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Climate change imposes tighter limits on carbon emissions, which require the
development of more green electricity. Deep sea wind power has the advantages
of high wind energy density, high power generation utilization hours, no land
occupation, and near to power load centers for easy on-site consumption, which
lead to a broad market prospect. In the foreseeable future, deep sea wind power
will usher in large-scale construction and development. The initial investment
and construction cost of deep sea wind power is high, subsidies are gradually
decreasing, and there is a lack of full life cycle economic analysis combined with
various market policies, resulting in a lack of guidance for its investment and
construction. In order to promote the development of deep sea wind power,
relevant cost recovery mechanismsmust be found. This paper proposes a system
cost allocation method based on the comparative difference method and load
similarity with consideration of the transformation and operation costs of thermal
power, demand-side response, and energy storage; a cost allocation method
based on carbon trading and green certificate trading income is proposed; and a
time sequence optimization operation simulation model is established to
maximize the deep sea wind power income. A case study is proposed for a
300 MW deep sea wind farm, the results show that the cost allocation method
and cost allocationmodel proposed in this paper have a significant effect onwind
power cost recovery, and the effectiveness of the proposed method and model
is verified.
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1 Introduction

In recent years, the development of global offshore wind power has shown the
characteristics of clustering, large scale, and deep sea (Huang et al., 2019). Deep sea
wind power has high wind energy density, stable wind speed, large development potential,
high power generation utilization hours, does not occupy land, and is close to the power
load center. The development of offshore wind power is of great significance to achieving
the goals of carbon peaking and carbon neutrality. However, the investment cost of far-
reaching wind power has remained high due to reasons such as the long distance and the
deep water level of construction. At the same time, due to the random fluctuation
characteristics of wind power, more flexible resources need to be built, which further
increases the cost of wind power and weakens its competitiveness in participating in the
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electricity market. In the current context of the decline of new energy
subsidies, how to reduce the cost of deep sea wind power and
improve its competitiveness in participating in the power market is
an urgent problem that needs to be solved in the field of deep sea
wind power development.

In order to more comprehensively assess the economics and
market competitiveness of wind power, some scholars have
introduced full life cycle costs to guide power costs and provide a
basis for calculating annual cash flow (HOANG et al., 2018;
Mytilinou and Kolios, 2019; Yu et al., 2020). Wanchun et al.
(2021) considered the actual operating costs such as operation
and maintenance of deep sea wind power on the basis of the
whole life cycle cost, but the economic analysis was not
combined with the benefits. Based on the current development
status and future trends, development strategies and suggestions
are proposed for offshore wind power resource evaluation,
supporting policies and subsidy mechanisms in (Zhu et al.,
2021). Yang et al. (2022) aimed at the fixed cost allocation
problem of offshore wind farm grid-connected systems under
multi-party investment, a fixed cost allocation method for
offshore wind farm integrated systems that considers the
correlation of wind power output proposed. Economic analysis of
deep sea wind power is provided in Xue et al. (2023). Existing
research mainly considers the life cycle costs and power generation
benefits of wind power projects, but the latest carbon trading and
green certificate trading markets have not yet been considered. It is
urgent to introduce the latest market mechanisms to conduct a
comprehensive quantitative analysis on the benefits and economics
of offshore wind power throughout its life cycle.

Carbon trading and green certificate trading are important means
and mechanisms to achieve low carbon and economy in the power
system under the goals of carbon peaking and carbon neutrality.
Currently, many researchers at home and abroad have conducted
some basic research on carbon trading and green certificate trading
mechanisms and published relevant research results. Zhao et al.
(2023) established a two-layer planning model of the power system
based on carbon emission trajectory constraints under the low-carbon
economy. This model takes into account the economic benefits and
demand-side response constraints brought about by the carbon
trading mechanism on the basis of the basic carbon emission
quota and optimizes investment, operation, and fuel consumption.
The planning model was solved, and its economics was verified with
the goal of minimizing comprehensive costs such as consumption, but
the synergy between carbon trading and the green certificate trading
market was not considered. Zhang Mingming et al. analyzed the
impact of ETSs on the development of renewable energy, and a spatial
Durbin model (SDM) is used to explore the spatial spillover effects of
China’s ETS on the development of renewable energy in Zhang et al.
(2022a). A real option model considering carbon price fluctuation is
proposed as a tool for renewable energy investment in Li et al. (2018).
Considering optimal investment timing and carbon price, the model
introduces a carbon price fluctuation as part of the optimization and
studies the flexibility of enterprises’ delayed investment under the
fluctuation of carbon price. Aiming at the bidding problem of wind
power, thermal power, and energy storage participating in the electric
energy–frequency regulation composite market, considering the
impact of different wind speeds and based on improved flexible
evaluation strategies and random games, wind-fire-storage

multilateral bidding model was established to improve the
competition in the wind power market in XIaolin et al. (2023). Bai
et al. (2019) and JI et al. (2020) introduced carbon trading into the
renewable energy planning model to solve the problem of high
investment and low returns of renewable energy in power source
planning. A low-carbon economic power planning model with the
largest comprehensive benefits from electricity sales, carbon trading,
green certificate trading, system planning investment, and operating
costs is established in Bai et al. (2019), and a power planning model
that takes into account carbon trading and energy efficiency power
plant costs with the goal of minimizing unit construction costs, virtual
energy efficiency power plant costs, unit operating costs, and carbon
trading costs is established in JI et al. (2020) considering demand-side
response as a virtual energy efficiency power plant. Zhang et al. (2021)
established an economic environment dispatchmodel including green
certificate trading and carbon trading considering wind power
curtailment penalties and gas pollutant emission costs, and the
impact of different wind power quotas is also studied for wind
power participating in the electricity market. Green certificate
trading and carbon trading are introduced into the optimal
dispatch of virtual power plants, while taking into account the
response characteristics of high-energy-consuming industrial loads.
A demand–response dispatch model with source–load coordination
and complementation was established, which verified that green
certificate trading and carbon trading can promote new energy
consumption (Yuan et al., 2022). Chen et al. (2023) established an
electricity–carbon coupling market model considering the dynamic
changing characteristics of carbon trading supply and demand to
study and analyze the differences in trading results under different
carbon market development levels and different new energy output
characteristics. An optimal day-ahead dispatch model for
photovoltaic storage power stations participating in the power
market, carbon trading market, and ancillary service market was
established in Wang et al. (2022) to scheduling issues of photovoltaic
and storage power stations in the electricity market. The research
results show that the carbon market can promote consumption of
photovoltaic. The abovementioned research is mainly carried out
from the perspective of the contribution of green certificate trading
and carbon trading to the consumption of renewable energy and does
not take into account the impact of the introduction of these two
marketmechanisms on allocation of the system operating costs of new
energy access. At the same time, in terms of the system operation costs
that different wind farms need to hold, there are few studies to
quantify the system costs that each wind farm needs to bear based on
the mismatch degree between wind power output and load.

In order to promote more stakeholders to actively participate in
deep sea wind power construction and operation, in view of the
current problems of unclear conceptual indicators, imperfect cost
calculation methods and imperfect cost-sharing mechanisms in the
economic evaluation of deep sea wind power, a system cost calculation
method based on the comparative difference method has been
proposed in this paper, which allocates deep sea wind power costs
through a cost fluctuation function based on load similarity. In terms
of the role of market mechanisms such as carbon trading and green
certificate trading in new energy consumption (HU, 2021; GUO et al.,
2022; Nan et al., 2023), the mechanisms ease the cost of deep sea wind
power. A time-series operation simulation model with the goal of
maximizing the revenue of deep sea wind power with consideration of
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electricity price revenue, carbon trading, and green certificate trading
income is established, and the full life cycle cost and investment
payback period of typical deep sea wind power were calculated. The
sensitivity of key influencing factors is analyzed. The research results
help systematically and comprehensively evaluate the development
and utilization costs of deep sea wind power, reveal the impact of new
power markets such as carbon trading and green certificate trading on
the economics of deep sea wind power, and provide an important
reference for investment and planning of deep sea wind power.

2 System cost model and allocation
method for deep sea wind power

Due to the strong volatility and randomness, deep sea wind
power may have an impact on the power supply adequacy, safety,
and stability of the power grid and places higher demands on system
flexibility. Traditional thermal power units need to be transformed,
and the flexible resources such as demand-side response and energy
storage are used to ensure the power balance of the system. The
corresponding thermal unit modification and upgrade costs,
production and operation costs, and flexible resource operation
costs all belong to the system costs of deep sea wind power access.

In order to quantitatively analyze the system transformation and
operation costs caused by the integration of deep sea wind power into
the grid, the comparative difference method (HU, 2021) is used to
construct a thermal power scenario, in which thermal power replaces
deep sea wind power to meet the load power demand, and the system
cost of the deep sea wind power in this scenario is calculated. The
system costs analyzed include the transformation and construction
costs of thermal power and operation and regulation costs of flexible
resources such as demand-side response and energy storage.

2.1 Thermal power flexibility transformation
and operating costs

The flexibility transformation of thermal power units mainly
involves low-load stable combustion, stable combustion burner
transformation, hot primary air heating transformation, etc. An
analysis model for the flexibility transformation and operation cost
of thermal power units based on the flexibility transformation costs
of thermal power units is established.

The function of the flexibility modification cost of thermal
power units with respect to the modification capacity is as follows:

Cim gim( ) � aimgim
2 + bimgim + cim, (1)

where Cim(gim) is cost thermal power flexibility modification
and gim is the thermal power unit modification capacity. aim, bim,
and cim are the corresponding coefficients.

The thermal power unit can be obtained by

gim,k � rim,kgtotal,k. (2)
gim,k is the modification capacity of the kth thermal power unit and
rim,k is the percentage decline in the technical output of the

corresponding thermal power unit. The average retrofit cost cost
of thermal power unit is shown in Table 1.

The coal consumption cost of thermal power units during
operation can be calculated by the following quadratic function
(Haoliang et al., 2020):

on,h,t � aopPn,h,t
2 + bopPn,h,t + cop, (3)

where on,h,t is the thermal power operation cost; Pn,h,t is the
average output power; and aop, bop, and cop are the corresponding
coefficients. The typical values are shown in the following table. The
coal consumption operating cost coefficient of thermal power unit is
shown in Table 2.

2.2 Demand-side response retrofit and
operating costs

In order to improve the flexibility of the power system, relevant
control equipment must be configured on the demand side. At the
same time, user response compensation needs to be given during the
dispatching of user-side resource responses. This is the operating
cost of demand-side response retrofit.

The investment cost of demand-side response transformation
mainly includes the cost of control and communication equipment,
equipment installation costs, and the cost of building a monitoring
center for monitoring users participating in the demand response. It
can be obtained by

Cf � C1*N + C2*N + C3*N + C4*M + CM, (4)

where N is the number of customers participating in the
demand-side response project and M is the number of control
centers. C1 is the control equipment price, C2 is the price of the
communication device, C3 is the device installation fee for each
customer, C4 is the total construction fee of a monitoring center, and
CM is the management cost of the demand-side response project.

The management expenses of demand-side response projects
refer to the various expenses incurred by power companies in
organizing and managing the daily operation of demand-side
response projects. Management expenses are generally allocated
based on avoidable capacity. It can be obtained by

CM � Pt*μ, (5)

where μ is the unit power management fee and Pt is the demand-
side response power.

According to the characteristics and ability of loads to
participate in the demand-side response, they can be divided into
three types (Liu et al., 2023).

1. Reducible load: the load that can be partially adjusted or
completely removed according to the actual situation.

2. Shiftable load: the load that cannot be interrupted but can be
adjusted to the load of other time periods as a whole.

3. Transferable load: the electrical energy required within a
certain period of time is fixed, but the load at each moment
can vary within a limited range.
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The compensation for load participation in the demand
response is as follows:

Ccut � ccut*Pcut

Cshif t � cshift*Pshift

Ctrans � ctrans*Ptrans

⎧⎪⎨⎪⎩ , (6)

where Ccut, Cshift, and Ctrans are total compensation for reducible
load, shiftable load, and transferable load, respectively. Ccut, cshift,
and ctrans are unit power compensation. Pcut, Pshift, and Ptrans are the
demand response capacity of reducible load, shiftable load, and
transferable load, respectively.

The total cost of the demand-side response is as follows:

on,l,t � ∑T
t�1

on,s,tPn,s,t + on,t,tPn,t,t + on,c,tPn,c,t( ), (7)

where on,c,t, on,s,t, and on,t,t are unit operation costs of reducible
load, shiftable load, and transferable load, respectively. Pn,c,t, Pn,s,t,
and Pn,t,t are real time power of reducible load, shiftable load, and
transferable load at time t, respectively.

2.3 Energy storage system construction and
operation costs

The construction investment cost of an energy storage system
includes power cost and capacity cost. Power cost refers to the cost of
power-related equipment such as inverters, while capacity cost refers to
thematerial cost incurred in order to achieve the corresponding electrical
energy storage capacity. The investment cost per year during the life cycle
of the energy storage system is as follows (Xu et al., 2021; Liu et al., 2023):

Cin � Cp × PESS + Ce × EESS

η
( ) ×

r 1 + r( )n
1 + r( )n − 1

, (8)

where Cin is the annual investment of the energy storage system, Cp

is the unit price of the energy storage system power device, PESS is the
rated power, η is charging and discharging efficiency,Ce is the unit price
of capacity, EESS is the rated capacity, r is the internal return rate, and n
is the energy storage system life year, typically 30 years.

The operating cost of energy storage includes the material cost
and labor cost of maintenance. The calculation method is as follows:

oESS � ∑T
t�1

oE,ESS,t*EESS,t + oP,ESS,t*PESS,t( ), (9)

where oE,ESS,t is the operation and maintenance cost for unit
capacity, EESS,t is the electricity amount at time t, oE,ESS,t is the
operation and maintenance cost for unit power, and PESS,t is the
operation power at time t.

2.4 Deep sea wind system cost
allocation method

The output of deep sea wind farms in different regions is
complementary, and the volatility of wind farms of different
capacity in the same region has different impacts on power grid
production. The higher the similarity between wind power fluctuation
characteristics and load fluctuation characteristics, the smaller the
impact on system regulation; therefore, this paper further combines

the load similarity-based allocation method to allocate the above
system costs (Peng et al., 2021). The wind power fluctuation cost
allocation coefficient can be expressed as follows:

δk � Cinst,kSk

∑Nw

j�1
Cinst,jSj

, (10)

where Cinst is the installed wind farm capacity and S is the overall
difference index of the wind farm output curve. Based on this
method, wind farms that are significantly different from the
system load fluctuation characteristics will bear more system
costs, while wind farms with smaller differences will bear less
system costs.

3 System cost allocation method for
deep sea wind power

With the promotion and gradual development and maturity of
carbon trading and green certificate trading markets, far-reaching
offshore wind power can not only obtain income from traditional
grid-connected electricity prices but also obtain income from
participating in carbon trading and green certificate trading
markets to ease development costs.

3.1 Model of carbon trading income

At present, the baseline method to allocate carbon emission
rights quotas is used in China. The calculation formula for income
from deep sea wind power participating in carbon emission rights
trading is as follows:

FCET � αCET*βCET*PCET, (11)

where FCET is the carbon trading income, αCET is the carbon
price, βCET is the power grid carbon emission coefficient, and PCET is
the total electricity participating in carbon trading.

3.2 Model of green certificate
trading income

The calculation method for the income from deep sea wind farm
participation in green certificate transactions is as follows:

FGCT � αGCT*βGCT*PGCT, (12)

where FGCT is the green certificate trading income, αGCT is the
green certificate price, βGCT is the green certificate and clean power
generation conversion coefficient, and PGCT is the total electricity
participating in green certificate trading.

4 Deep sea wind power
optimization model

This paper combines the benefits of deep sea wind power in the
on-grid electricity price, carbon trading, and green certificate trading
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market. A time-series simulationmodel for maximum deep sea wind
power income is established based on the construction and
operation costs of deep sea wind power, thermal power unit
retrofit and operation costs, demand-side response and energy
storage system construction, and operation costs. The flexible
retrofit capacity of coal power, energy storage, demand-side
response in the system, and the time series output throughout
the year and the corresponding benefits are obtained.

4.1 Objective function

First, establish an objective function with the goal of maximizing
the revenue of the deep sea wind power system:

maxF � ∑T
t�1
∑N
n�1

ctPn,h,t + FCET + FGCT − δk*Cco, (13)

FIGURE 1
Typical daily output and load curves of wind farms in a certain area.

TABLE 1 Average retrofit cost of thermal power unit.

Unit capacity infimum
/MW

Unit capacity supremacy
/MW

Average retrofit cost
/(Thousand CNY/MW)

0 200 204.9

201 350 769.8

351 660 714.9

661 2000 420.7

TABLE 2 Coal consumption operating cost coefficient of the thermal power
unit.

Unit capacity/MW aop bop cop

(660,+∞) 0.0072 242.85 15000

(300,660) 0.03 249 10500

(200,300) 0.03165 247.5 10200

(180,200) 0.03165 253.5 10200

(150,180) 0.03165 277.5 10200

(135,150) 0.1068 288.9 5,550

(125,135) 0.1068 318.9 5,550

(100,125) 0.1068 333.9 5,550

(0.100) 0.06195 358.8 6,600
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where F is the wind power system income, p is the power of the
correspondence power unit, ct is the wind power on-grid price, and
Cco is the system cost which can be obtained as follows:

Cco � ∑H
h�1

Cim,h + Cf +∑N
n�1

∑S
s�1
cn,s Hn,s −H+

n,s( )
+∑T
t�1
∑N
n�1

∑H
h�1

on,hPn,h,t + Un,h,t +Dn,h,t( )⎡⎣
−∑S
s�1
on,sPn,s,t + ∑W

w�1
on,wPn,w,t + ∑Ot

Ot�1
on,OtPn,Ot,t

⎤⎦, (14)

where n is the number of power buses, Cim,h is the thermal power
retrofit cost, nc is the number of cables, Cf is the demand-side
response retrofit cost, w is the deep sea wind turbine number, s is the
energy storage system number, c is the equivalent annual value
conversion factor, omeans the operation cost, p is the unit power, U
and D are the start-up and shut-down cost of the thermal power
unit, respectively,Hn is the energy storage system capacity,Ho

n is the
initial energy storage system capacity, Pmn

max is the line capacity,
and Po

m is the initial value.

4.2 Constraints

(1) Node power balance constraint

Ln,t � ∑Pn,h,t +∑Pn,s,t +∑Fn,s,t +∑Pn,w,t +∑Pn,o,t +∑Pn,l,t,

(15)
where Ln,t is the load of nth bus at time t, Pn,h,t is the thermal

power output, Pn,s,t is the charging power and Fn,s,t is the discharging
power, Pn,w,t is the wind power output, Pn,o,t is the output of other
power unit, and Pn,l,t is the line loss.

(2) Deep sea wind power output constraint

0#Pn,w,t#Pw,max , (16)

where Pw,max is the maximum output of the wind power unit.

(3) Deep sea wind power utilization rate constraint

∑N
n

∑T
t

Pn,w,tPα ·∑N
n

∑T
t

Pn,w,t
max , (17)

where α is the deep sea wind power utilization rate.

(4) Energy storage system charging constraint

0#Pn,s,t#Hn,s. (18)

(5) Energy storage system discharging constraint

0≤Fn,s,t ≤Hn,s. (19)

(6) Energy storage system state of charge (SOC) constraint

0≤ ϕn,s,t ≤ rn,sHn,s, (20)

where ϕn,s,t � ηstandn,s ϕn,s,t−1 + ηstoren,s fn,s,t − (ηdispatchn,s )−1hn,s,t + λn,s,t
−μn,s,t is the energy storage system state of charge and rn,s is the
continuous discharging time.

(7) Energy storage system energy balance constraint

ϕn,s,t � ηstandn,s ϕn,s,t−1 + ηstoren,s fn,s,t − ηdischargen,s( )−1hn,s,t + λn,s,t − μn,s,t,

(21)
where ηstandn,s is the energy loss, ηstoren,s is the charging loss,

and ηdischargen,s is the discharging loss. For pumped hydro, λn,s,t is
natural water in amount and μn,s,t is natural water out
amount.

5 Results and discussion

5.1 Validity verification of the system cost
allocation coefficient method

This article first calculates and verifies the apportionment
coefficient for two 300-MW wind farms. The typical daily output
curve of the selected wind farm and load curve are shown in Figure 1.
The time resolution of the wind farm output curve is 5 min. The
wind power fluctuation cost allocation method proposed in this
article is used to allocate costs in a multi-wind farm scenario.

It can be seen from the curve fluctuations in Figure 1 that in
the two intervals of 0–4 a.m. and 12–16 p.m., both wind farm

TABLE 3 Cost allocation coefficient of each wind farm output fluctuation.

Wind
farm

Fluctuation change rate
difference measurement

Fluctuation amplitude
difference measurement

Fluctuation overall
difference measurement

Fluctuation cost
allocation coefficient

Wind farm 1 0.5161 1 0.6129 0.5213

Wind farm 2 0.4974 0.8225 0.5625 0.4784

TABLE 4 Parameters of the case study system.

Item Value

Thermal power capacity (MW) 97272

Maximum load (MW) 106923

Annual utilization hour 1973

Wind farm capacity (MW) 300

Offshore distance (km) 120

Power grid carbon emission factor (tCO2/MWh) 0.5810

Green certificate price (CNY) 50

Carbon emission trading price (CNY/t) 20

Electricity price (CNY/kWh) 0.388
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1 and wind farm 2 show a certain anti-peaking characteristic,
while at the intervals of 4–8 a.m. and 16–20 p.m., the output of
wind farm 1 shows a significant anti-correlation characteristic to
the load curve, and the output of wind farm 2 shows a certain
positive correlation characteristic to the load curve. Overall, the
reverse fluctuation characteristics of wind farm 1 are more
obvious than that of wind farm 2, and it should bear more
adjustment costs.

In the example verification, the proportions of the fluctuation
change rate difference measure and the fluctuation amplitude
difference measure were set as 0.8 and 0.2, respectively. Based on
the wind farm output volatility cost allocation calculation
method based on the fluctuation similarity theory proposed in
this article, the simulation results of wind power fluctuation cost
sharing coefficients of each wind farm are shown in Table 3.

It can be seen from the table that the fluctuation overall
difference of the load curve and output curve of wind farm 1 is
0.6129, while that of the load curve and output curve of wind farm
2 is 0.5625. The fluctuation cost sharing coefficient of 0.5213 and
0.4787, respectively.

Although the overall output curve of wind farm 1 is relatively
stable, due to the four typical periods of 4 a.m.–8 a.m., 8 a.m. to
12 noon, 12 noon to 5 p.m., and 5 p.m.–11 p.m., the changes in
output and load of wind farm 1 show anti-peaking
characteristics, so its fluctuation cost allocation coefficient is
higher than that of wind farm 2.

The analysis shows that the fluctuation cost allocation
calculation method used in this article can not only reflect the

stability of the wind power output curve but also reflect the
degree of difference and follow-up of the output curve of each
wind farm with respect to the electric load curve. The
theoretical foundation was laid for the system cost
allocation model.

5.2 Source–load storage coordinate
optimization results

The thermal power installed capacity, carbon emission factors,
and other relevant information used in the simulation calculation are
shown in Table 4.

The output curve and load curve of the wind farm are shown
in Figure 2:

In order to analyze the operating costs and output
characteristics of the system under the connection of deep sea
wind power, a scenario in which thermal power units are used to
replace the analyzed deep sea wind farms is constructed, which is
called as the thermal power scenario, and the scenario in which
deep sea wind power is connected is called as the wind power
scenario. Combined with the system cost calculation method, the
output curves of thermal power output, energy storage, and
demand-side response in thermal power scenarios and wind
power scenarios are shown in Figure 3.

It can be seen that the upper and lower limits of thermal power
output in the wind power scenario are larger than that in the thermal
power scenario, and the peaking depth is increased, leaving more

FIGURE 2
Output curve of wind farm and total load curve.
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sufficient space for consumption of deep sea wind power. This also
shows that in order to absorb deep sea wind power, thermal power
units pay a greater cost in operation, resulting in corresponding
system operation costs.

In the wind power scenario, the energy storage is charged at
night when the deep sea wind farm is generating electricity and
is discharged during the daytime load peak. In the thermal
power scenario, the thermal power unit that replaces the deep
sea wind farm at night does not need to output or is in a low
output state, and the charging power of the energy storage
system is small.

The demand-side response curves in the wind power scenario
and the thermal power scenario are consistent. They mainly respond
to system dispatching needs when new energy is insufficient in
winter and power consumption peaks in summer. It also reflects that
the current demand-side response mechanism has a low degree of
participation in system regulation.

5.3 System benefit analysis

The system parameters such as thermal power
transformation capacity, demand response capacity, and
energy storage capacity under the wind power scenario and
thermal power scenario and the corresponding flexibility
construction investment and operating cost parameters are
detailed in Table 5.

Compared with the wind power scenario, the total system
cost in the thermal power scenario was reduced by 161 million
yuan, a decrease of 0.94%. By incorporating the output curves of
each wind farm into the apportionment coefficient calculation
model, it can be obtained that the apportionment coefficient and
cost of the selected deep sea wind farm are 0.0652 and
10.497 million yuan, respectively.

According to the deep sea wind farm cost calculation method
proposed in the literature (Xu et al., 2021), it can be found that the
static cost of the deep sea wind farm is 4.847 billion yuan, and the
annual dynamic cost of operation, maintenance, and losses is about
157 million yuan.

After further considering deep sea wind farm participating in
carbon trading and green certificate trading, the annual income of
the wind farm is shown in Table 6.

From the data shown in Table 6, it can be seen that among the
revenue of the deep sea wind farm, the electricity price income is
314 million yuan, accounting for 83% of the total revenue of
377 million yuan. It is the main supporting part of the cost
recovery of the deep sea wind farm. Carbon trading and green
certificate trading income are 22.58 million yuan and 40 million
yuan, respectively, accounting for 6% and 10.7%, respectively, which
has a certain supporting effect on the income of the deep
sea wind farm.

It can also be seen from the table that according to the
current costs and benefits, the investment payback period of the
deep sea wind farm is 23 years, which is close to or even exceeds
the service life of some wind farms, which greatly restricts the
investment motivation of wind farm investors. The main reason
for this situation is that the current investment and construction
costs and operation and maintenance costs of deep sea wind
power are still relatively high. In the future, with the
improvement of related equipment and construction and
installation technology, investment costs will be reduced to a
certain extent.

FIGURE 3
Curves of source, storage, and load output under different
scenarios. (A)Output curve of thermal power in different scenario. (B)
Output curve of energy storage system in different scenario. (C)
Demand side response curve.
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At the same time, with large-scale development of offshore
wind power clusters, wind farm groups can use shared resources
to strengthen the sharing of operation and maintenance services
and reduce operation and maintenance costs.

In addition, the current domestic carbon trading, green
electricity trading, and green certificate trading markets are
immature, and the prices of related products are relatively
low. With the advancement of carbon peak and carbon
neutrality, carbon prices and green certificate prices will still
rise significantly. Compared with the EU carbon market, there is
still a lot of room for growth in the benefits derived from deep sea
wind power participating in carbon trading and green certificate
trading. From this perspective, promoting and improving the
development of carbon trading and green certificate trading
markets is of positive significance for realizing the cost

reduction of deep sea wind power and promoting the
construction of deep sea wind power.

5.4 System benefit influence factor analysis

Since the current green certificate trading and carbon trading
markets are still in the early stages of construction and lack a
complete market price system, it is considered that future
electricity prices, green certificate trading unit prices, and
carbon trading unit prices may further change. Combined
with the European carbon trading unit price of 55–90 euros/
ton (equivalent to about CNY 440–663/ton), further analysis of
the system annual net income and static investment payback
period under different transaction price levels is shown in
Figures 4–6.

According to Figures 4–6, as the on-grid electricity price, green
certificate price, and carbon trading price of deep sea wind power
rise, the annualized income of deep sea wind power shows an
upward trend, while the investment payback period shows a
downward trend.

The investment payback period of the deep sea wind power is
mainly affected by the on-grid price of electricity. The main
reason is that the wind farm generates large amounts of
electricity. The increase in the on-grid electricity price can
significantly increase the annual income of the wind farm.
Although green certificate trading can also increase part of the
income of deep sea wind power, due to the small trading volume
of green certificates and small price changes, it will have little
impact on the overall income and price payback period of deep
sea wind power.

In terms of carbon trading, domestic carbon trading costs are
significantly lower than those in Europe. Considering that the global
carbon market will have price convergence in the future, if the
carbon trading price in Europe is used for settlement, the investment
payback period of deep sea wind power will be significantly reduced
to about 10 years.

TABLE 5 Cost analysis of various flexible resources.

Retrofit Capacity Investment
(Million)

Annual investment
(Million)

Annual operation
(Million)

Annual total
(Million)

Wind power
scenario

Thermal 9727 MW 690 61 15603 156.64

Demand
response

1000 MW 10008 889 2.6 8.916

Energy storage 12.9 GW/
49.2 GWh

8,265 734 4.9 7.389

Total 13 GW 18963 1,684 15610 172.95

Thermal power
scenario

Thermal 9727 MW 690 61 15550 15511

Demand
response

1000 MW 10008 889 2.6 891.6

Energy storage 12.8 GW/
48.7 GWh

8,187 727 4.8 731.8

Total 12.9 GW 18195 1,616 15560 17134

TABLE 6 Wind farm annual income analysis.

Item Value

On-grid price/(CNY/kWh) 0.39

Electricity generation/MWh 809832.00

Electricity selling income (million) 314

Carbon trading amount (thousand t) 470.5

Carbon trading income (million) 22.58

Green certificate trading income (million) 40

Total income (million) 377

Static cost (million) 4,847

Annual static cost (million) 431

Dynamic cost (million) 157

System cost (million) 104972

Net income (million) 210

Payback period (year) 23.10
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Taking into account the rising trend of electricity prices in the
future and the improvement of green certificate trading and carbon
trading market mechanisms in the future, the benefits of deep sea
wind power participating in the power market are expected to
further increase, thus effectively reducing the costs of deep sea
wind power development.

In addition, we can further explore channels such as energy
islands, oil and gas exploration, and offshore hydrogen
production to enrich and develop the business model of deep
sea wind power, improve the economic benefits of deep sea
wind power, and promote the development of deep sea
wind power.

FIGURE 4
Impact of electricity price on revenue and return on investment.

FIGURE 5
Impact of green certificate price on revenue and return on investment.
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6 Conclusion

This paper conducts a modeling analysis of the system costs of
deep sea wind power access, introduces a system cost allocation
method based on load similarity, and proposes a cost management
method for deep sea wind power that considers carbon trading and
green certificate trading.

With the goal of maximizing the income of deep sea wind
power, a system optimization operation model is established. The
components of wind farm income, investment payback years, and
factors affecting income are analyzed through time-series
simulation. It is verified that the method proposed in this
article is effective in alleviating the cost of deep sea wind power.

The research in this article has the following conclusions.

a. The cost of the deep sea wind power system is 0.94% higher
than the cost of the thermal power scenario system.

b. Electricity selling income accounts for 83% of the total revenue
from deep sea wind power and is the most important
component of cost recovery.

c. The green certificate market and carbon trading market have
significant effects in supporting the recovery of investment
costs in far-reaching offshore wind power.

d. In the future, the investment payback period of deep sea wind
power will be mainly affected by the on-grid electricity price
and carbon trading price. The investment payback cost is
expected to be reduced to 10 years in the future.
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