa( )[ sinh λl − cosh λl( ) cos λb + sin λb( )
+ sin λl − cos λl( ) cosh λb + sinh λb( )]

(19)
The same method can be used to derive the eigenvalue matrix

equations for simply supported beams and clamped supported
beams with a concentrated mass point.

In the simply supported beam model depicted in Figure 3, the
boundary conditions at the clamped end and the positions of the
concentrated mass point are consistent with those of the cantilever
beam. The distinction lies in the boundary conditions at the simply
supported end, where deflection and bending moment are both zero,
as illustrated in Eq. 20 and 21.

Deflection: Y2 b( ) � 0 (20)
Bendingmoment: Y2

″ b( ) � 0 (21)
By introducing the boundary conditions into Eq. 6 and 7 is

obtained, and the final coefficient matrix is given as shown in Eq. 22.

A �

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 cosh λb sinh λb cos λb sin λb
0 0 0 0 λ2 cosh λb sinh λb −λ2 cos λb −λ2 sin λb

cosh λa sinh λa cos λa sin λa −1 0 −1 0
λ sinh λa λ cos λa −λ sin λa λ cos λa 0 −1 0 −1
λ2 cosh λa λ2 cos λa −λ2 cos λa −λ2 cos λa −1 0 1 0
EIλ3 sinh λa
−Mλ2 cosh λa

EIλ3 cosh λa
−Mλ2 sinh λa

EIλ3 sin λx
+Mλ2 cosh λx

EIλ3 cos λa
+Mλ2 sin λa

0 −EIλ2 0 EIλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

The coefficient matrix Eq. 22 in row-column form must be zero,
resulting in the characteristic equation of a simply supported beam
with non-uniform mass.

det A( ) � 0 (23)
In the clamped supported beam model depicted in Figure 4, the

boundary conditions at the clamped end and the positions of the
concentrated mass point are consistent with those of the cantilever
beam. The distinction lies in the boundary conditions at the another

clamped supported end. These conditions entail the deflection of
0 and the Rotation of 0, as illustrated in Eq. 24 and 25.

Deflection: Y2 b( ) � 0 (24)
Bendingmoment: Y2

′ b( ) � 0 (25)

By introducing the boundary conditions into Eq. 6 and 7 is
obtained, and the final coefficient matrix is given as shown in Eq. 26.

A �

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 cosh λb sinh λb cos λb sin λb
0 0 0 0 λ sinh λb λ cosh λb −λ sin λb λ cos λb

cosh λa sinh λa cos λa sin λa −1 0 −1 0
λ sinh λa λ cos λa −λ sin λa λ cos λa 0 −1 0 −1
λ2 cosh λa λ2 cos λa −λ2 cos λa −λ2 cos λa −1 0 1 0
EIλ3 sinh λa
−Mλ2 cosh λa

EIλ3 cosh λa
−Mλ2 sinh λa

EIλ3 sin λx
+Mλ2 cosh λx

EIλ3 cos λa
+Mλ2 sin λa

0 −EIλ2 0 EIλ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

The coefficient matrix Eq. 26 in row-column form must be zero,
resulting in the characteristic equation of a simply supported beam
with non-uniform mass.

det A( ) � 0 (27)

The characteristic Eq. 19 and (23 and Eq. 27 is a nonlinear
function of the λ. The Newton-Raphson iteration method can be
employed to solve for λ.

Firstly, while ensuring that the total mass and geometric
dimensions remain unchanged, the non-uniform mass Bernoulli-
Euler beam is equivalently transformed into a uniform mass
Bernoulli-Euler beam. Subsequently, the natural frequency of the
uniform mass Bernoulli-Euler beam is calculated to obtain an
analytical solution. This analytical solution serves as the initial
approximate solution (x0) to initiate the iterative process.

Updating the initial guess using the Newton-Raphson iteration
formula Eq. 28.

xn � xn−1 − f xn−1( )
f′ xn−1( ) (28)

Check whether the new guessed value satisfies the
predetermined convergence criteria. If satisfied, consider the root
of the equation found; if not, go back to the previous step and repeat
the iteration process.

2.2 Theoretical formulations for beam with
multiple centralized mass points

The internal filling of the fuel element is complex, and the fuel
rod is divided into multiple sections. As shown in Figure 5, the beam
model is segmented into N sections with concentrated mass points

FIGURE 3
Simply supported beam model with a single concentrated mass point.

FIGURE 4
Clamped supported beam model with a single concentrated
mass point.
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as endpoints. It is simplified into a Bernoulli-Euler beam with N-1
concentrated mass points, each with a concentrated mass value
of ma.

As shown in Eq. (29), it is simplified to the free vibration
equation of a Bernoulli-Euler beam with N-1 concentrated
masses ma.

∂2

∂x2
EI

∂2y x, t( )
∂x2

[ ] +∑N−1
a�1 maδ x − xm

a( ) ∂2y x, t( )
∂t2

+ ρA
∂2y x, t( )

∂t2

� 0

(29)
where, EI is the bending stiffness of the beam section; A is the beam
section area; ρ is density; δ is the Dirac function; xm

a is the horizontal
coordinate of a concentrated mass point;

The free vibration of the curved beam is a fourth-order partial
differential equation. To solve the differential equation, the
separation variable method can be employed resulting in Eq. (30):

y x, t( ) � �φ x( )�T t( ) (30)
In the equation, �φ(x) represents the shape of the vibration; �T(t)

represents the amplitude that varies with time. By substituting Eqs
16 into Eq. 15 and rearranging, Eq. 31 is obtained:

EI
∂4 �φ x( )
∂x4

+ �λi ∑N−1
a�1 maδ x − xm

a( )�φ x( ) + �λρA�φ x( ) � 0 (31)

In this equation, �λ � ω2 represents the eigenvalues of the
Bernoulli-Euler beam with concentrated mass. Obtaining an
analytical solution for the variable coefficient differential equation
is relatively challenging.

Consider the Euler beam with concentrated mass as a new
system obtained by adding concentrated mass to a uniform mass
Euler beam through system modification. The primary mode
functions and eigenvalues of this new system can be obtained by
perturbation calculations using the mode functions of a uniform
mass beam.

�φi x( ) � φi x( ) + Δφi x( ) (32)
�λi � λi + Δλi (33)

�φi(x) and �λi represent the i order mode function and eigenvalue
of the new system beam with concentrated mass; φi(x) and λi
represent the i order mode function and eigenvalue of the uniform
mass beam; Δλi is the ith order eigenvalue correction of the new
system with a concentrated mass point relative to the uniform mass
beam. Δφi(x) is the correction of the primary mode function of the
new system with a concentrated mass point relative to the uniform
mass beam, and it is a linear combination of the other retained
primary mode functions of the uniformmass beams, excluding φi(x).

Δφi x( ) � ∑n

j�1,j ≠ i
φj x( )qj (34)

In the equation, qj are coefficients of the modal linear
combination. As long as δλi and is qj obtained, there are η

unknowns, and by using Eqs 32 and 33, the i order main
modal function �φi(x) and eigenvalue �λi of the beam with
concentrated masses can be obtained. According to the theory
of dynamics, the equivalent beam in Eq. (34) has an infinite
number of main modes. However, in practical calculations,

FIGURE 5
Skech of Bernoulli–Euler cantilever beam.

FIGURE 6
Skech of Bernoulli–Euler cantilever beam.

TABLE 1 Main parameters of cantilever beam.

L (m) I (m4) S (m2) ρ (kg/m3) E (Pa) m (kg)

2 1/12 × 10−8 0.0001 7,850 2 × 1,011 1.57

TABLE 2 The value of the first five characteristic roots λ

n 1 2 3 4 5

Λn 0.69 1.72 4.09 4.94 7.37

TABLE 3 First 5 natural frequency of beam with single concentrated mass.

n 1 2 3 4

Numerical calculation (Hz) 1.08 6.74 38.18 55.780

Theoretical calculation (Hz) 1.10 6.86 38.79 56.59

Error (%) 1.9 1.7 1.5 1.4
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taking a finite number of low-order modes for approximation in
perturbation solution can achieve results with sufficient accuracy.

Substituting Eqs 32 and 33 into Eq. 29, and simplifying using Eq.
31, yields the expression for Eq. 35:

EI
∂4Δφ x( )

∂x4
− λiρAΔφi x( ) + ΔλiρAφi x( ) + ΔλiρAΔφi x( )[ ]

−∑N−1
a�1 maδ x − xm

a( ) × λiφi x( ) + λiΔφi x( ) + Δλiφi x( ) + ΔλiΔφi x( )[ ]
� 0

(35)

Substitute Eq. 34 into Eq. 35, thenmultiply both sides byφk(x) (k =
1,2, . . . , η), integrate along the length L of the beam, and simplify using
the modal orthogonality of the equivalent beam, resulting in Eq. (36):

Δλi mkδki + Δmki( ) + Δλi∑n

j�1,j ≠ i
mkδkj + Δmkj( )qj

+∑n

j�1,j ≠ i
λi − λj( )mkδkj + λiΔmkj[ ]qj

� −λiΔmki (36)

Where

mk � ∫L

0
ρAφ2

k x( )dx (37)

δmk � ∫L

0
∑N−1

a�1 maδ x − xm
a( )φk x( )φi x( )dx � 0 (38)

Eq. 37 and Eq. 38 can be directly obtained using numerical
integration. Letting k = 1, 2, . . . , η in Eq. 36 yields η nonlinear
algebraic equations involving unknowns Δλi and qj. After
organization and simplification, these equations can be expressed
in matrix form as Eq. (39):

A + λiB + λiC + qi[ ]q � p (39)

Where

A �

m1 λi − λ1( ) / / 0

..

.
m1 λi − λ2( ) / ..

.

..

. ..
.

1 ..
.

0 / / mη λi − λη( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η×η

(40)

B �
Δm11 Δm12 / Δm1η

Δm21 Δm22 / Δm2η

..

. ..
. ..

. ..
.

Δmη1 Δmη2 / Δmηη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η×η

(41)

C �

δm11 +m1 δm12 / 0 / δm1η

δm21 δm22 +m2 / 0 / δm2η

..

. ..
. ..

. ..
. ..

. ..
.

δmi1 δm11 / 0 / δmiη

..

. ..
. ..

. ..
. ..

. ..
.

δmη1 δmη2 / 0 / δmηη +mη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η×η

(42a)

TABLE 4 Natural frequency of single-mass cantilever beam with different mass position.

Mass Position (m) Method 1 2 3 4

Concentrated mass of 1.57 kg a = 1 FEA (Hz) 1.08 6.74 38.18 55.78

analytical solution (Hz) 1.10 6.86 38.79 56.59

b = 1 error % 1.9 1.7 1.5 1.4

a = 0.5 FEA (Hz) 2.06 6.62 20.42 55.47

analytical solution (Hz) 2.09 6.70 20.73 56.36

b = 1.5 error % 1.5 1.2 1.5 1.5

a = 1.5 FEA (Hz) 0.64 13.36 28.41 63.02

analytical solution (Hz) 0.65 13.58 28.89 64.16

b = 0.5 error % 1.7 1.6 1.6 1.7

Concentrated mass of 15.7 kg a = 1 FEA (Hz) 0.382 6.179 38.187 55.080

b = 1 Theoretical calculation (Hz) 0.389 6.313 39.171 56.590

error % 2.5 2.1 02.5 2.6

a = 0.5 FEA (Hz) 1.01 3.60 21.68 61.41

b = 1.5 analytical solution (Hz) 1.04 3.68 22.28 62.94

error % 2.2 2.3 2.7 2.4

a = 1.5 FEA (Hz) 0.210 13.333 27.883 62.693

b = 0.5 analytical solution (Hz) 0.215 13.693 28.618 64.550

error % 2.6 2.6 2.5 2.8
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p �
−λiδm1i

−λiδm2i

..

.

−λiδmηi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
η×1

(43a)

q � q1 q2 / qη[ ]1×η (44a)

Where the i of q is qi � Δλi/λi.This transforms the variable
coefficient differential Eq. (29) into a nonlinear matrix Eq. 39. λi
represents the eigenvalues of the free vibration of a uniform mass
beam. The study of the free vibration characteristics of uniformmass
beams under different boundary conditions is well-established, with
standard analytical solutions available.

The nonlinear matrix Eq. (39) can be solved using the Newton-
Raphson method or intelligent algorithms. The Newton-Raphson
method is highly dependent on the choice of initial values. Providing
reasonable initial values can not only reduce the number of
iterations but also achieve more accurate convergence results.
Given the meaning of the various combination coefficients within
the vector q, initial values for q are specified.

q � 0 (42b)
The termination criteria for iteration can be adopted as follows:

q ε( )
i − q ε−1( )

i

∣∣∣∣ ∣∣∣∣/ q ε( )∣∣∣∣ ∣∣∣∣≤ ξ (43b)

In Eq. 43b: the superscript ε denotes the number of equation
iterations; ξ is the convergence error, ξ � 1 × 10−8. After obtaining the
unknown vector q, substitute it into Eq. 32 and 33 to obtain the i natural
frequency and mode shape of the beam with concentrated masses.

3 Benchmark verification of the
proposed analytical method

3.1 Single concentrated mass point

By comparing with the natural frequency of the non-
uniform mass fuel rod obtained through finite element
analysis (FEA) in ANSYS, the correctness of the rapid
method is verified.

The finite element model is modeled using beam3 elements. The
Beam3 element is a uniaxial element capable of withstanding
tension, compression, and bending. Each node of this element
has three degrees of freedom: linear displacements along the x
and y directions, as well as angular displacement about the Z-axis.

As shown in Figure 6, the finite element model is divided into
17 elements, featuring a concentrated mass point with a mass of M.
The lengths of the beams on either side of the concentrated mass are
a and b. The key parameters governing the behavior of the system
are detailed in Table 1, providing essential insights into the
structural dynamics.

There is a concentrated mass in the middle of the beam (x = 1)
with a concentrated mass of 1.57 kg. Under this condition, the
relevant parameters in Eq. (19) can be expressed as a = 1, b = 1, M =
1.57kg, EI = 1/6 × 103, and solved Eq. 19 to obtain λn. The
calculation results were shown in Table 2.

The natural frequency is calculated by Eq.44b and 45.

ωn � λ2n

����
EI

ρSl4

√
(44b)

fn � λ2n
2π

����
EI

ρSl4

√
(45)

The first four natural frequencies were determined using Eq. 44b
and 44and the results are presented in Table 3. The theoretical
calculations closely align with the simulation results, confirming the
accuracy of the formula.

To evaluate the sensitivity of the formula to variations in the
weight and position of the concentrated mass point, an additional
analysis was performed. This involved altering both the location and
weight of the concentrated mass point, and the corresponding
results are provided in Table 4.

Eq. 19 is applicable to a cantilever Bernoulli–Euler beam with a
single concentrated mass of varying weight. Across different
parameter settings, the deviation between the theoretical formula
and simulation results is consistently below 3%.

3.2 Multiple concentrated mass points

The parameters of the beam model remain consistent with
Section 3.1. Three concentrated mass points are introduced onto
the beam, dividing the beam model into four segments. Each
concentrated mass has a mass of M, and each segment has a
length of 0.25, as shown in Figure 7.

Table 5 presents the first four natural frequency values of the
cantilever beam with concentrated mass points calculated using
the finite element method and the proposed method. The study
investigates the influence of the concentrated mass values on the
computational accuracy. From Table 5, it can be observed that
the number of concentrated mass points has a limited impact on
the calculation error. However, as the weight of the concentrated
mass increases, the calculation error also rises. Under various
parameter settings, the deviation between the results obtained
using Eq. 29 and the ANSYS simulation results is
consistently below 3%.

To validate the impact of fixation methods on computational
accuracy, three different fixation methods are considered (as shown
in Figure 8): simply supported beam (CS), cantilever beam (CA) and
clamped-supported beam (CC). The mass of concentrated mass
point is 1.57/4 kg, and the length is L/4. The parameters of the beam
model remain consistent with Section 3.1.

FIGURE 7
The Bernoulli-Euler beam model with three Concentrated mass.
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Table 6 lists the natural frequencies of non-uniform mass
fuel rods under different boundary conditions. After
segmenting the fuel rod based on internal filling, the
analytical solutions obtained are generally similar to the

results obtained through finite element calculations, with
errors less than 3%. Among them, the fixed-supported beam
has the smallest calculation error, while the cantilever beam has
the largest. The stronger the constraint, the smaller the error in

TABLE 5 First 4 natural frequencies of the beam with different concentrated mass points.

Concentrated mass (kg) Methods 1st 2nd 3rd 4th

M1 = M2 = M3 = M4 = 1.57/4 FEA (Hz) 1.92 5.88 15.97 28.30

analytical solution (Hz) 1.94 5.97 16.27 28.72

error % 1.03 1.51 1.84 1.46

M1 = M2 = M3 = M4 = 15.7/4 FEA (Hz) 0.31 2.07 5.59 23.94

analytical solution (Hz) 0.318 2.12 5.74 24.64

error % 2.58 2.415 2.683 2.924

FIGURE 8
The Bernoulli-Euler beam model under different boundary conditions.

TABLE 6 First 4 natural frequencies of the beam with concentrated mass points under different constraints.

Fixation method Methods 1st 2nd 3rd 4th

CS FEA (Hz) 1.92 5.88 15.97 28.30

analytical solution (Hz) 1.95 5.98 16.26 28.85

error % 2.03 1.81 1.84 1.96

CA FEA (Hz) 3.04 7.08 16.18 29.76

analytical solution (Hz) 3.09 7.17 16.45 30.20

error % 1.53 1.31 1.69 1.46

CC FEA (Hz) 4.84 9.83 22.35 36.38

analytical solution (Hz) 4.89 9.92 22.55 37.09

error % 1.03 0.91 0.89 1.96
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the analytical solution. First 4natural frequencies of segmented
beams with different fixing methods.

Under various parameter settings, the deviation between the
results obtained using the fast method and ANSYS simulation
results consistently remains below 3%.

In summary, the model demonstrates accuracy in analyzing
both single concentrated mass points and multi-concentrated mass
points in the beam.

4 Validation of fast methods in modal
analysis of fuel rod

4.1 Structural characteristics of fuel rod

The fuel rod is one of the most important components in a
nuclear reactor core. Typically, a fuel rod comprises enriched
cylindrical ceramic pellets, gas plenums, and a reflector located at
both ends of the fuel rod. These components are sealed within a
stainless-steel cladding through the upper and lower end plugs.
The length of the internal structure is tailored based on the
specific service environment of the fuel rod in different reactors.
Figure 9 illustrates the typical structure of fuel rods in a small
lead-based reactor. The fuel rod has a length of 850 mm and a
diameter of 9.3 mm. The fuel element includes upper and down
end plugs, upper and down reflectors, the active zone, and a gas

plenum, all enclosed by cladding. The materials, lengths, and
masses of each section are detailed in Table 7.

As shown in Figure 10, finite element models for two different
constraint methods are established. The finite element model is
divided into 17 elements, and the linear density of each element is
set based on the distribution of the filling material inside
the fuel rod.

The natural frequency of the fuel rod is determined using the
finite rod software ANSYS. In the model analysis, filler is introduced
to the beam model in the form of attached mass. The first four
natural frequencies of the fuel rod are then calculated using ANSYS,
and the results are presented in Table 8.

FIGURE 9
Typeical conpostion of fuel rod.

TABLE 7 Type size and mass distribution of fuel rod.

Material L mm M kg

Upper end plug 316L 50 0.0207

Upper reflective 316L 50 0.0186

Active zoom UO2 500 mm 0.00523

Lower reflective 316L 50 0.0186

Gas plenum 316L 150 0

Lower end plug 316L 50 0.0207

cladding 316L 800 0.036

FIGURE 10
Finite element model of fuel rod.
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4.2 Calculation results and analysis

To simplify the internal structure, the contents of the fuel rod are
represented as concentrated mass points. This representation allows
the fuel rod to be treated as a Bernoulli-Euler cantilever beam, with
the concentrated mass points illustrated in Figure 11. The
distribution of these concentrated mass points is based on the
center-of-gravity of the internal fill.

Uniform mass distribution (Simplified Model 1): This
assumes an even distribution of the filler’s mass within the fuel
rod in the beam model. The natural frequency is then calculated
using the vibration motion of a uniform mass cantilever beam.

Three concentrated mass points (Simplified Model 2): The
internal filling of the fuel rod is organized into three concentrated
mass points. The upper-end plug and the gas plenum are considered
one concentrated mass point, the active zoom and the reflection are
another concentrated mass point, and the lower end plug and the
lower reflection form the third concentrated mass point. These mass
points are distributed based on the center of gravity.

Five concentrated mass points (Simplified Model 3): Organize
the internal filling of the fuel rod into 5 concentrated mass points,
considering the upper plug, upper reflective, active zoom, lower end
plug, and lower reflective as individual concentrated mass points.
These mass points are distributed based on the center of gravity.

The natural frequencies of the three simplifiedmodels are presented
in Table 9. In comparison with the simplified method using a uniform
mass model (Simplified Model 1), the natural frequencies calculated
using the new method (Simplified Model 2 and Simplified Model 3)
exhibit increased accuracy. As depicted in Figure 12, the number of
mass points influences the calculation accuracy with the new method.
Setting a greater number of concentrated mass points results in
more accurate calculations. For a model with five concentrated

mass points, the error is less than 3% when compared with the
calculation results obtained using ANSYS.

Moreover, this method demonstrates a faster calculation speed
than ANSYS. By utilizing five concentrated mass points, the
calculations equivalent to 17 nodes in ANSYS can be efficiently
performed. In addition, when there are changes in the structure of
the fuel rod, this method eliminates the need for remodeling;
instead, it only requires the modification of relevant parameters
to complete the modal analysis.

5 The impact of fuel rod structural on
natural frequencies

The traditional fixing method for lead-based reactor fuel rods
often adopts a configuration where one end is clampedwhile the other
end is simply supported. To minimize the reactor core volume, the
fuel rods of small LFR are short and arranged densely. Consequently,
the mounting space is small. For ease of installation in a small vessel,
the fuel rod is designed with a cantilevered structure, fixed only at the
upper end plug rather than employing two-end fixation. In contrast to
the traditional fixingmethod, the natural frequency of the cantilevered
structural fuel rod exhibits higher sensitivity to mass distribution.

Lead-based reactor fuel rods have high fuel consumption,
requiring longer gas plenums to accommodate fission gas
pressure. The gas plenum can result in non-uniform axial
distribution of fuel rod mass. The length of the gas plenum is a
crucial parameter in the design of fuel rods.

Four fuel rods with different structures are designed (as shown in
Figure 13). Figure 13A is a traditional fuel element fixingmethod with
one end clamped and one end simply supported, and the gas chamber
is close to the clamped end. Figure 13B is a fixed method for fuel
elements with one end clamped and one end simply supported, with
the gas chamber located near the simply supported end. Figure 13C is
a cantilever fuel rod with one end clamped and one end free, and the
gas chamber is close to the clamped end. Figure 13D is a cantilever fuel
rod with one end clamped and one end free, and the gas chamber is
close to the free end.

TABLE 8 First fourth natural frequency of non-uniform fuel rod using FEA
method.

n 1 2 3 4

Numerical calculation Hz 5.5653 35.514 106.89 223.91

FIGURE 11
Concentrated mass model for analytical method.
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TABLE 9 First fourth natural frequency of fuel rod by FEA method and analytical method.

n 1 2 3 4

Cantilever Beam FEA (Hz) 5.56 35.51 106.89 223.91

Simplified model 1 (Hz) 6.28 35.38 98.14 193.54

error % 5.5 5.2 6.2 5.7

Simplified model 2 (Hz) 6.14 36.14 98.47 197.57

error % 3.2 3.2 3.1 3.8

Simplified model 3 (Hz) 6.08 36.53 102.17 199.88

error % 2.2 2.2 2.4 2.7

Simply Supported Beam FEA (Hz) 15.31 56.99 130.34 240.15

Simplified model 1 (Hz) 16.02 59.55 136.59 250.71

error % 4.7 4.5 4.8 4.4

Simplified model 2 (Hz) 15.74 58.76 134.50 247.35

error % 2.9 3.1 3.2 3.0

Simplified model 3 (Hz) 15.57 57.92 132.59 244.55

error % 1.7 1.6 1.7 1.8

FIGURE 12
First 4 natural frequency using different calculation model.
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5.1 Effect of the gas plenum position on
natural frequency

In general, the design lifespan for a fuel rod is typically set at
30 years. The fuel rod has a length of 850 mm and an uneven mass
distribution. The weight of the gas pressurization chamber is
significantly lighter than the other sections. By analyzing the
position of the gas pressurization chamber and considering
different constraint methods, the study investigates the impact of
mass distribution on the natural frequencies of the fuel rod.

From Table 10 and Figure 14, In the case of fuel rods clamped at
one end and simply supported at the other, this is the most
commonly used fixing method in current reactors. Due to the
asymmetric fixing method, when the gas chamber is near the
simply supported end, there is a slight increase in the natural
frequency of the fuel rod, with an increase of approximately 7%.
This adjustment is made to reduce installation difficulty. In the case
of fuel rods clamped at one end and free at the other, forming a
cantilever beam structure, the sensitivity of the fuel rod to the
position of the gas chamber is significant. When the gas chamber
is close to the free end, there is a substantial increase in the natural
frequency of the fuel rod, with a maximum increase of up to 17%.

FIGURE 13
Different structural models of fuel rods.

TABLE 10 First fourth natural frequency for differential fuel rods.

n 1 2 3 4

CS Near the fixed end (Hz) 15.57 57.92 132.59 244.55

Away from fixed end (Hz) 16.19 61.97 139.25 253.10

CA Near the fixed end (Hz) 6.08 36.53 102.17 199.88

Away from fixed end (Hz) 6.75 35.02 101.06 213.99

FIGURE 14
Comparison of first frequencies for different structural fuel
rod models.

TABLE 11 Structural parameters of different fuel rods.

Parameter mm Case1 Case2 Case3 Case4

Fuel rod length 800 850 900 950

Gas Plenum length 100 150 200 250

ratio 12.5% 17.6% 22.2% 26.3%
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5.2 Effect of the gas plenum length on
natural frequency

As the lifespan of the fuel rod increases, it is necessary to increase the
length of the gas plenum, to reduce the internal pressure of the fuel rod.

The effect of length on the natural frequency of the fuel rod is
determined by varying the length of the gas plenum. The length of the
gas plenum is 100mm, 150mm, 200mm, and 250 mm.Four cases with
different length were established (In Table 11).

The first 4 natural frequencies for four scenarios were calculated
using the fast computation model. The results are presented in
Table 12 and Figure 15.

The research findings indicate a negative correlation between the
natural frequency of the fuel rod and the length of the gas chamber.
From Figure 15, in the case of clamped one end of the fuel rod and
simply supporting the other, as the gas chamber length increases, the
influence of the gas chamber position on the natural frequency
gradually becomes more pronounced, especially when the gas

TABLE 12 First fifth natural frequency of differential length fuel rods.

N 1 2 3 4

CS Near the fixed end (Hz) Case1 17.57 65.38 149.68 276.07

Case2 15.57 57.92 132.59 244.55

Case3 13.88 64.93 148.64 274.16

Case4 12.46 46.36 106.14 195.77

Away from fixed end (Hz) Case1 18.38 70.38 158.15 287.46

Case2 16.19 61.97 139.25 253.10

Case3 14.61 55.91 125.64 228.35

Case4 13.70 52.45 117.85 214.21

CA Near the fixed end (Hz) Case1 6.29 39.47 115.08 237.08

Case2 5.56 35.51 106.89 223.91

Case3 4.76 32.31 100.37 211.65

Case4 3.77 29.68 94.869 198.96

Away from fixed end (Hz) Case1 7.24 39.55 108.68 233.03

Case2 6.75 35.02 101.06 213.99

Case3 6.30 31.64 92.846 202.42

Case4 5.87 28.77 87.235 187.10

FIGURE 15
First natural frequency of different length fuel rods with fixed and free end.
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chamber is close to the clamped end. The rate at which the natural
frequency decreases with an increase in length becomes significantly
more pronounced. In the scenario where one end of the fuel rod is
clamped while the other end is free, this trend is even more noticeable.
When the gas chamber length is near the clamped end, the decrease in
the natural frequency of the fuel rod becomes more significant with an
increase in the gas chamber length.

Therefore, if there is a need to increase the length of the plenum,
it is recommended to place the plenum at the free end to enhance the
first-order n*/atural frequency.

Compared to traditional fixing methods, the cantilever beam
structure of the fuel rod exhibits a significantly lower natural
frequency and higher sensitivity to mass, posing certain safety
risks. However, the establishment of this fuel rod structure is
designed to facilitate in-depth research for optimization.

6 Conclusion

This paper explores the vibration issues of fuel rods with non-
uniform mass distribution. We introduce a simplified analytical
model to solve the free vibration problem of an Euler-Bernoulli
beam with non-uniform mass distribution. The results obtained
from this model align well with those computed using ANSYS.
Additionally, we analyze the impact of the position and length of the
gas plenum on the natural frequency of the fuel rod.

The non-uniform mass distribution in the beam is treated by
dividing it into several parts, with concentrated mass points serving
as demarcation points. Employing Euler beam theory, the transverse
vibration equation is derived for beams with varying mass distribution.
Through equivalentmeans, the non-uniformmass beam is transformed
into a multi-segment beam with concentrated mass points, establishing
modal function relationships between adjacent uniform segments based
on continuous conditions at connection points. The variable coefficient
differential equation is then transformed into a nonlinear
matrix equation.

The analytical method is validated against a benchmark beam
problem, and when compared to fine Finite Element Method
(FEM) calculations, it demonstrates high accuracy,
approximately 5%. The natural frequency of the fuel rod
calculated using the proposed method aligns well with fine FEM
results. By simplifying the internal filling of the fuel rod into
5 concentrated mass points, the model’s calculation differs from
the finite element model by only 2%, showcasing a significant
acceleration in computation speed.

The natural frequency of the fuel rod proves to be highly
sensitive to the position of the gas plenum. Specifically, the fuel
rod’s natural frequency is higher when the gas plenum is closer to the
free end compared to when it is closer to the fixed end, with a notable
17.6% difference in natural frequencies between the two
configurations. As the length of the gas plenum increases, the
structural stability of the fuel rod with the gas plenum close to
the free end becomes more apparent.

The method proposed in this paper has been preliminarily
applied to the design analysis of fuel rods and has proven to be
highly useful in evaluating the vibration characteristics of fuel rods
with non-uniform structural configurations.
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