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This study presents the first comprehensive numerical simulation of heat and
mass transfer in fractal-like mixed convective nanofluid flows. The flow of non-
Newtonian nanofluids over flat and oscillating sheets is modelledmathematically,
and a finite difference scheme is used to solve this model. The two-stage scheme
can tackle fractal and fractal stochasticmathematicalmodels of partial differential
equations. The consistency in the mean square is proved, and Fourier series
stability analysis is adopted to find stability conditions for fractal stochastic partial
differential equation. The scheme is applied to solve the unsteady Casson
nanofluid flow over the flat and oscillatory sheet, which affects thermal
radiation, heat source, and chemical reaction. The existence of the solution is
also provided for the Navier-Stokes equation of the considered flowmodel using
fractal time derivative. The graph illustrates that the proposed fractal technique
achieves faster convergence than the Crank-Nicolson approach. Applications in
energy systems, materials science, and environmental engineering are just a few
of the domains that could benefit from a better understanding of mixed
convective nanofluid flows with fractal features, and that is what this research
study hopes to accomplish. Scientists and engineers may better develop efficient
and environmentally friendly systems by simulating and analyzing these
complicated processes with the suggested finite difference technique.
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1 Introduction

Fluid dynamics have always been one of the most fascinating topics in the field of
science. This area mainly studies different types of liquids or gases and their flowing
condition in further investigations. There are three subparts to fluid dynamics: fractals,
stochastic, and non-Newtonian flow. These subdivisions are now inspiring new research
areas with the potential to have a range of practical and engineering uses.

Fractal fluid flow can be explained as a fluid system’s self-similar fragmented patterns
and structures. Many natural and artificial systems showed fractals, including weather,
stream, internet connectivity, and blood vessel networks in biological systems. It does not
matter what magnification or loss of detail you choose; they will let you find the exact shape
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several times. Using the rule for limited design, impracticable shapes
can be constructed from the principles of fractal fluid flow.

Fractals have an enormous role to play in fluid mechanics. A
study that identifies the number of fractals almost widely known by
the public proves an essential part of fluid flows, such as combustion
(Sreenivasan, 1991), irregular flow (Sreenivasan and Meneveau,
1986; Gouldin, 1987; Ueki et al., 1999; Mazzi and Vassilicos,
2004; Cintosum et al., 2007), and fluid mechanics in general
(Anwar, 2019; Anwar, 2020; Ahmad Sheikh et al., 2021; Anwar
et al., 2024).

Various exciting properties of fractals have been found relative
to fluid dynamics in recent years. A numerical study of the Navier-

Stokes equations resulted in a few researchers (Lanotte et al., 2015)
investigating the intermittency’s origin in an incompressible,
homogeneous, and isotropic turbulent flow. Another had also
been carried out (Lanotte et al., 2016) for incompressible,
homogeneous, and isotropic turbulent flow. This is achieved by
solving the Navier-Stokes equations using a restricted set of Fourier
modes, which are part of a fractal set characterized by dimension D.
The term “incompressible” refers to a substance or material
exhibiting negligible change. The Navier-Stokes equations
represent an incompressible fluid’s dynamic motion or flow.
These equations express the unknowns of velocity and pressure
as functions of both spatial and temporal variables. As mentioned
earlier, the solution to the equations enables predicting the fluid’s
behaviour, contingent upon understanding its initial and boundary
conditions. The above equations are important as fundamental
models within mathematical physics (Łukaszewicz et al., 2016).
Although numerous research investigations have yielded critical
preliminary stages and approaches, their answers remain one of
applied mathematics’s most fundamental and challenging problems.
Among these methods are fractal geometry and fractional calculus.
Most of the solutions of the resulting fractional equations of motion
are not trivial, even though the fractional nonlocal approach is very
inspiring and has many exciting features, especially in continuum
mechanics (Rasheed and Anwar, 2018; Hussain et al., 2021),
hydrodynamics (Ali et al., 2021a; Ali et al., 2021b), and
magnetohydrodynamics (Song and Em Karniadakis, 2019), etc.
Therefore, it is necessary to make solution estimations
using numbers.

The study’s objective (Kumar et al., 2014) is to present a novel
analytical and approximation method for solving the time-fractional
Navier-Stokes equation (NSE) within a cylindrical conduit. The
suggested methodology integrates the Adomian decomposition
(ADM) and the Laplace transform (LTM). Analytical solutions to
the time-fractional Navier-Stokes equations are established by
modifying the reduced differential transform method and
developing a new iterative Elzaki transform method, both of
which are shown in (Wang and Liu, 2016). In reference (Khan
et al., 2009), the use of the Caputo fractional derivative is employed
to investigate the Navier-Stokes equation with fractional orders
using He’s homotopy perturbation technique (HPM) and
variational iteration method (VIM). These approaches provide
novel avenues for addressing NSE, although they are limited in
several technical respects.

Fractal calculus, first introduced in (Parvate and Gangal, 2009;
Gangal et al., 2011; Parvate and Gangal, 2011), provided more
possibilities and feasible solutions to NSE in (Pishkoo and Darus,
2021). Since the Hausdorff fractal dimension has been shown to
have a significant role in the NSE-governed flow of viscous
incompressible fluids (Scheffer, 1978; Babin and Vishik, 1985;
Shah and Abdeljawad, 2024), this makes intuitive sense. In
(Kukavica, 2009), weak solutions of the NSE in a space-time
fractal domain with finite dimensions were investigated. Using
stochastic differential equations driven by Levy processes, the
authors of (Zhang, 2012) explain a stochastic Lagrangian particle
route method to NSE in detail. In (Constantin et al., 1985),
approximate solutions of NSE in terms of time are provided for
fractal dimensions, while in (Hinz and Teplyaev, 2015), NSE on one-
dimensional topological fractals is studied using Hodge theory. In

FIGURE 1
Comparison of the fractal and fractal stochastic models using
α � 0.5, β � 3, λ1 � 1, λ2 � 0.7, Pr � 1,Rd � 0.1,Q � 0.1,Nb �
0.1, Nt � 0.1, Sc � 1, γ � 0.1

FIGURE 2
Comparison of the fractal proposed and fractal Crank-Nicolson
schemes using α � 0.5, β � 3, λ1 � 1, λ2 � 0.7,Pr � 1, Rd � 0.1,Q �
0.1, Nb � 0.1,Nt � 0.1, Sc � 1, γ � 0.1
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(Yang et al., 2020), the pullback attractors for 2D non-autonomous
incompressible NSE with constant delay terms were investigated,
and their limited fractal and Hausdorff dimensions were
determined. The NSE was also investigated in fractal dimensions
of invariant sets (Chepyzhov and Llyin, 2014). In (Mahalov et al.,
1990), we derive estimates for the Hausdorff and fractal dimensions
of the NSE global attractors based on the spiral and regulating
physical parameters. Fractals and fractal dimensions are significant
to these and other studies in fluid mechanics.

On the other side, stochastic fluid flow explores the world of
chance and uncertainty in fluid systems. Fluid behaviour under
varying forces or situations can be analyzed and predicted using
probabilistic and statistical ideas. Stochastic modelling has proven
beneficial in the face of difficulties in predicting weather and
analyzing the behaviour of fluid particles in turbulence.
Improvements in forecasting, risk assessment, and policymaking
in domains as disparate as climate science and the stock market can
be traced back to the lessons learned from research into
stochastic fluid flow.

Of all the deterministic equations in physics that hide
unpredictability, the most famous one is the Schrödinger
equation. No mathematical probability theory can account
for the inherent randomness in a quantum physics lab.
Regardless of this seeming contradiction, Quantum Theory
has produced a robust set of tools for controlling specific
types of randomness, namely the departure from classical
motion equation solutions. Does this classical/quantum link
affect the Navier-Stokes and Euler equations? The two
hydrodynamic equations differ significantly from the ones
mentioned earlier. Euler Equation, even though representing
“dry water” (Von Neumann) is already very complicated. At
this moment, there seems to be no proof that it refrains from
producing singularities. The comparison, as mentioned above,
however, has the potential to provide some intriguing details
regarding the turbulence development process.

There are several entry points for uncertainty, including
faulty initial conditions. Here, statistical methods are
considered: one looks at the development of a probability
measure over time-based on the pertinent physical beginning
facts and initiated in the 19th century (see, among many others,
(Vishik et al., 1979; Marchioro and Pulvirenti, 1984). Stochastic
diffusion processes have been devised for several kinds of
Langevin dynamics, including equilibrium and non-
equilibrium dynamics, including Kraichnan’s model in
turbulent advection (for instance, see (Gawedzki et al., 2008)).
To learn more about how numerical models could contribute to
uncertainty, check out (Palmer and Williams, 2008; Crisan et al.,
2019) about climate modelling.

Stochastic partial differential equations (SPDEs) are another
well-known way to include stochasticity into the Navier-Stokes
equation by including random forces. There is a mountain of
material on the subject since the first seminal mathematical work
on it (Bensoussan and Teman, 1973). Turbulence has been used to
study stochastic Lagrangian models of the Langevin type, which
incorporate smooth Lagrangian trajectories and random velocities.
However, it is essential to note that such models are not commonly
employed in this field (Pope, 1994).

Recently, D. D. Holm developed stochastic advection through
Lie transfer (Holm, 2015). Since this is an Eulerian method, the
resulting equations of motion are SPDEs.

It would be impossible to provide a comprehensive list of all the
stochastic approaches that may be used to analyze fluid dynamics.
Only a small subset of topics and supporting references have been
selected. It is worthwhile to highlight a few interesting probabilistic
representation equations. Solutions to partial differential equations
are typically represented in stochastic analysis as the expected values
of functionals of stochastic processes. This method has been used for
a long time and is also investigated for fluid dynamics. In (Busnello,
1999), for example, a probabilistic description of the vorticity field is
presented; in (le Jan and Sznitman, 1997), branching processes and

FIGURE 3
Effect of Casson parameter on velocity profile for the fractal
model using λ1 � 0.5, λ2 � 0.7, Pr � 1,Rd � 0.1,Q �
0.1, Nb � 0.1,Nt � 0.1, Sc � 1, γ � 1, σ � 0

FIGURE 4
Effect of thermal mixed convection parameter on velocity profile
for the fractal model using β � 3, λ2 � 0.7,Pr � 1,Rd � 0.1, Q �
0.1,Nb � 0.1,Nt � 0.1, Sc � 1, γ � 1, σ � 0
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the Fourier transform are used for analysis; and in (Constantin and
Iyer, 2008), Lagrangian diffusion processes are employed.

Non-Newtonian fluids, particularly those with yield stress,
can describe their behaviour using the Casson fluid flow
mathematical model. The rheological properties of such fluids
can be described by the Casson equation, which British
rheologist Sydney Goldstein Casson developed. Non-
Newtonian fluids, such as Casson fluids, have more
complicated flow properties than Newtonian fluids, which
show a linear relationship between shear stress and shear
rate. Casson fluids are distinguished by their dual nature as
an elastic solid and a viscous liquid.

Food processing, medicines, paints, and drilling fluids are just a
few industries that can benefit from Casson fluid flow. It is essential
to optimize production processes and create effective transportation
networks by having a firm grasp on the flow behaviour of
Casson fluids.

The flow of Casson fluids in various geometries and under
various situations is studied by researchers and engineers using
numerical simulations and experimental methods. Predicting
flow behaviour, calculating pressure drops, and building
suitable apparatus for handling Casson fluids all benefit from
these findings.

Coating applications benefit significantly from Casson
multiphase suspensions due to the many engineering uses for
thick multiphase flows, such as in the chemical and textile
industries (Batra and Jena, 1991). In addition, the worst-case
scenario of magnetized multiphase flows is used to validate the
prior work. The circulation of blood via the body’s arteries is a
well-known example of the Casson fluid flow model (Srivastava
and Saxena, 1994), among other cutting-edge applications of this
model (Das and Batra, 1993). Several newly developed and
repurposed delivery systems use this technique, one of which
is conveying cells to the brain. Non-Newtonian fluids are seeing
increased use in engineering and production. Biomechanics and
polymer processing heavily use the Casson fluid model (Dash

et al., 1996) to depict non-Newtonian fluid dynamics (Eldabe
et al., 2001).

One category of non-Newtonian fluids whose features
include yield stress is the Casson fluid model. Jelly, honey,
sauce, concentrated fruit liquids, soup, etc., all feature Casson
fluid as an ingredient. In addition, it has many other expanding
uses in various industries. The non-Newtonian fluid’s dynamic
and complicated character and interactions make its study more
challenging. The zero shear stress at infinite viscosity of Casson
fluid classifies it as a dilatant fluid. If the yield stress exceeds the
applied stress, the fluid exhibits solid-like behaviour; conversely,
if the yield stress is lower, the fluid demonstrates liquid-like
characteristics. The Casson fluid model equation was initially
introduced by Casson in his work (Casson, 1959). This model’s
creation drew the attention of numerous scientists intent on
finding a solution to the issue. The movement of Casson
nanofluid along the stretching sheet was analyzed by Abbas
and Shatanawi (Abbas and Shatanawi, 2022). In their study of
Casson nanofluids with convective boundary conditions,
Nadeem et al. (Nadeem et al., 2013) emphasized the role
played by magnetic hydrodynamics. Brownian motion and
thermophoresis were also brought up for discussion. At a
stretching sheet, Oyelakin et al. (Oyelakin et al., 2016)
investigated the time-dependent flow of Casson fluid. Thermal
radiation, slip, and convective boundary conditions were
investigated. Brownian motion and thermophoresis were also
shown to have an impact. By considering chemical reactions and
buoyancy effects across the wedge, this study aims to analyze the
flow properties of a Casson liquid in a two-dimensional (2D)
laminar continuous flow via a stretched porous wedge (Hussain
et al., 2023). Casson micropolar fluid flow at a curved surface was
considered by Amjad et al. (Amjad et al., 2020). They talked
about Brownian and thermophoresis motion in induced
magnetic hydrodynamics. Triple solutions of Casson nanofluid
were examined by Lanjwani et al. (Lanjwani et al., 2021) at the
vertical nonlinear stretching sheet. Several researchers have

FIGURE 5
Effect of heat source parameter on a temperature profile for the
fractal model using β � 3, λ2 � 0.7,Pr � 1,Rd � 0.1, λ1 � 1.0,Nb �
0.1, Nt � 0.1, Sc � 1, γ � 1, σ � 0

FIGURE 6
Effect of radiation parameter on a temperature profile for the
fractal model using β � 3, λ2 � 0.7, Pr � 1,Q � 0.1, λ1 � 1.0,Nb �
0.1,Nt � 0.1, Sc � 1, γ � 1, σ � 0
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investigated how different physical characteristics change when
the flow assumption is made with artificial neural networks (for
example, see Refs. (Shafiq et al., 2022; Çolak et al., 2022; Shafiq
et al., 2023)).

We began an exciting adventure into complexity,
uncertainty, and fluid flow interactions as we investigated
fractal, stochastic, and Casson fluid flow. Scientists and
engineers are deciphering the complexities of fluid dynamics
through cross-disciplinary study and novel applications,
thereby expanding the boundaries of human understanding
and propelling progress that could change many other fields.
We explore these fascinating areas further to learn more
about them and use their enormous potential for the greater
good of humanity. This study hints at a complex and niche
area of computational fluid dynamics and heat transfer,
particularly relating to nanofluids and fractal stochastic
processes. Some real-world uses and ramifications of this
study are as follows:

1. This study can potentially improve the design of heat
shields, thermal protection systems, and cutting-edge
cooling methods for spacecraft and aeroplanes used in
the aerospace industry, where extreme temperatures are
often experienced.

2. The fractal stochastic component of this study has potential use
in weather prediction and climate simulation. Accurate and
precise climate models and weather forecasts can be provided
by comprehensively understanding heat and mass transfer in
the intricate turbulent context.

3. Nanofluids are specific colloid suspensions with the particles
(in nanoparticle form) carefully spread uniformly in the base
fluid. The study presented here can provide detailed
information about the process. It can, therefore, be helpful
in the field of nanofluid technology for a significant
understanding of heat and mass transport.

This study can be beneficially employed across various industrial
fields and applications. For instance, in technological, engineering,
medical, and environmental science, this study can be implemented
to advance the efficiency and performance of various systems and
devices in the field of cooling systems. Moreover, this needs to be
considered for elaborative analysis in spacecraft, industry,
electronics, etc.

In literature, much work exists on solving the flow problems
over some surfaces. However, this work considers a stochastic model
using the fractal time derivative. The model has been solved by the
finite difference scheme that solves the given Equation in two stages.
The solution is found first on arbitrary time and then on the next
time level. For this work, the iterative method solves those difference
equations obtained by applying the proposed fractal scheme to the
considered flow model. The iterative technique employs a single
initial approximation and determines the answer of the subsequent
iteration by considering the solution computed during the
previous iteration.

To conclude, in our paper, we have to introduce fractal
characteristics with numerical simulation for the first time in
the study of the mixed convective nanofluid flow. We are unaware
of any other research incorporating fractal and fractal stochastic

mathematical models in examining non-Newtonian nanofluid’s
heat and mass flow on a flat surface and an oscillating sheet. Our
fractal approach projects evidence of faster convergence
compared to the traditional Crank-Nicolson solution
technique. Our two-stage finite difference scheme can also use
the fractal framework for the standard linear equation problem.
We are also studying the unsteady Casson nanofluid flow in the
presence of thermal radiation, an extensive heat source, and a
reacting, homogeneous and endothermic chemical reaction. Our
findings are not limited to heat and mass transference in
nanofluid, as we believe it would benefit various energy
systems, materials, and the environment.

2 Proposed computational scheme

A numerical scheme will be proposed to solve fractal SPDEs.
The scheme will be a predictor-corrector type scheme, with the first
stage as the predictor and explicit scheme. The scheme is the
explicit-implicit scheme. For proposing a scheme for partial
differential equations (PDEs), consider the FPDEs as follows:

∂v
∂tα

� F v,
∂2v
∂y2

( ) (1)

where 0< α< 1.
Let the first stage of the scheme be expressed as:

�vn+1i � vni + Δt α

t1−αn

∂v
∂tα

( )n

i

(2)

Where Δt is the temporal step size.
The second stage for discretizing the time variable of Eq. 1 can be

expressed as:

vn+1i � 1
10

vni + 9�vn+1i( ) + Δt α

t1−αn

a
∂v
∂tα

( )n+1

i

+ b
∂v
∂tα

( )n

i

+ c
∂�v
∂tα

( )n+1

i

[ ]
(3)

Where a, b and c are unknown parameters. For finding a, b and
c, re-write Eq. 3 as:

vn+1i � 1
10

vni + 9�vn+1i( ) + Δt α

t1−αn

a
t1−αn+1
α

∂v
∂t

( )n+1

i

[
+bt

1−α
n

α

∂v
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( )n

i

+ c
�t1−α

α

∂�v
∂t

( )n+1

i

]
(4)

where �t1−α � t1−αn +t1−αn+1
2 .

Consider the Taylor series expansion for vn+1i and (∂v∂t)
n+1
i

vn+1i � vni + Δt ∂v
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( )n

i

+ Δt( )2
2

∂2v
∂t2

( )n

i

+ Δt( )3
6

∂3v
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i

+ o Δt( )4( )
(5)

∂v
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� ∂v
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2
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i
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Substituting expression for vn+1i and (∂v∂t)
n+1
i

into Eq. 4, it
is obtained
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When comparing the coefficients of Δt(∂v∂t)
n

i
, (Δt)2(∂2v∂t2)

n

i
and

(Δt)3(∂3v∂t3)
n

i
on both sides of Eq. 7 gives

a � 1
3
t1−αn

t1−αn+1
(8)

b � −2
5

(9)

c � 1
6
t1−αn

�t1−α
. (10)

Therefore, Eq. 2 and (3) using (8), (9) and (10) gives the
numerical scheme that discretizes the fractal time variable
of Eq. 1.

The scheme given in (2) and 3 can be extended from fractal PDE
(1) to fractal stochastic PDE.

dv � G v, ∂xxv( )dtα + σdW (11)
is

�vn+1i � vni + ΔtG vni , ∂xxv
n
i( ) (12)

vn+1i � 1
10

vni + 9�vn+1i( )+Δt α

t1−αn
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α

[
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α
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]
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For G � ∂xxv scheme (12) and (13) is given as:
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Δx( )2( ) (14)
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where ΔW ~ N(0, ��
Δt

√ ).
Eqs. 14 and (15) give the time and space discretization of

fractal stochastic Eq. 11 where G � ∂xxv. To find the consistency
and stability of fractal stochastic Equation, consider the
following Equation:

dv � d1∂xxvdtα + σvdW (16)

The time and space discretization of Eq. 16 using the proposed
scheme is given as:

�vn+1i � vni + Δt d1
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Δx( )2( )[ ] (17)

and
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Theorem 1. The numerical scheme given in (17) and 18 is
consistent in the mean square sense.

Proof: Let P be a smooth function, then

L P( )ni � P n + 1( )Δt, iΔx( ) − P nΔt, iΔx( ) − ∫ n+1( )Δt

nΔt
Pxx s, iΔx( )ds

− σ∫ n+1( )Δt

nΔt
P s, iΔx)dW(s( )

(19)
L P( )ni � P n + 1( )Δt, iΔx( ) − P nΔt, iΔx( )

− Δt
Δx( )2

α

t1−αn

a
t1−αn+1
α
d1 P n + 1( )Δt, i + 1( )Δx( )([

−2P n + 1( )Δt, iΔx( ) + P n + 1( )Δt, i − 1( )Δx( ))

+ b + 9
10

( ) t1−αn

α
d1 P nΔt, i + 1( )Δx( ) − 2P nΔt, iΔx( )(

+P nΔt, i − 1( )Δx( ))+c �t
1−α

α
�P n + 1( )Δt, i + 1( )Δx( )(

−2�P n + 1( )Δt, iΔx( ) + �P n + 1( )Δt, i − 1( )Δx( ))]
−σP s, iΔx( ) W n + 1( )Δt( ) −W nΔt( )( ) (20)

where �P((n + 1)Δt, iΔx) � P(nΔt, iΔx) + Δt
(Δx)2d1(P(nΔt, (i + 1)

Δx) −2P(nΔt, iΔx) + P(nΔt, (i − 1)Δx))

E L P( )ni −Ln
i P

∣∣∣∣ ∣∣∣∣2 �E

∣∣∣∣∣∣∣∣−d1∫ n+1( )Δt

nΔt
Pxx s, iΔx( )ds

−σ∫ n+1( )Δt

nΔt
P s, iΔx( )dW s( )

+ Δt
Δx( )2

α

t1−αn

[a t1−αn+1
α

d1 P n+1( )Δt, i+1( )Δx( )(
−2P n+1( )Δt, iΔx( )+P n+1( )Δt, i−1( )Δx( ))
+ b+ 9

10
( ) t1−αn

α
d1 P nΔt, i+1( )Δx( )(

−2P nΔt, iΔx( )+P nΔt, i−1( )Δx( ))
+c �t

1−α

α
�P n+1( )Δt, i+1( )Δx( )(

−2�P n+1( )Δt, iΔx( )+ �P n+1( )Δt, i−1( )Δx( ))]
+σP s, iΔx( ) W n+1( )Δt( )−W nΔt( )( )

∣∣∣∣∣∣∣∣2 (21)
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Eq. 21 can be expressed as:

E L P( )ni −Ln
i P

∣∣∣∣ ∣∣∣∣2
≤2d2

1E

∣∣∣∣∣∣∣∣[∫ n+1( )Δt

nΔt
Pxx s, iΔx( )ds

− Δt
Δx( )2

α

t1−αn

at
t1−αn+1
α
n P n+1( )Δt, i+1( )Δx( )({

−2P n+1( )Δt, iΔx( )+P n+1( )Δt, i−1( )Δx( ))

+ b+ 9
10

( )t1−αn

α
P nΔt, i+1( )Δx( )(

−2P nΔt, iΔx( )+P nΔt, i−1( )Δx( ))

+ctn�t
1−α

α
q �P n+1( )Δt, i+1( )Δx( )(

−2�P n+1( )Δt, iΔx( )+ �P n+1( )Δt, i−1( )Δx( ))}]∣∣∣∣∣∣∣∣2
+2σ2E ∫ n+1( )Δt

nΔt
P s, iΔx( )−P s, iΔx)]dWs( )[

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 (22)

Using the inequality

E ∫t

t+

g s, k( )dW s( )
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣2n ≤ t − t+( )n−1 n 2n − 1( ){ }n∫t

t+

E f s, k( )∣∣∣∣ ∣∣∣∣2n{ }ds
(23)

Inequality (22) can be written as

E L P( )ni − Ln
i P

∣∣∣∣ ∣∣∣∣2
≤ 2d2

1E

∣∣∣∣∣∣∣∣[∫ n+1( )Δt

nΔt
Pxx s, iΔx( )ds

− Δt
Δx( )2

α

t1−αn

a
t1−αn+1
α

P n + 1( )Δt, i + 1( )Δx( )({
−2P n + 1( )Δt, iΔx( ) + P n + 1( )Δt, i − 1( )Δx( ))

+ b + 9
10

( ) t1−αn

α
P nΔt, i + 1( )Δx( )(

− 2P nΔt, iΔx( ) + P nΔt, i − 1( )Δx( ))

+ c
�t1−α

α
�P n + 1( )Δt, i + 1( )Δx( )(

− 2�P n + 1( )Δt, iΔx( )

+ �P n + 1( )Δt, i − 1( )Δx( ))}}]∣∣∣∣∣∣∣∣2
+ 2σ2∫ n+1( )Δt

nΔt
E P s, iΔx( )| |2{ }ds (24)

Now when Δt → 0,Δx → 0 and (nΔt, iΔx) → (t, x) then
E|L(P)ni − Lni P|2 → 0. Therefore, the proposed fractal stochastic
scheme is consistent in the mean square sense.

Theorem 2. The numerical scheme (17)–(18) is conditionally
stable for Eq. 16.

Proof: The stability analysis study will employ
either Von Neumann or Fourier series analysis
techniques. By using this criterion, the transformations are
given as

�vn+1i � �En+1eiIψ , vni � EneiIψ

vni ± 1 � Ene i±1( )Iψ , vn+1i � En+1eiIψ

vn+1i ± 1 � En+1e i±1( )Iψ

⎫⎪⎬⎪⎭ (25)

where I � ���−1√
We obtain the following result by substituting certain

transformations from Eq. 25 into Eq. 17.

�E
n+1

eiIψ � EneiIψ + d1
Δt
Δx( )2 e i+1( )Iψ − 2eiIψ + e i−1( )Iψ( )En (26)

Division of both sides of Eq. 26 by eiIψ which yields

�E
n+1 � En + dd1 2 cosψ − 2( )En (27)

where d � Δt
(Δx)2.

Re-write Eq. 27 as

�E
n+1 � En 1 + 2dd1 cosψ − 1( )( ) (28)

Substitute some of the transformation from Eq. 25 into Eq. 18
and divide the resulting Equation by eiIψ gives

En+1 � 1
10

En + 9�En+1( )
+ d

α

t1−α
a 2 cosψ − 2( )En+1t

1−α
n+1
α

+ b 2 cosψ − 2( )Ent
1−α
n

α
[
+c 2 cosψ − 2( )�En+1�t

1−α

α
] + σEnΔW (29)

Putting Eq. 28 into Eq. 29 and re-arranging the resulting
Equation gives

1 − 2da
t1−αn+1
t1−αn

cosψ − 1( )[ ]En+1 � 1
10

10 + 18dd1 cosψ − 1( )( )[
+2bd cosψ − 1( )
+2cd�t

1−α

t1−αn

cosψ − 1( ) 1 + 2dd1 cosψ − 1( )( )
+σΔW]En (30)

The amplification factor can be expressed as

En+1

En
� �a
�b

(31)

Where �a � 1 + 9
5dd1(cosψ − 1) + 2bd(cosψ − 1) + 2cd �t1−α

t1−αn(cosψ − 1)(1 + 2dd1(cosψ − 1)) +σΔW

�b � 1 − 2ad
t1−αn+1
t1−αn

cosψ − 1( )
Re-write Eq. 31 as

E
En+1

En

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 � E

�a
�b

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣2 (32)
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E
En+1

En

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣2 ≤E1

1 + 9
5
dd1 cosψ − 1( ) + 2bd cosψ − 1( )

+2cd�t
1−α

t1−αn

cosψ − 1( ) 1 + 2dd1 cosψ − 1( )( )
1 − 2ad

t1−αn+1
t1−αn

cosψ − 1( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

+ E
σΔW

1 − 2ad
t1−αn+1
t1−αn

cosψ − 1( )
∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
2

(33)

Let

1 + 9
5
dd1 cosψ − 1( ) + 2bd cosψ − 1( )

+2cd�t
1−α

t1−αn

cosψ − 1( ) 1 + 2dd1 cosψ − 1( )( )
1 − 2ad

t1−αn+1
t1−αn

cosψ − 1( )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

≤ 1

and
σ

1 − 2ad
t1−αn+1
t1−αn

cosψ − 1( )
∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
2

� λ

The inequality (33) can be expressed as

E
En+1

En

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣≤ 1 + λΔt (34)

Therefore, the proposed scheme is conditionally stable.

3 Problem formulation for fractal
stochastic fluid flow

Think about the Casson fluid’s flow over the sheet as laminar,
incompressible, unsteady, and one-dimensional. The sheet is
moving with velocity. u+ cos(aωt*) or u+ sin(aωt*). The abrupt

displacement of the plate induces the motion of the fluid. The
x*− axis is taken along the sheet and y*− axis is perpendicular to
the sheet. The fluid moves in a positive x*-axis. Consider a
situation where a magnetic field is applied in a direction
perpendicular to the sheet. Consider the effect of thermal
radiation, heat source, chemical reaction, and fluid flow. The
governing equations that describe fluid flow phenomena can be
mathematically stated as:

∂u*
∂t*

� 1 + 1
β

( )] ∂2u*
∂y*

+ gβ+ T − T∞( ) + gβ1 C − C∞( ) (35)

∂T
∂t*

� α1
∂2T
∂y*2

− τ DB
∂T
∂y*

∂C
∂y*

+ DT

T∞

∂T
∂y*

( )2( ) − 1
ρcp

∂qr
∂y*

+ Q

ρcp
T − T∞( ) (36)

∂C
∂t*

� DB
∂2C
∂y*2

+ DT

T∞

∂2T
∂y*2

− k1 C − C∞( )2 (37)

Subject to the boundary conditions

u* � Uw, T � Tw, C � C∞ when y* � 0
u* → 0, T → T∞, C → C∞ for y* → ∞} (38)

where u* is the horizontal component of the velocity, β+ and β1
represents the thermal expansion and solutal expansion, g is the
gravity, α1 is thermal diffusivity, Tw and Cw are temperature and
concentration on the sheet, T∞ and C∞ represents ambient
temperature and ambient concentration, k1 is the dimensional
reaction rate.

For making Eqs (35–38) dimensionless, consider the following
transformations

u � u*
u+

, y �
��
ω

]

√
y*, t � ωt*, θ � T − T∞

Tw − T∞
,ϕ � C − C∞

Cw − C∞
(39)

Substituting the transformations into Eqs. (35)-(38) gives

FIGURE 7
Effect of Brownian motion parameter on a temperature profile
for the fractal model using β � 3, λ2 � 0.7,Pr � 1,Q � 0.1, λ1 �
1.0, Rd � 0.1,Nt � 0.1, Sc � 1, γ � 1, σ � 0

FIGURE 8
Effect of thermophoresis parameter on a temperature profile for
the fractal model using β � 3, λ2 � 0.7,Pr � 1, Q � 0.1, λ1 � 1.0,Rd �
0.1,Nb � 0.1, Sc � 1, γ � 1, σ � 0
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∂u
∂t

� 1 + 1
β

( ) ∂2u
∂y2

+ λ+θ + λ1ϕ (40)

∂θ
∂t

� 1
Pr

∂2θ
∂y2

+ 4Rd

3Pr

∂2θ
∂y2

+Nb
∂θ
∂y

∂ϕ
∂y

+Nt
∂θ
∂y

( )2

+ Q1θ (41)

∂ϕ
∂t

� 1
Sc

∂2ϕ
∂y2

+ Nt

Nb

∂2θ
∂y2

− γϕ2 (42)

subject to the dimensionless boundary conditions

u � cos at( )or sin at( ), θ � 1,ϕ � 1
u → 0, θ → 0,ϕ → 0

} (43)

where β is the Casson parameter, λ+ is thermal mixed convection
parameter, λ1 denotes solutal mixed convection parameter, Rd is

radiation parameter, Nb represents the Brownian motion
coefficient, Nt represents thermophoresis coefficient, Pr is the
Prandtl number, Sc denotes Schmidt number, Q1 is the heat
source parameter, and γ is the dimensionless reaction
rate parameter.

The fractal stochastic system can be expressed as;

du � 1 + 1
β

( )∂yyu + λ+θ + λ1ϕ[ ]dtα + σ1dW (44)

dθ � 1
Pr

1 + 4
3
Rd( )∂yyθ +Nb∂yθ∂yϕ +Nt ∂yθ( )2 + Q1θ[ ]dtα

+σ2dW (45)

dϕ � 1
Sc
∂yyϕ + Nt

Nb
∂yyθ − γϕ2[ ]dtα + σ3dW (46)

Theorem 3. Let us consider a set B that is closed, bounded, and
convex in a Banach space. L2((0, t) × Ω) and Let V be a continuous
function that maps the ball B onto itself. If the image of the ball
under the transformationV is pre-compact, thenV possesses at least
one fixed point.

The statement of the above Theorem can be seen in
(Iqbal, 2011).

To prove the existence of a solution, consider only the stochastic
form of Eq. 44 as

du � 1 + 1
β

( )∂yyu + λ+θ + λ1ϕ[ ]dt + σ1dW (47)

where W represents the Wiener process.
Eq. 47 can be written as a Volterra integral equation if v is twice

differentiable with respect to the L2-norm.

v � v+ + ∫t
0

1 + 1
β

( )∂yyu + λ+θ + λ1ϕ[ ]dτ + σ1dW (48)

Eq. 48 can be expressed in operator form as

T � v+ x( ) + ∫t
0

1 + 1
β

( )∂yyu + λ+θ + λ1ϕ[ ]dτ + σ1dW (49)

The following method is used to establish the existence of a
fixed-point operator, v. The previously mentioned Theorem
3 will be used for this purpose. The Theorem guarantees that
each subset is convex, closed, and bounded in the function space.
A fixed point operator will be integrated for small random
variation dW. For best perturbation, the space L2[0, ζ], ζ �
|t − 0| will be adopted.

Next a ball Br(v+) is constructed which is bounded, closed, and
convex and it is centred at the given initial conditions as
L2 function.

For doing so

Br v+( ) � vϵL2 0, ζ[ ], v − v+‖ ‖L2 0,ζ[ ] < r{ } (50)

This implies ‖|v|L2[0,ζ]‖≤ r + v+.

FIGURE 9
Effect of Brownian motion parameter on concentration profile
for the fractal model using β � 3, λ2 � 0.7, Pr � 1,Q � 0.1, λ1 � 0.5,Rd �
0.1, Nt � 0.1, Sc � 1, γ � 1, σ � 0

FIGURE 10
Effect of reaction rate parameter on concentration profile for the
fractal model using β � 3, λ2 � 0.7, Pr � 1,Q � 0.1, λ1 � 0.5,Rd �
0.1,Nt � 0.1, Sc � 1,Nb � 0.1, σ � 0
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The subset mentioned above, which is bounded, convex, and
closed, exists within an infinite-dimensional space, rendering it non-
compact. To utilize Theorem 3, it is necessary to establish two
conditions:

i. T: Br(v+) → Br(v+)
ii. T(Br(v+)) is pre-compact.

Now
‖T − v+‖L2[0,ζ] � ‖∫t

0
[(1 + 1

β)∂yyu + λ+θ + λ1ϕ]dτ + σ1dW‖

T − v+‖ ‖L2 0,ζ[ ]≤∫t
0

1 + 1
β

( ) vyy
���� ����L2 0,ζ[ ] + λ+ θ‖ ‖L2 0,ζ[ ] + λ1 ϕ

���� ����L2 0,ζ[ ][ ]dτ
+ σ1| |∫t

0
v‖ ‖L2 0,ζ[ ]dW

T − v+‖ ‖L2 0,ζ[ ] ≤∫t

0
1 + 1

β
( )k2 + λ+ r + c1( ) + λ1 r + c2( )[ ]dτ

+ σ1| |∫t
0

dW

T − v+‖ ‖L2 0,ζ[ ]≤ 1 + 1
β

( )k2 + λ+ r + c1( ) + λ1 r + c2( )[ ]ζ
+ σ1| | W t( ) −W 0( )( )

(51)

Since W(t) is the finite random number, so

T − v+‖ ‖L2 0,ζ[ ]≤ 1 + 1
β

( )k2 + λ+ r + c1( ) + λ1 r + c2( )[ ]ζ + σ1| |β1ζ
(52)

For self-mapping

1 + 1
β

( )k2 + λ+ r + c1( ) + λ1 r + c2( )[ ]ζ + σ1| |β1ζ ≤ r

This implies ζ ≤ r
(1+1

β)k2+λ+(r+c1)+λ1(r+c2)+|σ1 |β1
If a solution to the problem exists, it exhibits continuity within

the given interval;

0,
r

1 + 1
β( )k2 + λ+ r + c1( ) + λ1 r + c2( ) + σ| |β

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The following approach is employed to establish the pre-

compactness of T.

Ti t( ) −Ti t1( )‖ ‖L2 0,ζ[ ]≤∫t1

t
1+ 1

β
( ) vyy

���� ����L2 0,ζ[ ] + λ+ θ‖ ‖L2 0,ζ[ ] + λ1 ϕ
���� ����L2 0,ζ[ ][ ]dτ

+ σ1| |∫t1

t
dW

(53)
Ti t( ) −Ti t1( )‖ ‖L2 0,ζ[ ]≤ 1+ 1

β
( ) vyy

���� ����L2 0,ζ[ ] + λ+ θ‖ ‖L2 0,ζ[ ] + λ1 ϕ
���� ����L2 0,ζ[ ][ ] t1 − t( )

+ σ1| | W t1( ) −W t( )( )

Ti t( ) −Ti t1( )‖ ‖L2 0,ζ[ ]≤ 1+ 1
β

( ) vyy
���� ����L2 0,ζ[ ] + λ+ θ‖ ‖L2 0,ζ[ ] + λ1 ϕ

���� ����L2 0,ζ[ ][ ] t1 − t( )
+ σ1| |β1 t1 − t( )

(54)

If t → t1, T(t) → Ti(t1). Thus Ti has a uniformly convergent
subsequence Tin of Ti. So, T(Br(v+)) is pre-compact. Thus, there must
exist a fixed point function �Ti of Ti which is also the solution of Eq. 47.

4 Results and discussions

A fractal stochastic scheme is proposed. The scheme is two-
stage, and its stability and consistency are proven. The finite
difference scheme finds the solution of the fractal stochastic
problem on each grid point. The scheme is conditionally stable,

FIGURE 11
Mesh plot for fractal stochastic model using α � 0.5, β � 3, λ2 �
0.5,Pr � 1, Q � 0.1, λ1 � 1,Rd � 0.1,Nt � 0.1, Sc � 1, γ � 0.1,Nb �
0.1, σ � 0.3,u0 � cos(0.5t)

FIGURE 12
Mesh plot for fractal stochastic model using α � 0.5, β � 3, λ2 �
0.5,Pr � 1,Q � 0.1, λ1 � 1,Rd � 0.1,Nt � 0.1, Sc � 1,
γ � 0.1,Nb � 0.1, σ � 0.3,u0 � cos(3t)
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so the step sizes are restricted. The scheme can be used to solve
fractal and stochastic problems. Given the implicit nature of the
second stage of the scheme, it is necessary to employ an iterative
method to solve the difference equation derived from the suggested
scheme. Determining the stopping criteria for fractal problem-
solving is contingent upon evaluating the norm of the difference
between two solutions computed during consecutive iterations. In
the context of stochastic problems, the practice of employing the
averaged answer arises when the code is executed multiple times.

Eqs (44–46) using boundary conditions (43) solved by the
proposed scheme. Figure 1 shows the comparison between

fractal and fractal stochastic models. The coefficient of the
Brownian motion term is chosen to be the same for all three
Eqs (44–46). The decay in velocity occurs due to the decay of the
fluid. With the decay of fluid, the diffusion process of fluid also
gets altered.

Figure 2 shows the comparison of existing and proposed
numerical schemes. Upon examination of Figure 2, it becomes
evident that the proposed scheme exhibits a higher convergence
rate than the preexisting Crank-Nicolson scheme when applied to
the fractal model. Figure 3 displays the Casson parameter’s effect
on the fractal model’s velocity profile. The velocity profile
decreases by incrementing the Casson parameter. The
increment in the Casson parameter produces decay in the
coefficient of diffusion term, and due to this decay of diffusion
process in the fluid, the velocity of the fluid decays. This decay is
due to the complex interaction between temperature gradient
forces and fluid velocity.

The effect of the thermal mixed convection parameter on the
velocity profile is displayed in Figure 4. The velocity profile is
enhanced by raising the thermal mixed convection parameter.
The temperature gradient is one of the forces in the mixed
convection flows that can be responsible for the rise and fall of
the flow velocity. Due to the boundaries, the figures give an
overwhelming response for the extended time, thus giving a
detailed idea of how the features and the system operate.

Figure 5 shows the change in the temperature distribution
profile due to the heating source parameter. Here, we can see that
the profile’s temperature increases with an increment in the
heating source parameter. Now, the fluid is being heated with
radiation from a heat source. In other words, the heat flow of the
fluid increases with the incident radiation power. Therefore, the
temperature profile of the fluid graph is also increasing. Figure 6
shows the influence of radiation parameters on the temperature
profile. As can be observed from the figure, the temperature profile
of the fluid is facing an increasing trend due to the increase in
radiation parameters. An increase in incoming radiation flux
increases the heat flux, thus raising the temperature profile.
Figure 7 shows the influence of the Brownian motion parameter
on the temperature profile. The motion of the hot particles is now
generally increasing the temperature profile of the fluid. The
correlation between the temperature profile and the variation of
the thermophoresis parameters is shown in Figure 8. As the values
of the thermophoresis parameters rise, so does the temperature
profile. Accelerating the thermophoresis parameter results in an
enhanced rotational process whereby heated particles are
transported more rapidly from the plate to the vicinity of the
plate and vice versa. As a consequence of the progressive
advancement of this cycle, particles with higher thermal energy
migrate towards distinct regions within the fluid, resulting in an
elevation of the fluid’s temperature.

A correlation between the temperature profile and the variation
of the Brownian motion parameter is seen in Figure 9. As the
Brownian motion parameter is increased, the concentration profile
decreases. Figure 10 shows the impact of the reaction rate parameter
on the concentration profile. The concentration profile diminishes
due to the augmentation of the response rate parameter. The
growing reaction rate parameter enhances the conversion of one
substance into another, and the concentration profile decays. Figures

FIGURE 13
Contour plot for fractal stochasticmodel using α � 0.5, β � 3, λ2 �
0.5,Pr � 1,Q � 0.1, λ1 � 1,Rd � 0.1,Nt � 0.1, Sc � 1,
γ � 0.1,Nb � 0.1, σ � 0.3,u0 � cos(0.5t)

FIGURE 14
Contour plot for fractal stochastic model using α � 0.5, β � 3, λ2 �
0.5, Pr � 1,Q � 0.1, λ1 � 1,Rd � 0.1,Nt � 0.1, Sc � 1, γ �
0.1, Nb � 0.1, σ � 0.3,u0 � cos(3t)
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11, 12 show the fractal stochastic velocity profile mesh plots and
Figures 13, 14 displays the contour plots for fractal stochastic
velocity profile for the case of flow over an oscillatory sheet using
cosine boundary conditions. The effect of boundary conditions over
a long time can be seen in mesh plots. The complete discussion
shows that each figure’s detailed analysis clearly indicates the type of
mixed convective nanofluid flow with fractal features. The
numerical scheme we gave has proved effective, as we could
validate the results with the help of these figures.

5 Conclusion

To better understand the fractal stochastic heat and mass
transfer in mixed convective nanofluid flow, we propose a
thorough numerical model in this work. The complex
relationship between convective flow, nanofluid properties,
and the randomness of heat and mass transfer within the
system was effectively simulated and examined using the finite
difference method. We suggest a finite difference scheme, a
numerical technique for approximating derivatives in
differential equations, to solve the equations numerically. The
approach uses difference equations to approximatively calculate
the spatial derivatives by discretizing the computational domain
into a grid. Nanofluid flow behaviour can be simulated, thereby
predicting heat and mass transfer characteristics. A two-
dimensional mathematical model of such a boundary layer
flow has been presented in this work. It is a time-dependent
model that involves the flow over the plates. We introduced the
mathematical heat and mass transfer model for boundary layer
flow over the flat and oscillating sheets by considering the
fractional time derivative. Nanofluids are fluids with
nanoparticle suspensions, and their response under mixed
convective conditions has been studied. The interaction
between forced convection and natural convection is known as
mixed convection. The temperature or concentration gradient
condition produces natural convection in the fluid. Because of
their unusual characteristics and interactions with the fluid,
nanoparticles bring a new layer of complexity to the system.
The proposed scheme has solved the problem, and the following
concluding points are found,

i. The fractal scheme under consideration exhibited a higher
convergence rate than the fractal Crank-Nicolson scheme.

ii. Increasing the Casson parameter in the fractal mathematical
model causes the velocity profile to decay.

iii. The fractal model’s increasing heat source, thermal radiation,
thermophoresis, and Brownian motion factors enhance the
temperature profile.

iv. The concentration profile underwent decay due to the
increasing values of the Brownian motion particle and the
reaction rate parameter.

Our study highlights the significance of incorporating fractal
stochastic heat and mass transport in the simulation of mixed
convective nanofluid flows. Nanofluid properties’ elaborate and
ever-changing nature and the influence of fractal stochastic
phenomena create a multifaceted and dynamic system that opens

up novel possibilities for scientific investigation and future
technological progress. The present study establishes a
fundamental basis for future inquiries and advancements in
nanofluid dynamics and heat transfer.

Still, it is essential to discuss certain limitations of our work (Arif
et al., 2023; Nawaz et al., 2024a; Nawaz et al., 2024b). Assumptions
made based on the mathematical models might oversimplify the
real-world scenarios. Although we took a numerical approach,
future studies may need to elaborate on the models, keeping real-
life scenarios in mind.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

MA: Conceptualization, Investigation, Supervision,
Writing–original draft, Writing–review and editing. KA: Data
curation, Formal Analysis, Funding acquisition, Resources,
Visualization, Writing–review and editing. YN: Conceptualization,
Investigation, Resources, Software, Writing–original draft.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article. This
research received no specific grant from the public, commercial, or
not-for-profit funding agencies.

Acknowledgments

The authors wish to express their gratitude to Prince Sultan
University for facilitating the publication of this article through the
Theoretical and Applied Sciences Lab.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Frontiers in Energy Research frontiersin.org12

Arif et al. 10.3389/fenrg.2024.1373079

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373079


References

Abbas, N., and Shatanawi, W. (2022). Heat and mass transfer of micropolar-casson
nanofluid over vertical variable stretching riga sheet. Energies 15, 4945. doi:10.3390/
en15144945

Ahmad Sheikh, N., Ling Chuan Ching, D., Abdeljawad, T., Khan, I., Jamil, M., and
Sooppy Nisar, K. (2021). A fractal-fractional model for the mhd flow of casson fluid in
a channel. Comput. Mater. Continua 67 (2), 1385–1398. doi:10.32604/cmc.2021.
011986

Ali, A., Hussain, M., Anwar, M. S., and Inc, M. (2021a). Mathematical modeling and
parametric investigation of blood flow through a stenosis artery. Appl. Math. Mech. 42,
1675–1684. doi:10.1007/s10483-021-2791-8

Ali, I., Rasheed, A., Anwar, M. S., Irfan, M., and Hussain, Z. (2021b). Fractional
calculus approach for the phase dynamics of Josephson junction. Chaos, Solit. Fractals
143, 110572. doi:10.1016/j.chaos.2020.110572

Amjad, M., Zehra, I., Nadeem, S., Abbas, N., Saleem, A., and Issakhov, A. (2020).
Influence of Lorentz force and induced magnetic field effects on Casson micropolar
nanofluid flow over a permeable curved stretching/shrinking surface under the
stagnation region. Surf. Interfaces 21, 100766. doi:10.1016/j.surfin.2020.100766

Anwar, M. S. (2019). Modeling and numerical simulations of some fractional
nonlinear viscoelastic flow problems (Lahore, Pakistan: Lahore University of
Management of Science). PhD diss.

Anwar, M. S. (2020). Numerical study of transport phenomena in a nanofluid using
fractional relaxation times in Buongiorno model. Phys. Scr. 95 (3), 035211. doi:10.1088/
1402-4896/ab4ba9

Anwar, M. S., Alam, M. M., Khan, M. A., Abouzied, A. S., Hussain, Z., and
Puneeth, V. (2024). Generalized viscoelastic flow with thermal radiations and
chemical reactions. Geoenergy Sci. Eng. 232, 212442. doi:10.1016/j.geoen.2023.
212442

Arif, M. S., Shatanawi, W., and Nawaz, Y. (2023). Modified finite element study for
heat and mass transfer of electrical MHD non-Newtonian boundary layer nanofluid
flow. Mathematics 11 (4), 1064. doi:10.3390/math11041064

Babin, A. V., and Vishik, M. I. (1985). Attractors of Navier-Stokes systems and of
parabolic equations, and estimates for their dimensions. J. Sov. Math. 28, 619–627.
doi:10.1007/bf02112325

Batra, R., and Jena, B. (1991). Flow of a Casson fluid in a slightly curved tube. Int.
J. Eng. Sci. 29, 1245–1258. doi:10.1016/0020-7225(91)90028-2

Bensoussan, A., and Teman, R. (1973). Équations stochastiques du type
Navier–Stokes. J. Funct. Anal. 13, 195–222. doi:10.1016/0022-1236(73)90045-1

Busnello, B. (1999). A probabilistic approach to the two-dimensional Navier-Stokes
equations. Ann. Probab. 27, 1750–1780. doi:10.1214/aop/1022874814

Casson, N. (1959). “A flow equation for pigment-oil suspensions of the printing ink
type,” in Rheology of disperse systems (Oxford, UK: Pergamon Press).

Chepyzhov, V. V., and Llyin, A. A. (2004). On the fractal dimension of invariant sets:
applications to Navier–Stokes equation. Dis. Cont. Dyn. Syst. 10, 117–136. doi:10.3934/
dcds.2004.10

Cintosum, E., Smallwood, G. J., and Gulder, O. L. (2007). Flame surface fractal
characteristics in premixed turbulent combustion at high turbulence intensities. AIAA J.
45, 2785–2789. doi:10.2514/1.29533

Çolak, A. B., Shafiq, A., and Sindhu, T. N. (2022). Modeling of Darcy–Forchheimer
bioconvective Powell Eyring nanofluid with artificial neural network. Chin. J. Phys. 77,
2435–2453. doi:10.1016/j.cjph.2022.04.004

Constantin, P., Foias, C., Manley, O. P., and Temam, R. (1985). Determining modes
and fractal dimension of turbulent flows. J. Fluid Mech. 150, 427–440. doi:10.1017/
s0022112085000209

Constantin, P., and Iyer, G. (2008). A stochastic Lagrangian representation of the
three-dimensional incompressible Navier-Stokes equations. Commun. Pure Appl. Math.
61, 330–345. doi:10.1002/cpa.20192

Crisan, D., Flandoli, F., and Holm, D. D. (2019). Solution properties of a 3D
stochastic Euler Fluid equation. J. Nonlin. Sci. 29, 813–870. doi:10.1007/s00332-018-
9506-6

Das, B., and Batra, R. (1993). Secondary flow of a Casson fluid in a slightly
curved tube. Int. J. Nonlinear Mech. 28, 567–577. doi:10.1016/0020-7462(93)90048-p

Dash, R. K., Mehta, K. N., and Jayaraman, G. (1996). Casson fluid flow in a pipe filled
with a homogeneous porous medi-um. Int. J. Eng. Sci. 34, 1145–1156. doi:10.1016/0020-
7225(96)00012-2

Eldabe, N. T., Saddeck, M. G., and El-Sayed, A. F. (2001). Heat transfer of MHD non-
Newtonian Casson fluid flow between two rotating cylinders. Mech. Mech. Eng. 5,
237–251.

Gangal, A. D., Parvate, A., and Satin, S. (2011). Calculus on fractal curves in rn.
Fractals 19, 15–27. doi:10.1142/s0218348x1100518x

Gawedzki, K. (2008). “Soluble models of turbulent transport,” in Non-equilibrium
statistical mechanics and turbulence Editors S. Nazarenko and O. Zaboronski 3
(Cambridge, UK: Cambridge Uniersity Press), 47–107.

Gouldin, F. C. (1987). An application of fractals to modeling premixed turbulent
flames. Comb. Flame 68, 249–266. doi:10.1016/0010-2180(87)90003-4

Hinz, M., and Teplyaev, A. (2015). Local Dirichlet forms, Hodge theory, and the
Navier–Stokes equations on topologically one-dimensional fractals. Trans. Amer. Math.
Soc. 367, 1347–1380. doi:10.1090/s0002-9947-2014-06203-x

Holm, D. D. (2015). Variational principles for stochastic fluid dynamics. Proc. R. Soc.
A 471, 20140963. doi:10.1098/rspa.2014.0963

Hussain, M., Shoaib, M., Ranjha, Q. A., Anwar, M. S., Ahmad, Z., and Inc, M. (2023).
Numerical solution to flow of Casson fluid via stretched permeable wedge with chemical
reaction and mass transfer effects. Mod. Phys. Lett. B 38, 2341008. doi:10.1142/
s0217984923410087

Hussain, Z., Muhammad, S., and Anwar, M. S. (2021). Effects of first-order chemical
reaction and melting heat on hybrid nanoliquid flow over a nonlinear stretched curved
surface with shape factors. Adv. Mech. Eng. 13 (4), 168781402199952. doi:10.1177/
1687814021999526

Iqbal, M. S. (2011). Solutions of boundary value problems for nonlinear partial
differential equations by fixed point methods.

Khan, N. A., Ara, A., Ali, S. A., and Mahmood, A. (2009). Analytical study of Navier-
Stokes equation with fractional orders using He’s homotopy perturbation and
variational iteration methods. Int. J. Nonlinear Sci. Numer. Simul. 10 (9),
1127–1134. doi:10.1515/ijnsns.2009.10.9.1127

Kukavica, I. (2009). The fractal dimension of the singular set for solutions of the
Navier–Stokes system. Nonlinearity 22, 2889–2900. doi:10.1088/0951-7715/22/
12/005

Kumar, D., Kumar, S., Abbasbandy, S., and Rashidi, M. M. (2014). Analytical solution
of fractional Navier–Stokes equation by using modified Laplace decomposition method.
Ain Shams Eng. J. 5, 569–574. doi:10.1016/j.asej.2013.11.004

Lanjwani, H. B., Saleem, S., Chandio, M. S., Anwar, M. I., and Abbas, N. (2021).
Stability analysis of triple solutions of Casson nanofluid past on a vertical exponentially
stretching/shrinking sheet. Adv. Mech. Eng. 13, 168781402110596. doi:10.1177/
16878140211059679

Lanotte, A. S., Benzi, R., Malapaka, S. K., Toschi, F., and Biferale, L. (2015).
Turbulence on a fractal Fourier set. Phys. Rev. Lett. 115, 264502. doi:10.1103/
physrevlett.115.264502

Lanotte, A. S., Malapaka, S. K., and Biferale, L. (2016). On the vortex dynamics in
fractal Fourier turbulence. Eur. Phys. J. E 39, 49. doi:10.1140/epje/i2016-16049-x

le Jan, Y., and Sznitman, A. S. (1997). Stochastic cascades and 3-dimensional
Navier–Stokes equations. Probab. Theory Relat. Fields 109, 343–366. doi:10.1007/
s004400050135

Łukaszewicz, G., and Kalita, P. (2016). “Navier–Stokes Equations: an introduction
with applications,” in Advances in mechanics and mathematics, vol. 34. Editors
G. Łukaszewicz and P. Kalita (Cham: Springer).

Mahalov, A., Riti, E. S., and Leibovich, S. (1990). Invariant helical subspaces for the
Navier-Stokes equations. Arch. Ration. Mech. Anal. 112, 193–222. doi:10.1007/
bf00381234

Marchioro, C., and Pulvirenti, M. (1984). “Vortex methods in two-dimensional fluid
mechanics,” in Lecture notes in physics (Berlin Germany: Springer).

Mazzi, B., and Vassilicos, J. C. (2004). Fractal-generated turbulence. J. Fluid Mech.
502, 65–87. doi:10.1017/s0022112003007249

Nadeem, S., Haq, R. U., and Akbar, N. S. (2013). MHD three-dimensional
boundary layer flow of Casson nanofluid past a linearly stretching sheet with
convective boundary condition. IEEE Trans. Nanotechnol. 13, 109–115. doi:10.
1109/tnano.2013.2293735

Nawaz, Y., Arif, M. S., Abodayeh, K., Soori, A. H., and Javed, U. (2024b). A
modification of explicit time integrator scheme for unsteady power-law nanofluid
flow over the moving sheets. Front. Energy Res. 12, 1335642. doi:10.3389/fenrg.2024.
1335642

Nawaz, Y., Arif, M. S., Nazeer, A., Abbasi, J. N., and Abodayeh, K. (2024a). A
two-stage reliable computational scheme for stochastic unsteady mixed
convection flow of Casson nanofluid. Int. J. Numer. Methods Fluids. doi:10.
1002/fld.5264

Oyelakin, I. S., Mondal, S., and Sibanda, P. (2016). Unsteady Casson nanofluid flow
over a stretching sheet with thermal radiation, convective and slip boundary conditions.
Alex. Eng. J. 55, 1025–1035. doi:10.1016/j.aej.2016.03.003

Palmer, T. N., and Williams, P. D. (2008). Introduction. Stochastic physics and
climate modelling. Philos. Trans. R. Soc. A 366, 2419–2425. doi:10.1098/rsta.2008.
0059

Parvate, A., and Gangal, A. D. (2009). Calculus on fractal subsets of real-line I:
formulation. Fractals 17, 53–81. doi:10.1142/s0218348x09004181

Parvate, A., and Gangal, A. D. (2011). Calculus on fractal subsets of real line II:
conjugacy with ordinary calculus. Fractals 19, 271–290. doi:10.1142/
s0218348x11005440

Frontiers in Energy Research frontiersin.org13

Arif et al. 10.3389/fenrg.2024.1373079

https://doi.org/10.3390/en15144945
https://doi.org/10.3390/en15144945
https://doi.org/10.32604/cmc.2021.011986
https://doi.org/10.32604/cmc.2021.011986
https://doi.org/10.1007/s10483-021-2791-8
https://doi.org/10.1016/j.chaos.2020.110572
https://doi.org/10.1016/j.surfin.2020.100766
https://doi.org/10.1088/1402-4896/ab4ba9
https://doi.org/10.1088/1402-4896/ab4ba9
https://doi.org/10.1016/j.geoen.2023.212442
https://doi.org/10.1016/j.geoen.2023.212442
https://doi.org/10.3390/math11041064
https://doi.org/10.1007/bf02112325
https://doi.org/10.1016/0020-7225(91)90028-2
https://doi.org/10.1016/0022-1236(73)90045-1
https://doi.org/10.1214/aop/1022874814
https://doi.org/10.3934/dcds.2004.10
https://doi.org/10.3934/dcds.2004.10
https://doi.org/10.2514/1.29533
https://doi.org/10.1016/j.cjph.2022.04.004
https://doi.org/10.1017/s0022112085000209
https://doi.org/10.1017/s0022112085000209
https://doi.org/10.1002/cpa.20192
https://doi.org/10.1007/s00332-018-9506-6
https://doi.org/10.1007/s00332-018-9506-6
https://doi.org/10.1016/0020-7462(93)90048-p
https://doi.org/10.1016/0020-7225(96)00012-2
https://doi.org/10.1016/0020-7225(96)00012-2
https://doi.org/10.1142/s0218348x1100518x
https://doi.org/10.1016/0010-2180(87)90003-4
https://doi.org/10.1090/s0002-9947-2014-06203-x
https://doi.org/10.1098/rspa.2014.0963
https://doi.org/10.1142/s0217984923410087
https://doi.org/10.1142/s0217984923410087
https://doi.org/10.1177/1687814021999526
https://doi.org/10.1177/1687814021999526
https://doi.org/10.1515/ijnsns.2009.10.9.1127
https://doi.org/10.1088/0951-7715/22/12/005
https://doi.org/10.1088/0951-7715/22/12/005
https://doi.org/10.1016/j.asej.2013.11.004
https://doi.org/10.1177/16878140211059679
https://doi.org/10.1177/16878140211059679
https://doi.org/10.1103/physrevlett.115.264502
https://doi.org/10.1103/physrevlett.115.264502
https://doi.org/10.1140/epje/i2016-16049-x
https://doi.org/10.1007/s004400050135
https://doi.org/10.1007/s004400050135
https://doi.org/10.1007/bf00381234
https://doi.org/10.1007/bf00381234
https://doi.org/10.1017/s0022112003007249
https://doi.org/10.1109/tnano.2013.2293735
https://doi.org/10.1109/tnano.2013.2293735
https://doi.org/10.3389/fenrg.2024.1335642
https://doi.org/10.3389/fenrg.2024.1335642
https://doi.org/10.1002/fld.5264
https://doi.org/10.1002/fld.5264
https://doi.org/10.1016/j.aej.2016.03.003
https://doi.org/10.1098/rsta.2008.0059
https://doi.org/10.1098/rsta.2008.0059
https://doi.org/10.1142/s0218348x09004181
https://doi.org/10.1142/s0218348x11005440
https://doi.org/10.1142/s0218348x11005440
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373079


Pishkoo, A., and Darus, M. (2021). Using fractal calculus to solve fractal
Navier–Stokes equations, and simulation of laminar static mixing in COMSOL
multiphysics. Frac. Fract. 5, 16. doi:10.3390/fractalfract5010016

Pope, S. B. (1994). On the relationship between stochastic Lagrangian models of
turbulence and second-moment closures. Phys. Fluids 6, 973–985. doi:10.1063/1.
868329

Rasheed, A., and Anwar, M. S. (2018). Numerical computations of fractional
nonlinear Hartmann flow with revised heat flux model. Comput. Math. Appl. 76
(10), 2421–2433. doi:10.1016/j.camwa.2018.08.039

Scheffer, V. (1978). Fractal geometry and turbulence-Navier-Stokes
equations and the Hausdorff dimension. Acad. Sci. Paris Compt. Rend. A-Sci.
Math. 282, 121.

Shafiq, A., Çolak, A. B., and Sindhu, T. N. (2023). Modeling of Soret and Dufour’s
convective heat transfer in nanofluid flow through a moving needle with artificial
neural network. Arabian J. Sci. Eng. 48 (3), 2807–2820. doi:10.1007/s13369-022-
06945-9

Shafiq, A., Çolak, A. B., Sindhu, T. N., and Muhammad, T. (2022). Optimization of
Darcy-Forchheimer squeezing flow in nonlinear stratified fluid under convective
conditions with artificial neural network. Heat Transf. Res. 53 (3), 67–89. doi:10.
1615/heattransres.2021041018

Shah, K., and Abdeljawad, T. (2024). Study of radioactive decay process of uranium
atoms via fractals-fractional analysis. South Afr. J. Chem. Eng. 48, 63–70. doi:10.1016/j.
sajce.2024.01.003

Song, F., and Em Karniadakis, G. (2019). Fractional magnetohydrodynamics:
algorithms and applications. J. Comp. Phys. 378, 44–62. doi:10.1016/j.jcp.2018.10.047

Sreenivasan, K. R. (1991). Fractals and multifractals in fluid turbulence. Ann. Rev.
Fluid Mech. 23, 539–600. doi:10.1146/annurev.fluid.23.1.539

Sreenivasan, K. R., and Meneveau, C. (1986). The fractal facets of turbulence. J. Fluid
Mech. 173, 357–386. doi:10.1017/s0022112086001209

Srivastava, V., and Saxena, M. (1994). Two-layered model of Casson fluid flow
through stenotic blood vessels: applications to the cardiovascular system. J. Biomech. 27,
921–928. doi:10.1016/0021-9290(94)90264-x

Ueki, Y., Tsuji, Y., and Nakamura, I. (1999). Fractal analysis of a circulating flow field
with two different velocity laws. Eur. J. Mech. B/Fluids 18, 959–975. doi:10.1016/s0997-
7546(99)00123-5

Vishik, M. I., Komechi, A. I., and Fursikov, A. I. (1979). Some mathematical problems
of statistical hydrodynamics. Russ. Math. Surv. 34, 149–234. doi:10.1070/
rm1979v034n05abeh003906

Wang, K., and Liu, S. (2016). Analytical study of time-fractional Navier–Stokes equation
by using transform methods. Adv. Diff. Equa. 2016, 61. doi:10.1186/s13662-016-0783-9

Yang, X.-G., Guo, B., and Li, D. (2020). The fractal dimension of pullback attractors
for the 2D Navier–Stokes equations with delay. Math. Meth. Appl. Sci. 43, 9637–9653.
doi:10.1002/mma.6634

Zhang, X. (2012). Stochastic Lagrangian particle approach to fractal Navier–Stokes
equations. Comm. Math. Phys. 311, 133–155. doi:10.1007/s00220-012-1414-2

Frontiers in Energy Research frontiersin.org14

Arif et al. 10.3389/fenrg.2024.1373079

https://doi.org/10.3390/fractalfract5010016
https://doi.org/10.1063/1.868329
https://doi.org/10.1063/1.868329
https://doi.org/10.1016/j.camwa.2018.08.039
https://doi.org/10.1007/s13369-022-06945-9
https://doi.org/10.1007/s13369-022-06945-9
https://doi.org/10.1615/heattransres.2021041018
https://doi.org/10.1615/heattransres.2021041018
https://doi.org/10.1016/j.sajce.2024.01.003
https://doi.org/10.1016/j.sajce.2024.01.003
https://doi.org/10.1016/j.jcp.2018.10.047
https://doi.org/10.1146/annurev.fluid.23.1.539
https://doi.org/10.1017/s0022112086001209
https://doi.org/10.1016/0021-9290(94)90264-x
https://doi.org/10.1016/s0997-7546(99)00123-5
https://doi.org/10.1016/s0997-7546(99)00123-5
https://doi.org/10.1070/rm1979v034n05abeh003906
https://doi.org/10.1070/rm1979v034n05abeh003906
https://doi.org/10.1186/s13662-016-0783-9
https://doi.org/10.1002/mma.6634
https://doi.org/10.1007/s00220-012-1414-2
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1373079

	Numerical modeling of mixed convective nanofluid flow with fractal stochastic heat and mass transfer using finite differences
	1 Introduction
	2 Proposed computational scheme
	3 Problem formulation for fractal stochastic fluid flow
	4 Results and discussions
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


