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In light of the escalating concerns surrounding climate change and air quality
degradation, the imperative for energy conservation and emission reduction has
garnered widespread attention. Given that factories represent a significant
portion of electricity consumption within the power network, a
comprehensive analysis of the electricity consumption behavior of energy-
intensive enterprises becomes paramount. To meticulously dissect the
electricity consumption patterns of energy-intensive enterprises, this paper
categorizes them into four distinct production modes: 24-hour all-day
production factories, pure daytime production factories, pure nighttime
production factories, and environmentally friendly peaking production
factories. Employing the dynamic electricity–carbon factor as a guiding force,
the analysis encompasses electricity consumption, tariff expenditure, peaking
costs, carbon emissions, and comfort levels associated with each production
method throughout the year. A delicate equilibrium is sought among multiple
objectives, aiming to optimize the user experience while simultaneously
mitigating costs and carbon emissions. Furthermore, this paper conducts a
comparative analysis of each objective, employing single-objective genetic
algorithms and the interior point method. The resultant findings serve as
invaluable insights for business users, aiding in informed decision-
making processes.
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1 Introduction

Global fossil energy-related emissions include carbon dioxide emitted from the
combustion of coal, oil and gas, and cement production (Zhang et al., 2023). Recent
analyses by the International Energy Agency (IEA) suggest that global fossil energy-
related emissions could peak in 2023 as the growth of clean energy sources
accelerates and the use of fossil fuels declines. However, failed projections in the
past could undermine hopes that global emissions are about to peak. As early as 2016,
there were indications that global emissions had peaked and would decline.
Similarly, in the wake of the novel coronavirus outbreak, many researchers
estimated that global fossil energy-related emissions peaked in 2019 (Zhang
et al., 2020; Zeng et al., 2023a).
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Fossil energy-related emissions hit new records in both
2022 and 2023. Just as importantly, reducing the growth in
annual emissions will not stop carbon dioxide from
accumulating in the atmosphere or prevent the world from
continuing to warm. In order to help reduce carbon emissions
down to net zero, this study selects typical energy-intensive users,
simulates their carbon emission behavior under the control of a
dynamic electro-carbon factor, and provides them with a low-
carbon electricity consumption optimization scheme (Ruhnau
et al., 2022; Sun and Huang, 2022; Yan et al., 2023).

The selection of which businesses to analyze as typical requires
consideration of a number of factors, including the size of the
business, type of industry, geographic location, energy
consumption patterns, and so on. The following are some of the
types of enterprises that may be suitable for analysis as a typical
enterprise: first, energy-intensive enterprises: these enterprises, such
as large-scale industrial enterprises, usually consume large amounts
of energy and involve complex production processes and
equipment, e.g., steel mills, chemical plants, and automobile
manufacturing plants. Second, commercial and service
enterprises: these enterprises, such as supermarkets, shopping
malls, and hotels, may have unique patterns of energy
consumption, such as large amounts of lighting, air-conditioning,
and refrigeration equipment. In this paper, in order to significantly
reduce carbon emissions and energy loss, high-energy-consuming
enterprises are selected as the research object.

Regarding electricity user behavior, Papachristos (2015)
developed a distributed microgeneration model considering

whether living on a property with on-site renewable generation
affects user attitudes and behavior. Stedmon et al. (2013) conducted
research on user behavior in relation to electricity consumption in
office buildings and residential environments. Martinez-Gil et al.
(2013) mapped the user behavioral profiles based on household
electricity demand at specific times of the day and analyzed specific-
purpose electricity use activities, time-of-use surveys, and smart
meter data for a family of four. Laicane et al. (2015) further analyzed
household electricity use by testing the extent to which building
factors, socio-demographics, and appliance ownership explain the
annual electricity consumption in residential buildings using gas for
space and hot water heating. Huebner et al. (2016) encouraged
sustainable consumer behavior change in electricity use through the
social dimension. For a bottom-up modeling approach, White et al.
(2019) demonstrated the impact of electricity usage patterns on
electricity consumption by analyzing the interactions between
household user efficiency, smart meter penetration, and
consumer behavior.

In a recent study on international carbon emissions, Saint
Akadiri et al. (2020) examined the link between carbon
emissions, electricity consumption, economic growth, and
globalization in Turkey. Abbasi et al. (2021) mined the dynamic
causal relationship between energy consumption, carbon emissions,
and economic growth in Pakistan. Lin and Jia(2020) analyzed the
drivers of carbon emissions from electricity in EU countries based
on the LMDI-I approach. Abbasi and Adedoyin (2021) compared
the carbon emissions generated by the coal heating method and the
electric heating method in northern China and found that energy

TABLE 1 Characteristics of four types of energy-intensive factory production.

Characteristics 24-hour all-day
production plants

Pure daytime
production plants

Pure nighttime
production plants

Environmentally friendly
peaking production plants

Daily peak-to-valley
spread

<30% >50% >50% >50%

Daily load factor >80% <70% <70% 70%–90%

Priority energy use
periods

0:00–23:59 8:00–18:00 23:00–8:00 Off-peak hours

FIGURE 1
Schematic diagram of the framework of industrial parks and power plants for energy-consuming enterprises.
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substitution is not energy efficient and, therefore, needs to be
combined with other energy-saving policies.

Currently, carbon emissions are calculated in the following
ways: emission factor method: carbon emissions are calculated
using a pre-determined carbon emission factor based on the type
and use of energy (Grygar and Fabricius, 2019). This method is
simple and intuitive, and it is often used to estimate carbon
emissions from energy consumption. Process analysis method: by
analyzing the energy consumption and emissions of each link in the
production process in detail, the carbon emissions of each link are
calculated and then aggregated to arrive at the overall emissions.
This method is suitable for in-depth analysis and optimization of
production processes. Input–output analysis: it is also known as life
cycle assessment (LCA); this method takes into account the entire
life cycle of a product or service, including the stages of raw material
acquisition, production, use, and disposal, and calculates carbon
emissions over the entire life cycle. Methods based on energy
statistics: carbon emissions are estimated using energy statistics
and energy consumption, combined with parameters such as
energy emission factors. This method is often used to assess the
carbon emissions of large-scale or large-scale energy systems. Model
simulation method: based on physical or mathematical models, the
operation of the energy system is simulated, including energy
conversion, energy consumption, and emission processes, in
order to calculate carbon emissions (Suzuki et al., 2020). Each of
these calculationmethods has its own advantages and disadvantages,
and the main shortcomings include the following: 1). uncertainty of

data: the data required for calculating carbon emissions usually
come from multiple sources, and there are uncertainties and errors
that affect the accuracy and reliability of the results. 2). Scope
limitations: different calculation methods are limited in their
scope of application. For example, the emission factor method is
suitable for estimating carbon emissions from energy consumption,
but it cannot take into account all emissions during the life cycle. 3).
Complexity and time consumption: some calculation methods (e.g.,
process analysis and life cycle assessment) require detailed analysis
of the entire life cycle of a production process or product, which
requires a large amount of data and takes a long time.

Furthermore, multi-objective optimization (Hancer et al., 2018)
is an optimization method that involves multiple objective functions
in a decision problem. There are usually conflicting or non-
comparable objectives in a multi-objective problem, so it is not
possible to simply find a solution that maximizes or minimizes all
the objectives at the same time. The aim of multi-objective
optimization is to find a set of solutions that form a non-
dominated set, called a “Pareto frontier,” which outperforms
other solutions on all objectives (Boyaci et al., 2022; Liu et al.,
2022; Zeng et al., 2023b; Liu et al., 2023).

Drawing inspiration from these sources, this paper delves into
the diverse modes of production behavior by examining the
electricity consumption patterns of energy-intensive enterprises.
It introduces a novel approach for optimizing electricity usage
based on dynamic electro-carbon factors. Guided by these
factors, the proposed technique offers robust support for users

FIGURE 2
Comparison of power output of four different types of plants in the first quarter: (A) 24-hour all-day production plants, (B) Pure daytime production
plants, (C) Pure nighttime production plants, (D) Environmentally friendly peaking production plants.
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aiming to conserve energy and minimize emissions (Xiao et al.,
2023a). The study scrutinizes the electricity consumption
behavior across four distinct types of energy-intensive
factories, considering variations in their production modes
throughout the year. Notably, it accounts for both regular
electricity consumption costs and peak usage expenses.
Furthermore, the analysis extends to evaluating the comfort
level associated with electricity usage. Focused on electricity
cost, carbon emissions, and electricity usage comfort, this
research endeavors to aid energy-intensive companies in
curbing their expenditure and environmental impact while
maintaining high productivity (Xiao et al., 2023b).

The subsequent sections are structured as follows: Section 2
outlines the mathematical model of automatic response modeling
for high-energy demand (ARM-HED). Section 3 provides the
simulation validation for ARM-HED. Section 4 presents the
simulation findings and discussions pertaining to the four distinct
production models. Finally, Section 5 offers concluding remarks.

2 Automatic response modeling for
high-energy demand

This study focuses on industrial parks predominantly housing
energy-intensive industries as its primary research subjects. It

meticulously analyzes various operational data from these
industries and formulates an automatic response model tailored
to their energy-demand characteristics.

The automatic response modeling for high energy demand
represents a sophisticated mathematical framework. This model
scrutinizes the ramifications of electricity consumption by high-
energy-consuming industries on the power grid. It integrates a
dynamic electro-carbon factor to drive reductions in carbon
emissions while assessing electricity cost, carbon emissions, and
user comfort as key evaluation criteria. The overarching goal is to
devise scenarios that optimize resource utilization, minimize carbon
footprints, and uphold user comfort. ARM-HED holds significant
applicability in the energy planning, policymaking, and investment
decision-making arenas. It serves as a valuable tool in realizing
carbon reduction objectives, enhancing the sustainability of energy
systems, and reducing energy expenses. In doing so, it contributes
meaningfully to sustainable development endeavors and the global
fight against climate change.

This paper delves into the behavioral dynamics of
electricity consumption within energy-intensive industries,
employing the dynamic electro-carbon factor as a catalyst to
categorize operational electricity demands into four
distinct scenarios.

In defining the index for reducing carbon emissions from
energy-consuming industries, the carbon emitted by these

FIGURE 3
Comparison of power output of four different types of plants in the second quarter: (A) 24-hour all-day production plants, (B) Pure daytime
production plants, (C) Pure nighttime production plants, (D) Environmentally friendly peaking production plants.
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industries due to electricity consumption is quantified using the
following Eq. 1:

δs �
Pg × δg + ∑j∈Ωs

Pso × δn

Pg + ∑o∈Ωs
Pso

. (1)

In the above equation, δs denotes the electro-carbon
index of the sth high-energy-consuming enterprise; Pg

denotes the active power output from the generation port
connected to the gth enterprise; δg is the electro-carbon
index of the connected generation port; Pso is the branch
active power that flows from the sth node to the oth node;
Ωs denotes the set of nodes connected to the sth high-energy-
consuming enterprise’s branches; and δo is the oth node’s
electro-carbon index.

In certain scenarios, it may be viable to disregard the impact of the
grid power command response factor, which is contingent upon
whether the energy-intensive enterprise has established an agreement
with the local grid company. Should such an agreement not exist, the
enterprise retains the autonomy to adjust its power consumption plan
spontaneously, factoring in variables such as electricity prices and
energy consumption costs. Within the power system framework,
enhancing consumer flexibility and responsiveness carries positive
implications for grid stability and reliability.

Among energy-intensive enterprises, certain industrial users
possess greater load flexibility, enabling them to swiftly adjust

their loads in response to grid commands, potentially resulting in
fluctuations in overall electricity consumption. Conversely, other
enterprises exhibit a more static demand for electricity, leading to
negligible changes in overall consumption even in response to grid
commands. As such, the four scenarios of electricity consumption
behavior are delineated as follows.

• Plant type 1: the enterprise does not have an agreement with
the local grid company, and the enterprise has a fixed demand
for electricity; the overall electricity consumption does not
change before or after the response. The demand response
optimization model for this case can be described as Eq. 2:

minF � ∑T
t�1 PL t( ) × λE t( )( ) + ∑T

t�1∑o
s PL t( ) × δs × λC t( )( )

st.∑T
t�1PL t( ) � ∑T

t�1PL t( )
1 − δ t( )( ) · PL t( )≤PL t( )≤PL

max, t � 1, 2,/, T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

,

(2)
where F is the objective function of the model, PL(t) is the
corresponding enterprise’s power consumption in time period t, δs
denotes the electric carbon coefficient of the sth high-energy-consuming
enterprise, o is the total number of enterprises, and λC(t) denotes the
carbon tax required to be paid by the corresponding carbon emission in
time period t. PL(t) is the original power consumption of the load of
this industrial park in time period t; λE(t) is the electricity consumption
price in time period t. δ(t) is the maximum reduction ratio of the loads

FIGURE 4
Comparison of power output of four different types of plants in the third quarter: (A) 24-hour all-day production plants, (B) Pure daytime production
plants, (C) Pure nighttime production plants, (D) Environmentally friendly peaking production plants.
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in the park in time period t; PL
max indicates the maximum power

consumption of the loads in the industrial park; and T is the number of
time periods of power consumption.

To obtain the response for case 1, first, the electricity price curve
of the grid where the industrial park is located, the peak and the
valley periods of electricity consumption, the daily electricity
consumption curve of the loads in the industrial park (24 h, one
point per hour), the maximum curtailment ratio of each time period,
and the maximum power consumption of the loads in the industrial
park should be obtained.

• Plant type 2: the enterprise does not have an agreement with the
local grid company, but the enterprise does not have a fixed
demand for electricity. The tariff structure is based on a
differentiated or peak and valley tariff system, and the
enterprise has an incentive to adjust its electricity consumption
behavior during peak hours; the overall electricity consumption
may change with the response. This demand response
optimization model can be described by the following Eq. 3:

minF � ∑T
t�1 PL t( ) × λE t( )( ) + ∑T

t�1∑o
s PL t( ) × δs × λC t( )( )

st.∑T
t�1PL t( ) � ∑T

t�1PL t( )
1 − δ t( )( ) · PL t( )≤PL t( )≤PL

max, t � 1, 2,/, T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

,

(3)

where FE(t) is the price penalty coefficient corresponding to an
enterprise’s electricity consumption load during the curtailment
period; the greater the electricity consumption of the consumption
end in an industrial park containing high-energy-consuming
enterprises during a certain time period, the greater the penalty
coefficient for the corresponding time period. β is the cumulative
maximum curtailment ratio of electricity consumption in an
industrial park containing high-energy-consuming enterprises.

The response for plant type 2 requires the same inputs as those
required for plant type 1 in terms of the local electricity price curve,
peak and valley periods, load-normal electricity consumption curve,
the maximum reduction ratio for each time period, and the
maximum power consumption of the industrial park, in addition
to the price penalty factor for the reduction of electricity
consumption in the location of industrial parks containing high-
energy-consuming enterprises, as well as the maximum reduction
ratio of electricity consumption.

• Plant type 3: the enterprise has an agreement with the local
grid company that it needs to respond to grid power orders.
However, the energy-intensive enterprise has a fixed power
demand, and the overall power consumption does not
change before or after the response. The demand
response optimization model for this case can be
described as Eq. 4:

FIGURE 5
Comparison of power output of four different types of plants in the fourth quarter: (A) 24-hour all-day production plants, (B) Pure daytime
production plants, (C) Pure nighttime production plants, (D) Environmentally friendly peaking production plants.

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2024.1373206

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373206


minF � ∑
T

t�1
PL t( ) × λE t( )( ) +∑

T

t�1
PL t( ) − PL t( ) × FE t( )( ) +∑

T

t�1
∑
o

s

PL t( ) × δs × λC t( )( )

st.∑
T

t�1
PL t( )≥ 1 − β( ) ·∑

T

t�1
PL t( )

1 − δ t( )( ) · PL t( )≤PL t( )≤PL
max , t � 1, 2,/, T

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

,

(4)

where TC is the set of specified response periods of the power grid
being modeled, e.g., the set of peak power consumption periods,
and Pgrid

c denotes the power consumption command sent
by the grid.

The response inputs for plant type 3 are the same as those
required for plant type 1 in terms of local tariff curves, peak and
valley time periods, load-normal electricity consumption curves,
maximum curtailment ratios for each time period, and maximum
power consumption in industrial parks containing high-energy-
consuming firms, in addition to the power consumption
commands of the grid corresponding to the industrial parks
containing the high-energy-consuming firms and the set of
commanded response time periods, unlike plant types 1 and 2.

• Plant type 4: enterprises sign an agreement with the local grid
company and need to consider the grid power command
response. At the same time, this high-energy-consuming
enterprise does not have a fixed power demand, and the
overall power consumption of the enterprise can change
with the response. The demand response optimization
model for this case can be described as Eq. 5:

minF � ∑T
t�1 PL t( ) × λE t( )( ) +∑T

t�1 PL t( ) − PL t( ) × FE t( )( ) +∑T
t�1∑o

s PL t( ) × δs × λC t( )( )
st.∑T

t�1PL t( )≥ 1 − β( ) ·∑T
t�1PL t( )

∑t∈Tc
PL t( ) � Pgrid

c

1 − δ t( )( ) · PL t( )≤PL t( )≤PL
max , t � 1, 2,/, T

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

.

(5)

The response inputs for plant type 4 need to be the same as those
required for plant type 2 in terms of the electricity price curve for the
region, the peak and valley time periods for electricity consumption, the
normal electricity consumption curve for the industrial park containing
the high-energy-consuming enterprise, the maximum reduction ratio
for each time period, the maximum power consumption for the
industrial park containing the high-energy-consuming enterprise, the
electricity consumption reduction price penalty coefficient for the
region in which the industrial park containing the high-energy-
consuming enterprise is located, and the maximum reduction ratio
of the electricity consumption, in addition to the grid electricity
consumption directive, and a set of directive response time periods
corresponding to the industrial park containing the high-energy-
consuming enterprise as are required for plant type 3.

3 Simulation verification for ARM-HED

3.1 Load setting

This paper takes the industrial park of energy-consuming
enterprises as the main research object, and four kinds of energy-

FIGURE 6
Two-dimensional schematic of the multi-objective Pareto surface for the first quarter: (A) Model 1, (B) Model 2, (C) Model 3, and (D) Model 4.
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consuming enterprises with different production modes are
modeled. These four types of high-energy-consuming enterprises
are 24-h continuous production factories, ecological peak
production factories, pure daytime production factories, and pure
nighttime production factories. In order to better distinguish the
production characteristics of the four types of energy-intensive
plants, Table 1 shows the production characteristics of these
plants. The data for this table are derived from mobile phones
and summarized from data on their production characteristics and
electricity consumption behavior (Huwei et al., 2023).

The combination of a 24-hour all-day production plant, a pure
daytime production plant, a pure nighttime production plant, and
an environmentally friendly peaking production plant represents
virtually all plant production modes.

The 24-hour all-day production plants: this enterprise operates
24 h a day. It is used for processes that require continuous production,
such as certain chemical manufacturing or power generation facilities.

Pure daytime production plants: a daytime production plant
operates only during daylight hours. This schedule is an option for
industries where daylight is critical, such as construction or certain
types of manufacturing.

Pure nighttime production plants: in contrast, nighttime
production plants operate only at night. Industries with cooler
temperatures or less traffic may prefer this type of production
schedule, as it helps increase productivity.

Environmentally friendly peaking production plants: with an
emphasis on environmental protection, this type of plant can use
staggered production schedules to optimize energy use or reduce the
environmental impact. Staggered production allows for a more even
distribution of energy demand throughout the day, thereby reducing
peak loads.

By combining these different production models, companies can
tailor their operations to specific requirements, such as maximizing
efficiency, minimizing energy consumption, or aligning with
environmental sustainability goals. Each production model has its
own advantages and considerations, and the choice depends on
factors such as the nature of the industry, energy costs, and
environmental priorities.

To provide a better presentation of the performance of the
main research object, i.e., the four high-energy-consuming
enterprises (represented by Model 1, Model 2, Model 3, and
Model 4 in Figure 1) within the industrial park in a year, this
paper solves the four high-energy-consuming enterprises as a
model with four different production types (24-hour all-day
production plants, pure daytime production plants, pure
nighttime production plants, and environmentally friendly
peaking production plants) and compares it with the interior
point method (represented by FM) and the genetic algorithm
(GA) for the solution. The schematic diagram is represented in
Figures 2–5.

FIGURE 7
Three-dimensional schematic of themulti-objective Pareto surface for a 24-h continuous production plant in one-quarter: (A)Model 1, (B)Model 2,
(C) Model 3, and (D) Model 4.
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The interior point method is a numerical method for solving
optimization problems and is particularly good for linear
programming and convex optimization problems. As a single-
objective algorithm, the interior point method is globally
convergent, efficient, stable, and scalable. The interior point
method can converge to the global optimal solution within a
reasonable time without falling into the local optimal solution.
Compared with other optimization algorithms, interior point
methods usually have faster convergence and better
computational efficiency. Specifically, its advantages are more
obvious in high-dimensional problems and large-scale problems.
Moreover, it usually shows good stability in the numerical solution
process, is insensitive to the numerical characteristics of the
problem, and has a wide range of applicability.

GA, as a single-objective optimization algorithm, has global
search capability, parallelism and distribution, adaptability,
solution space exploration capability, and robustness. The
genetic algorithm is capable of conducting a global search,
aiding in finding the global optimal solution by stochastically
exploring the solution space, which is especially suitable for high-
dimensional and nonlinear optimization problems. Genetic
algorithms are naturally parallel and distributed, and they can
process multiple solutions simultaneously and discover more
potential solutions through crossover and mutation operations
in the population, thus improving search efficiency. At the same

time, it is able to adaptively adjust the search strategy and
parameters dynamically according to the current progress in
the search process, which is conducive to rapid convergence to
the optimal solution. It is insensitive to the initial values and
constraints of the problem, has good robustness, is applicable to
various types of optimization problems, and requires fewer
mathematical properties of the problem.

As can be seen from the graph, the fluctuation of 24-h
continuous production plants is small, the fluctuation of pure
daytime production plants is differentiated from pure nighttime
production plants, and the characteristics of eco-peak production
plants are closer to those of pure nighttime production plants.
This suggests that these plants maintain a relatively stable
production pattern without significant variations over time.
The graph distinguishes between the fluctuation patterns of
pure daytime and pure nighttime production plants. This
differentiation implies that these two types of production
plants exhibit distinct energy consumption or production
behaviors, likely influenced by factors such as daylight
availability and operational preferences. The characteristics of
eco-peak production plants are noted to be closer to those of pure
nighttime production plants. This implies that the eco-peak
production plants, with a focus on peak production during
specific periods, share similarities with the production
behavior observed in pure nighttime plants.

FIGURE 8
Three-dimensional schematic of themulti-objective Pareto surface for a pure daytime production plant in one-quarter: (A)Model 1, (B)Model 2, (C)
Model 3, (D) Model 4.
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3.2 Multi-targeting

Aiming at assisting energy-consuming enterprises to save energy
and reduce emissions while, at the same time, considering the
comfort of their electricity consumption and the cost associated
with it, this paper introduces a dynamic electro-carbon factor as a
driver, which takes the carbon emissions, the cost of electricity
consumption, and the loss of electricity as the objectives to be
considered at the same time.

In the case of energy-intensive companies, it is first necessary to
analyze the structure and processes of their electricity consumption.
By identifying and optimizing energy-inefficient equipment and
systems, unnecessary energy waste can be reduced, and the overall
efficiency of electricity consumption can be improved. Second, this
paper introduces the dynamic electric-carbon factor to monitor
carbon emissions in real time and provide a guarantee for energy
savings and emission reduction. At the same time, the electricity cost
structure is analyzed to identify the main electricity cost drivers. This
helps develop targeted cost-reduction strategies, such as adopting
alternative energy sources during peak hours and procuring more
favorable power contracts. In addition, an electricity demand response
program is developed to adjust the electricity consumption behavior
of the company to the load profile of the grid. By reducing electricity
demand during peak hours, electricity cost reduction and system
stability improvement can be obtained. By taking into account energy

efficiency, electricity costs, and employee comfort, companies can
achieve sustainable energy savings and emissions reduction and
improve the quality of the overall electricity environment while
ensuring economic efficiency.

4 Case studies

4.1 Dataset and parameters of experiments

In the experiment, the above four load characteristic curves, four
seasonal tariff variations, and four different energy-consuming
enterprises’ electricity consumption optimization models are
considered, and the electricity cost reduction, valley electricity
consumption filling, and peak electricity consumption reduction
before and after optimization are analyzed in different scenarios of
different models. λE(t) is set as the corresponding seasonal tariff curve;
FE(t) adopts the principle that “the larger the customary period of
electricity consumption, the larger the coefficient.” When the
enterprise’s electricity consumption is greater than 70%, the
coefficient is set to 10; when it is less than 30%, the coefficient is set
to 1; and when it is located in the range of 30%–70%, the coefficient is
set to 5; λL is set to 0.8. Tf is set according to the real-time grid tariff
corresponding to the seasonal peak time of the grid, λE(t)> 1 is set to
the time period t ∈ Tf , and FG is set to 4.

FIGURE 9
Three-dimensional schematic of the multi-objective Pareto surface for a pure nighttime production plant in one-quarter: (A)Model 1, (B)Model 2,
(C) Model 3, and (D) Model 4.
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FIGURE 10
Three-dimensional schematic of themulti-objective Pareto surface for an environmental protection staggered production plant in one-quarter: (A)
Model 1, (B) Model 2, (C) Model 3, and (D) Model 4.

TABLE 2 Comparison of before and after optimization of each objective in the first quarter.

Parameter
type

Model
1

Model
2

Model
3

Model
4

Single-objective
genetic

algorithm (GA)

Single-target interior
point method (FM)

Pre-
optimization

Tariff 1,318,115 1,426,152 1,318,501 1,410,998 1,322,546 1,082,778 1,221,844

Carbon emission 323,751.7 381,692.6 323,772.1 374,639.5 324,035.9 298,942.1 327,579.1

Profit from peaking 0 61.2441 0 238.9592 0 1,331.792 0

Comfort level 501.3797 149.5448 499.6396 275.5218 517.6265 488.7787 0

TABLE 3 Comparison of before and after optimization of each objective in the second quarter.

Parameter
type

Model
1

Model
2

Model
3

Model
4

Single-objective
genetic

algorithm (GA)

Single-target interior
point method (FM)

Pre-
optimization

Tariff 1,413,131 1,459,542 1,412,597 1,474,791 1,414,020 1,277,662 1,203,715

Carbon emission 319,168.2 385,517.3 319,168.8 390,704.4 319,168.2 298,159.2 328,283.7

Profit from peaking −3.35204 38.32892 −1.69852 84.23354 0 1183.536 0

Comfort level 503.8805 150.9968 504.4337 259.3088 517.6265 463.7124 0
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4.2 Statistical results

Taking the first quarter as an example, this experiment considers
the carbon emission, electricity cost, and electricity comfort of four
high-energy-consuming enterprises in the industrial park and
obtains the following Pareto chart. A two-dimensional schematic
of the multi-objective Pareto plane for the four high-energy-
consuming firms in the first quarter is shown in Figure 6. A
three-dimensional schematic of a multi-objective Pareto surface
for a plant with 24-h continuous production for one season, (a)
Model 1, (b) Model 2, (c) Model 3, and (d) Model 4, is shown
in Figure 7.

In order to showmore intuitively the multi-objective presentation
of the four different types of energy-intensive enterprises in each
quarter, Figures 7–10 present the three-dimensional schematic multi-
objective Pareto surfaces of the 24-hour continuous production

plants, the day-only production plants, the night-only production
plants, and the eco-peak production plants in the quarter, respectively.

The ideal point decision is used to find the optimal solution
among carbon emissions, electricity costs, and electricity losses.

Tables 2–5 show the electricity cost, carbon emissions, peaking
cost, and user comfort of each high-energy-consuming enterprise in
all seasons of the year, and the results screened by the genetic
algorithm and the interior point method with the ideal point
decision are compared with the values before optimization using
each measure as a single objective.

Table 6 shows the cost of electricity for different energy-
consuming enterprises in different quarters, combining the
electricity tariffs and peaking costs to obtain more realistic data,
which visually shows the cost of large amounts of electricity used by
different production methods in different time periods. Electricity
tariffs are the basic fees that companies pay to the power company

TABLE 4 Comparison of before and after optimization of each objective in the third quarter.

Parameter
type

Model
1

Model
2

Model
3

Model
4

Single-objective
genetic

algorithm (GA)

Single-target interior
point method (FM)

Pre-
optimization

Tariff 1,320,758 1,476,608 1,320,530 1,436,219 1,322,003 1,163,453 1,228,165

Carbon emission 316,342.2 398,565.1 316,385.6 385,668.1 316,512.3 300,296.9 330,287.6

Profit from peaking 0 83.2915 0 130.9221 0 481.6032 0

Comfort level 502.9981 191.7454 499.5939 210.1539 517.6265 469.7088 0

TABLE 5 Comparison of before and after optimization of each objective in the fourth quarter.

Parameter
type

Model
1

Model
2

Model
3

Model
4

Single-objective
genetic

algorithm (GA)

Single-target interior
point method (FM)

Pre-
optimization

Tariff 1,242,260 1,438,964 1,241,259 1,379,790 1,244,823 1,057,113 1,169,622

Carbon emission 346,968.8 435,287.9 346,971.3 420,639.8 346,968.8 333,881.1 354,005.6

Profit from peaking 0 14.14259 −6.48312 146.1393 0 755.28 0

Comfort level 505.3896 197.643 503.0007 259.4697 517.6265 463.6538 0

TABLE 6 Analysis of electricity costs.

Parameter
type

Quarter
of a year

Model 1 Model 2 Model 3 Model 4 Single-
objective
genetic

algorithm
(GA)

Single-
target
interior
point

method (FM)

Pre-
optimization

Tariff 1 1,318,114.565 1,426,152.133 1,318,500.667 1,410,998.125 1,322,545.5 1,082,778.224 1,221,844.4

2 1,413,130.713 1,459,542.498 1,412,597.265 1,474,791.366 1,414,019.58 1,277,661.833 1,203,715

3 1,320,758.28 1,476,607.662 1,320,530.447 1,436,218.933 1,322,003 1,163,452.543 1,228,165.2

4 1,242,260.155 1,438,964.397 1,241,258.926 1,379,790.307 1,244,823 1,057,113.001 1,169,622

Profit from
peaking

1 0 61.2441 0 238.9592 0 1,331.792 0

2 −3.35204 38.32892 −1.69852 84.23354 0 1,183.536 0

3 0 83.2915 0 130.9221 0 481.6032 0

4 0 14.14259 −6.48312 146.1393 0 755.28 0
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for the amount of electricity they use, while peaking costs are the
costs of using electricity during peak hours of the power system.
Electricity systems often impose an additional charge on businesses
that use electricity during peak hours, which is intended to
encourage businesses to use less electricity during peak hours in
order to balance the load on the power system.

From the above table, it can be seen that the electricity
consumption of the 24-h continuous production type factory
is slightly higher than before the optimization, and the comfort
level of electricity consumption has improved. When comparing
the purely daytime production type factory with the purely
nighttime production type factory, it is obvious that the
former has a higher cost of electricity consumption, which is
10,000 yuan higher than the latter on average. The cost of
electricity use is higher during the peak hours of the day. This
also reflects the variability of electricity costs across time, and
firms may need to consider energy efficiency measures during
peak hours. The electricity cost spent by the eco-peak production
type of factory is closer to that of the night-only production type
of factory. This suggests that the eco-peak production type of
factory has been relatively optimized in terms of energy use and
has relatively lower electricity costs but still maintains a degree of
production flexibility.

5 Conclusion

In conclusion, the work in this paper includes the following
innovations:

1) An optimization model of the electricity consumption
behavior of power consumers driven by a dynamic electro-
carbon factor is developed. It not only analyzes the electricity
consumption behavior of high-energy-consuming enterprises
but also incorporates the peaking cost at the cost of electricity
consumption while not sacrificing the comfort of the
enterprise’s electricity consumption as much as possible to
provide meaningful guidance for the enterprise’s energy saving
and emission reduction.

2) This paper simulates and analyses the electricity consumption
behavior of energy-consuming enterprises with different
production modes and compares the annual electricity
consumption of environmentally friendly staggered-peak
production factories with that of purely daytime production
factories, purely nighttime production factories, and 24-h
production factories in order to encourage business users to
analyze and study the above conclusions, motivate them to
take energy-saving measures during peak electricity
consumption periods as far as possible, try to stagger their
production to safeguard their own electricity consumption

while reducing their expenditure on electricity consumption
and carbon emissions, and contribute to the reduction of
carbon emissions.
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