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As an indispensable part of the power transmission system, insulators are of
great importance to the safe and stable operation of power grids in terms of
their healthy and reliable operation. To realize real-time monitoring of insulator
defects under a complex environment, this paper proposes an insulator defect
detection method based on the You Only Look Once version 7-tiny (YOLOv7-
tiny) algorithm. Then an edge device-unmanned aerial vehicle (UAV) inspection
system is developed to verify the real-time performance of the algorithm. By
introducing the structure intersection over union (SIoU) loss function to the
YOLOv7-tinymodel, the regression speed of the anchor frame can be effectively
accelerated on the basis of the miniature model, to accelerate the model
operation. Thereafter, a smooth sigmoid linear unit (SiLU) activation function is
used in the network neck to improve the nonlinear representation ability; After
that, an edge computing device based on NVIDIA Jetson Xavier NX is established
to verify the real-time performance of the method. Experimental results reveal
mean average precision (mAP) of insulators and their missing series defects is as
high as 98.31%. Besides, the detection speed of the designedmodel deployed to
mobile edge devices can reach 35 frames per second (FPS), with real-time and
accurate detection performance of insulators and their missing series defects.

KEYWORDS

insulator defect, YOLOv7-tiny model, edge computing module, online detection, drone
inspection

1 Introduction

Overhead power lines play a crucial role in power transmission at various voltage
levels (Kiessling et al., 2014; Xiao et al., 2023b). As the energy lifeline of the power system,
their reliable structure is essential for ensuring the safe and stable operation of the power
system (Kumar et al., 2019; Kumar et al., 2022). The architecture of overhead power lines
includes line towers, conductors, insulators, and other key facilities (Albert and Hallowell,
2013; Xiao et al., 2023a). However, due to the effects of climate, extreme weather, and other
environmental factors, as well as human interference and foreign objects (Chen et al., 2020),
overhead power line structures are susceptible to external intrusion, which can result in
insulator defects and other faults (Kumar et al., 2020; Kumari et al., 2022). The leakage
current caused by these factors can directly impact the safety of power operation and
maintenance personnel, as well as the reliability of power transmission (Yu and Song, 2021;
Sun et al., 2022).
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Addressing the issue of detecting and locating faults in
overhead power line insulators (Tao et al., 2018; Qiu et al., 2023),
various common analytical methods have been employed, including
manual inspection, infrared thermal imaging, and visual image
analysis (Zhang et al., 2017; Xu et al., 2022). Among these, the
utilization of unmanned aerial vehicle (UAV) for inspecting
overhead transmission lines presents notable advantages such as
high efficiency (Saxena et al., 2021; Yan et al., 2023), low cost,
and operational simplicity. In recent years, this approach has
gained widespread application in the inspection of transmission
lines, particularly in challenging environments or post-disaster
assessment scenarios (Chowdhury et al., 2021).

Numerous scholars domestically and internationally have
conducted extensive research on the issue of insulator faults. The
research is primarily categorized into classical feature extraction and
artificial intelligence methods (Antwi-Bekoe et al., 2022; Pan et al.,
2022). Classical feature extraction techniques include binarization,
binary support vector machines (Zhou et al., 2020), edge detection
algorithms based on Canny (Cao et al., 2020), andmultiscale feature
extraction (Zhang et al., 2020; Siu et al., 2022). After the feature
extraction process, fault areas are identified using either a threshold
method or classical machine learning approaches. However, these
methods have limitations in terms of accuracy, sensitivity to
background interference, and real-time analysis, especially when
dealing with high-resolution images and complex background
disturbances.

With the advancement of artificial intelligence technology
and computing resources, various deep learning frameworks
have been proposed for real-time identification of the location
and types of insulator faults (Tao et al., 2018). Pioneered the
use of convolutional neural network to analyze aerial images,
providing a robust methodology for identifying power line
insulator defects. Building on this foundation, (Guo et al., 2019),
introduced YOLOv3, presenting an innovative real-time approach
to insulator defect detection with improved efficiency and accuracy
(Jiang et al., 2020). Presented YOLOv4-tiny which reduced the
parameters and improved the real-time performance through
innovative modifications compared to YOLOv3 (Bie et al., 2023).
Proposed an improved YOLOv5 algorithm, named YOLOv5n-
L, for lightweight. In a subsequent development, (Zhao et al.,
2021), contributed a refined model based on the faster region
convolutional neural network, specifically tailored for recognizing
insulators in transmission lines and enhancing fault detection
precision. A common limitation of these detection models
is the neglect of hardware execution speed in real-world
applications, thereby restricting the real-time capability of insulator
fault detection.

To mitigate the aforementioned issues, (Wang et al., 2020),
introduced an improved ResNeSt and region proposal network,
emphasizing enhanced accuracy in insulator defect identification.
Similarly, (Xu S. et al., 2022), contributed with an Improved
MobilenetV1-YOLOv4, prioritizing lightweight models without
compromising detection precision (Dian et al., 2022). Proposed the
Faster R-Transformer, specifically tailored for efficient insulator
detection in complex aerial environments, showcasing adaptability
to diverse operational scenarios. Furthermore, (Ding et al., 2022),
presented a high-accuracy real-time insulator string defect
detection method based on Improved YOLOv5, highlighting

precision and timely identification of potential issues. However,
these methods have primarily been tested through server-side
deployment, and the exploration of online detection using
edge computing devices on unmanned UAV remains relatively
unexplored.

To address the insufficient real-time performance in insulator
defect detection for UAV inspections in power grid patrols, this
paper proposes an online detection method for insulator defects
based on YOLOv7-tiny. The model is trained using an insulator
dataset publicly available from the State Grid Corporation of
China. Comparative analyses are conducted between the improved
model and commonly used classical algorithms to demonstrate
the effectiveness of the proposed approach. To assess the real-time
performance of the algorithm, an edge computing module based
on the NVIDIA Graphics Processing Unit (GPU) is established.
Experimental verification shows that the execution speed can reach
35 frames per second.

The structure of this paper is organized as below: Section 2
presents the principle of YOLOv7-tiny for insulator defect detection,
and Section 3 develops the hardware platform for testing the real-
time detection. Then, the experiments and conclusion are given in
Sections 4, 5.

2 Insulator defect detection based on
YOLOv7-tiny

2.1 YOLOv7-tiny algorithm structure

The analysis of UAV gimbal visual images in power grid
inspections poses a challenge due to their high resolution.
Constrained by complex background noise, classical signal analysis
theories find it challenging to discriminate insulator fault regions
effectively (Xia et al., 2022). To address this, this paper employs a
YOLOv7-based object detection algorithm for insulator detection.
Its notable advantages include strong noise resistance and excellent
detection accuracy.

YOLOv7, a novel object detection algorithm proposed by
scholars Chien-Yao Wang, Alexey Bochkovskiy, and others in 2022
(Wang et al., 2023), outperforms all known object detection network
models in terms of both speed and accuracy.The algorithm achieves
a frame-per-second transmission rate ranging from 5 frames per
second (FPS) to 160 FPS.

YOLOv7 introduces an Extended Efficient Layer Aggregation
Network (E-ELAN) as itsmain innovation.This efficient aggregation
network enhances the learning and convergence processes of deep
networks by controlling the shortest and longest gradient paths.
Simultaneously, E-ELAN improves network feature extraction
capabilities by extending, shuffling, and merging while maintaining
the original gradient paths. The main network employs a Max-
Pooling (MP) module for downsampling features, reducing
detail loss in feature representation. The neck network integrates
the feature pyramid network and path aggregation network
from YOLOv5 for feature fusion. Spatial Pyramid Pooling
(SPP) combined with Cross Stage Partial (CSP) structure is
enhanced into SPPCSPC, integrating convolution operations
and convolution branches before and after SPP to reduce
computation while improving accuracy. The Receptive Field
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FIGURE 1
System structure diagram of designed YOLOv7-tiny model.

Enhanced Convolution (REPConv) module is employed in two
structures during training and inference. During inference,
reparameterization is applied without compromising accuracy,
reducing parameters.

Compared to other object detection models, although YOLOv7
demonstrates significant improvements in both detection speed
and accuracy, its computational complexity poses challenges
for deployment on mobile computing platforms. Therefore, this
paper proposes insulator defect detection based on a lightweight
YOLOv7-tiny model.

YOLOv7-tiny is a lightweight model derived from YOLOv7
(Ma et al., 2023), as illustrated in Figure 1, with an input
pixel size of 640 ×640× 3. The basic convolutional module
(Conv+BN+LeakyReLU, CBL) comprises convolution, batch
normalization, and the Leaky Rectified Linear Unit activation
function (LeakyReLU). To reducemodel complexity, ELAN replaces
E-ELAN, and in ELAN, features are branched with a single CBL
module and concatenated with three CBL modules in series. The
output of these four features is concatenated through a fusion
layer (Concat), and finally, it passes through a CBL module to
produce the output features. The MP downsampling module
removes the convolutional branch, retaining only the pooling
operation. In the neck network, the SPPCPSC module divides the
input features into two parts. One part passes through the SPP
module, while the other part passes through the CBL layer. The
resulting features are then concatenated through the Concat layer,
and the final features are output after passing through a CBL layer.
Simultaneously, the REPConv module is removed from the neck
network. The network head outputs detection results for three
scales: 80 × 80 × (5+n) × 3, 40 × 40 × (5+n) × 3, and 20 × 20
× (5+n) × 3, where n represents the number of target detection
categories.

2.2 Improved insulator defect detection
based on SIoU

To enable the YOLOv7-tiny model to learn insulator
information within images, the model incorporates three types
of losses: confidence, classification, and bounding box regression
losses. The classification loss is represented by the cross-entropy
loss function, which calculates the error between the predicted
and actual results for insulators. The confidence loss utilizes
the logistic regression loss function to compute the discrepancy.
The regression loss for the bounding box is computed using the
Complete Intersection over Union (CIoU) loss function.

The bounding box loss function plays a crucial role in the
execution speed of the model, and traditional CIoU loss functions
are known to suffer from slow convergence. Therefore, this paper
replaces CIoUwith the structure intersection over union (SIoU) loss
function to expedite anchor box regression speed and enhance the
overall model training effectiveness. The definition of the CIoU loss
function can be expressed as Eq. 1:

LCIoU = 1− IoU+
ρ2 (b,bgt)

c2
+ αcν (1)

where b and bgt represent the predicted and ground truth bounding
boxes, respectively. The term ρ denotes their Euclidean distance,
representing the diagonal length of the minimum enclosing
rectangle for the two boxes. IoU indicates the ratio of the intersection
area to the union area between the predicted bounding box and
the ground truth bounding box. c represents the diagonal distance
of the minimum enclosing bounding box that can simultaneously
contain the predicted box and the ground truth box. The variable
ν is utilized to quantify the similarity in aspect ratios between
the two boxes, and αc functions as a balancing coefficient in the
computation.
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The CIoU loss function attempts to approximate bounding
boxes by considering three geometric metrics: intersection over
union, center point distance, and aspect ratio. However, it does
not account for the orientation factor between the predicted
and ground truth bounding boxes. Consequently, this omission
results in slow convergence of anchor boxes, leading to suboptimal
training outcomes.

To address the aforementioned issues, this paper replaces the
CIoU loss function with the SIoU loss function, as defined by Eq. 2.

LSIoU = 1− IoU+
Δ+Ω
2

(2)

Δ =∑
t=x,y
(1− e−γρt) (3)

Ω = ∑
t=w,h
(1− e−wt)θ (4)

where Δ represents the distance loss, defined as Eq. 3. In Eq. 3,
γ = 2−Λ, the term ρ denotes their Euclidean distance. And Ω is
the shape loss, as shown in Eq. 4, where θ indicates level of concern
about loss of shape. The distance loss includes an angle loss denoted
as Λ. A schematic representation of the angle loss is illustrated in
Figure 2, and its definition is given by Eq. 5.

Λ = 1− 2 ∗ sin2(arcsin (x) − π
4
) (5)

where 5, x = sin(α) represents the angle between the two
boxes as depicted in Figure 2. As angle x changes, the angle
loss varies, as shown in Figure 2. It can be observed from
Figure 2 that as angle α between the predicted and ground
truth boxes approaches zero, angle loss Λ also tends towards
zero. Therefore, when γ approaches 2, distance loss decreases,
while when the angle approaches 45°, Λ approaches 1,
increasing distance loss. The SIoU loss addresses the angle issues
between the regression vectors of anchor boxes, allowing the
predicted box to move towards the nearest X or Y-axis before
regressing to the coordinates of the anchor box and the target
box. This acceleration improves the regression speed of the
anchor boxes.

YOLOv7-tiny utilizes the LeakyReLU activation function, an
extension of the rectified linear unit (ReLU). In this paper, the
LeakyReLU function is replacedwith the smooth sigmoid linear unit
(SiLU), which effectively mitigates the issue of neurons consistently
outputting zero during training, preventing weight updates. The
computational formula for SiLU is expressed in Eq. 6.

f (x) = x ⋅ σ (x) (6)

where σ(x) represents the sigmoid function. The SiLU function,
with its simple derivative, accelerates the training process of neural
networks. Its output is positive across all input ranges, aiding in
avoiding the issue of gradient vanishing and improving training
effectiveness. Compared to LeakyReLU, SiLU has a minimum value
at zero and is smoother, providing better stability in gradient
computation during backpropagation. This enhances the model’s
representational capacity. The curves of the LeakyReLU and SiLU
functions are depicted in Figure 3.

3 Edge device platform construction

The structural complexity of the power distribution system
necessitates the use of small, long-endurance UAV for inspection
tasks. The DJI M300 industrial-grade UAV is well-suited for such
applications, featuring a compact size and extended flight duration.
With the capability to support a transmission distance of up to
15 km, this UAV is equipped for capturing infrared images to
detect anomalies in the temperature of power transmission lines
and insulators. This makes it particularly suitable for the efficient
execution of power grid inspection tasks.

To achieve real-time discrimination of insulator dropout defects
during power grid inspections, this paper designs a system based
on the NVIDIA Jetson Xavier NX edge computing device and
establishes communication between the edge computing device
and the UAV (Liu et al., 2022), as illustrated in Figure 4. The
Jetson Xavier NX edge computing device, equipped with 384
CUDA cores, 48 Tensor cores, and 2 NVDLA engines, provides
parallel processing capabilities. This configuration is well-suited for
concurrently handling high-resolution image data and processing
data from multiple sensor sources during power grid inspections.

3.1 Edge device and UAV hardware
interface

The DJI M300 drone enables interaction with external systems
through the Onboard Software Development Kit (OSDK). OSDK
is a software toolkit developed by DJI for upper-level applications
on UAV. It can be easily ported to mobile edge devices or onboard
computers. By leveraging various predefined interface functions
within OSDK, real-time interaction and acquisition of image data
from the UAV can be established. Furthermore, developers can
customize and embed algorithms and logical frameworks into this
toolkit, enabling real-time control of the UAV for functionalities
such as automated cruise flight, control of onboard equipment,
and visual target detection and analysis. To achieve this, the
OSDK interface on the DJI drone must be connected to the edge
computing device, as illustrated in Figure 4.TheDJI OSDK interface
comprises 24 pins, primarily requiring the connection of power
supply, serial port, and USB modules to the edge computing device.
It operates at a rated voltage of 24V with a current limit of 4A,
resulting in a total power output of 96W from the drone. The M300
is configured as a USB slave device by default, and the
USB_ID pin must be left floating. The ON_DET pin serves as the
detection pin for externalOSDKdevices connected to theM300, and
the counterpart connected to the ON_DET pin must be connected
to GND.

3.2 Edge device and UAV software interface

After configuring the necessary environment on the edge
device running a Linux system, development is conducted in the
OSDK environment. The application program accesses DJI OSDK
functionalities by utilizing the Vehicle class within OSDK. To
develop applications using OSDK, the detailed steps are illustrated
in Figure 5.
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FIGURE 2
Direction between the predicted and the real frame and the angle loss change curve.

FIGURE 3
Comparison of LeakyReLU and SiLU curves.

4 Experiments and analysis of results

4.1 Experimental environment and
parameter settings

The experimental environment configuration for this study is
presented in Table 1. Python was selected as the programming
language, and TensorFlow, a deep learning framework, was used
to construct and improve the model. The experimental operating
system used was Ubuntu 18.04. The model parameters underwent
optimization through a search process. The initial settings consisted
of a learning rate of 0.001, a training input batch size of 16, and freeze
training epochs and iterations set to 50 and 350, respectively.

The YOLOv7-tiny model was trained according to the specified
parameters. To maintain consistency in results, the YOLOv4-tiny,
YOLOv5s, YOLOv5n and SSD networks were also trained with
the same hyperparameter settings and optimal parameters for each
network. The resulting average precision values were saved for
comparison.

4.2 Experimental data preprocessing

The dataset used in this study is derived from the publicly
available Insulator Data Set provided by the State Grid Corporation
of China (https://github.com/InsulatorData/InsulatorDataSet). This
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FIGURE 4
Connection between UAV and edge device.

FIGURE 5
Communication program between edge device and drone.

TABLE 1 Experimental environment configuration table.

Configuration name Host Edge computing device

CPU model GeForce RTX3090 Jetson Xavier NX

RAM 32 GB 16 GB

Deep learning framework Tensorflow2.6.0 Tensorflow2.4.0

CUDA version 11.0 10.2.0

CUDNN version 10.0 8.0

dataset comprises images of both normal insulators and insulators
with defects. The insulator and defective insulator images are
categorized and localized using the VOC2007 label format.
The normal label encompasses both normal insulator data and
synthetically generated defective data, with 600 and 248 samples,
respectively.

To address the limited sample size and imbalance between
positive and negative samples in the open-source dataset, we
employed various data augmentation techniques, such as rotation,
brightness variations, and occlusion. This resulted in an expanded
dataset, which included 4880 images of normal insulators and 1980
images of defective insulators.

4.3 Evaluation indicators

To comprehensively and objectively evaluate the detection
accuracy of the proposed algorithm for insulator dropout defects,
various metrics were employed, including mean average precision
(mAP), average precision, Recall (R), Precision (P), computational
complexity (Floating point Operations Per Second, FLOPs), and the
number of parameters. The specific calculation formulas for these
metrics are as follows:

mAP =∑N
i=1

APi/N (7)
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FIGURE 6
Loss function and precision result of the proposed algorithm.

AP = ∫
1

0
P (R)dR (8)

R = TP
TP+ FP

(9)

P = TP
TP+TN

(10)

FPS = 1/t (11)

whereN represents the total number of detection categories as Eq. 7.
AP is defined as shown in Eq. 8; In Eq. 9, TP represents the number
of positive samples correctly identified as positive; FP represents
the number of negative samples incorrectly identified as positive.
Positive samples are defined as images containing the specified
target, while negative samples are those without the target. In Eq.
10, TN is the number of negative samples correctly identified as
negative; FN is the number of positive samples incorrectly identified
as negative. FLOPs are floating point operations, which represent
computational complexity and are commonly used to measure the
complexity of the object detection model. Recall is the ratio of
correctly identified target instances in images to the total number
of targets in the dataset, primarily used to evaluate the recall rate of
object detection models.

To compare the detection speed of various models, this paper
introduces FPS as an evaluation metric, representing the number
of frames processed per second as shown in Eq. 11. The parameter
represents the time it takes for a model to detect a single image,
serving as a measure of the time required for image detection.

4.4 Experimental results and analysis

4.4.1 Insulator detection experiment
During the model training process, the results for the training

and validation sets are shown in Figure 6 as the number of iterations
increases. Figure 6 shows that the loss function decreases rapidly
within the first 100 iterations and gradually converges to 0 as the

number of iterations increases. At the same time, both category
accuracy and recall approach 1 as the number of iterations increases.
The improved model has smaller initial and final loss values
compared to the original model. In summary, the convergence of
the model parameters is ideal and no overfitting is observed. Table 2
compares the performance metrics before and after the model
improvement. The proposed algorithm shows an improvement in
average detection accuracy compared to the YOLOv7-tiny baseline
model, with a slight reduction in computational complexity.

As shown in Figure 7, replacing the original activation function
with SiLU leads to an improvement in convergence speed. Building
upon this improvement, our algorithm utilizes the SIoU loss
function, resulting in a further enhancement of convergence speed.

As depicted in Figure 8A, it is evident that the proposed
algorithm in this study exhibits faster convergence compared to
YOLOv4-tiny. After 100 iterations, our algorithm has already
converged to a relatively high accuracy. In Figure 8B, it can be
observed that our algorithm achieves a convergence accuracy almost
identical to YOLOv5n. However, when deploying the algorithm to
edge devices, our algorithm demonstrates higher detection speed
than YOLOv5n, as elaborated in the Section 4.4.2.

Figure 9 shows the predicted insulation detection images after
training on a mixed dataset using the proposed algorithm. The
dataset includes various insulation sizes, including large and small
insulation dimensions, complex insulation backgrounds, and scenes
where insulation defects are occluded.

From Figures 9A, B, it can be observed that for larger insulators,
the confidence of the detected insulator ranges from 0.9 to 1.0, while
images with smaller insulators in the background have relatively
lower confidence. In addition, in Figure 9B, the insulator detection
confidence remains high, above 0.94, even in scenes with complex
backgrounds.

The detection of small target defects, such as insulator damage
and dislocation, is shown in Figure 9C, with high confidence levels.
The results indicate that the proposed algorithm accurately identifies
insulator defects in the images and precisely locates the insulators,

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1372618
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wu et al. 10.3389/fenrg.2024.1372618

TABLE 2 Performance comparison before and after model improvement.

Model name Input Parameters (M) FLOPs (G) mAP (%)

YOLOv7-tiny 416 × 416 6.0 5.555 98.14

Proposed algorithm 416 × 416 6.0 5.551 98.31

FIGURE 7
Comparison of ablation experiment results.

FIGURE 8
Comparison of the accuracy of the proposed algorithm and other models. (A) Comparison of the accuracy of the proposed algorithm and
YOLOv4-tiny. (B) Comparison of the accuracy of the proposed algorithm and YOLOv4-tiny.

effectively avoiding the problems of false positives and false negatives
in insulator defect detection.

The detection performance of different models is shown in
Figure 10. Compared to the detection result in Figure 8B of
our proposed algorithm, YOLOv4-tiny detects one less insulator,

indicating inferior multi-target detection performance compared to
our algorithm. Although the confidence level of YOLOv5n is slightly
higher than our algorithm, its actual deployment detection speed
is inferior to our algorithm and it requires higher computational
resources.
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FIGURE 9
Detection performance of the proposed algorithm. (A) Insulator recognition with similar color backgrounds. (B) Insulator defect recognition. (C)
Insulator recognition in complex backgrounds.

4.4.2 Comparison of the accuracy of different
algorithms

To demonstrate the effectiveness of the proposed method, this
study compares it with representative insulator defect detection

methods, including SSD, YOLOv4-tiny, YOLOv5s and YOLOv5n.
Theexperimental results arepresented inTables 2, 3.Table 3provides
detailed results for the recognition of the mixed dataset on the
three networks.
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FIGURE 10
Detection performance of different models. (A) Detection performance of YOLOv4-tiny. (B) Detection performance of YOLOv5n.

TABLE 3 Performance comparison of different insulator identification models.

Model name Input Parameters (M) FLOPs (G) mAP (%)

SSD 300 × 300 23.7 60.9 97.58

YOLOv4-tiny 416 × 416 5.9 6.8 94.00

YOLOv5S 416 × 416 7.0 6.7 98.24

Proposed algorithm 416 × 416 6.0 5.5 98.31

TABLE 4 Comparison of detection results of different network models.

Model name Normal insulators Defective insulators mAP @0.5/% FPS(/s)

Pre/% R/% F1 AP/% P/% R/% F1 AP/%

YOLOv4-tiny 87.96 83.9 0.87 89.6 95.11 87.8 0.91 95.09 92.34 29.6

YOLOv5s 94.5 97.88 0.95 98.32 98.53 98.2 0.97 98.53 98.24 31.2

YOLOv5n 94.39 96.61 0.95 98.25 98.72 97.35 0.98 99.23 98.74 32.8

Proposed algorithm 94.51 94.77 0.95 98.05 98.6 98.1 0.96 98.56 98.31 35

Table 3 presents the performance comparison results of different
insulator recognition models for power grid inspections. From
Table 3, it can be observed that the SSD model has the highest
number of parameters, indicating its relatively complex nature,
with FLOPs reaching 60.9. In contrast, the YOLOv4-tiny model
has significantly fewer parameters than SSD, and its FLOPs are
only 1/10 of SSD. Although its mAP is slightly lower at 94%, it
demonstrates good performance. YOLOv5s, based on its minimal
parameters and FLOPs, achieves the highest detection accuracy
at 98.24%. Finally, the proposed algorithm has parameters and
FLOPs of 6.0 and 5.5, respectively. Despite having a slightly higher
mAP compared to YOLOv5s, the proposed algorithm exhibits
the lowest FLOPs, indicating the fastest detection speed, making

it more suitable for online detection of insulators in power
grid inspections.

To comprehensively validate the proposedmethod against other
models in the detection of normal and defective insulators, Table 4
presents adetailed comparisonof the input, parameter count, FLOPs,
and mAP for each model.

For theYOLOv4-tinymodel, it exhibits lowerdetectionaccuracy,
recall rate, F1, and AP performance. This is primarily attributed to
the challenge of accurately detecting multiple small insulators when
they overlap with each other. YOLOv5s achieves an average mAP of
98.38%, but its FLOPs are too high, reaching 116% of the proposed
algorithm. Consequently, it faces challenges in terms of deployment
and execution on mobile computing platforms.
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Concerning YOLOv5n, its detection accuracy for normal
insulators is 94.39%, which is slightly lower than the proposed
algorithm. Although its detection performance for defective
insulators is slightly higher compared to the proposed method and
the YOLOv4-tiny model, it relies on non-maximum suppression
for selecting insulator prediction boxes. This design can lead to
suboptimal performance when dealing with multiple target objects
within a single grid. Utilizing the designed GPU edge computing
device, the proposed method achieves the highest FPS, with a
detection speed of 28 ms per image (1/35). Additionally, its detection
accuracy is only 0.12% lower than the highest recognition accuracy
for defective insulators.

In summary, the proposed algorithm effectively balances
parameters, FLOPs, and mAP. It maintains a lower computational
load while achieving higher mAP accuracy for both normal and
defective insulator scenarios. This makes it suitable for the online
detection of insulators in power grid applications.

5 Conclusion

To achieve real-time detection of insulator defects during power
grid inspections, this paper proposes an improved YOLOv7-tiny-
basedmethod for detecting insulator stringing defects. Additionally,
a GPU-based edge computing device was constructed to verify the
feasibility of real-time detection in power grid inspection systems.
By introducing the SIoU loss function to the YOLOv7-tiny model,
the regression speed of anchor boxes can be effectively accelerated
on the basis of the miniature model, thereby accelerating model
computation. Additionally, a smooth SiLU activation function is
employed in the network bottleneck to enhance the nonlinear
representation capability.Thedetection results basedon the insulator
dataset demonstrate that the proposed method accurately identifies
insulator targets and their positions. It achieves precise recognition
of insulator defects even in complex and noisy backgrounds.
Comparative analysis with the YOLOv7-tiny algorithm indicates
that the model achieves a detection accuracy of 98.60% for
defective insulators, with a mean average precision of 98.31%.
The model can accurately identify multiple insulator targets
within the same power grid inspection image. Furthermore, the
experimental results based on the UAV and NVIDIA Jetson
Xavier NX edge computing device platform demonstrate that the
detection speed for images with a resolution of 416 × 416 can
reach 28 ms per image, effectively enabling online identification of
insulator defects in transmission lines. Compared to state-of-the-art
algorithms, the parameters of our algorithm have also been reduced
in space.

Data availability statement

Publicly available datasets were analyzed in this
study. This data can be found here: https://github.
com/InsulatorData/InsulatorDataSet.

Author contributions

SW: Conceptualization, Writing–original draft, Investigation,
Methodology,Resources,Validation.XG:Methodology,Supervision,
Visualization, Writing–original draft. JX: Software, Supervision,
Visualization, Writing–original draft. CM: Writing–review and
editing. TD: Software, Writing–review and editing. ZD: Data
curation, Writing–original draft. WQ: Data curation, Formal
Analysis, Validation, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This study
was funded by the project of Research and Development of Key
Technologies and Devices for On-line Detection of Abnormal Heat
in Power Distribution Equipment, Project No. XDKY-2022-07.

Conflict of interest

Authors SW and JX were employed by Electric Power Research
Institute of StateGridHunanElectric PowerCo., Ltd.AuthorXGwas
employed byHunanXiangdianExperimental Research InstituteCo.,
Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
anddonotnecessarilyrepresent thoseof theiraffiliatedorganizations,
or those of the publisher, the editors and the reviewers. Any product
thatmay be evaluated in this article, or claim thatmay bemade by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Albert, A., and Hallowell, M. R. (2013). Safety risk management for
electrical transmission and distribution line construction. Saf. Sci. 51, 118–126.
doi:10.1016/j.ssci.2012.06.011

Antwi-Bekoe, E., Liu, G., Ainam, J.-P., Sun, G., and Xie, X. (2022). A deep learning
approach for insulator instance segmentation and defect detection. Neural Comput.
Appl. 34, 7253–7269. doi:10.1007/s00521-021-06792-z

Bie,M., Liu, Y., Li, G.,Hong, J., andLi, J. (2023). Real-time vehicle detection algorithm
based on a lightweight you-only-look-once (yolov5n-l) approach.Expert Syst. Appl. 213,
119108. doi:10.1016/j.eswa.2022.119108

Cao, Y., Wu, D., and Duan, Y. (2020). A new image edge detection
algorithm based on improved canny. J. Comput. Methods Sci. Eng. 20, 629–642.
doi:10.3233/jcm-193963

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1372618
https://github.com/InsulatorData/InsulatorDataSet
https://github.com/InsulatorData/InsulatorDataSet
https://doi.org/10.1016/j.ssci.2012.06.011
https://doi.org/10.1007/s00521-021-06792-z
https://doi.org/10.1016/j.eswa.2022.119108
https://doi.org/10.3233/jcm-193963
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wu et al. 10.3389/fenrg.2024.1372618

Chen, W., Li, Y., and Li, C. (2020). A visual detection method for foreign objects
in power lines based on mask r-cnn. Int. J. Ambient Comput. Intell. (IJACI) 11, 34–47.
doi:10.4018/ijaci.2020010102

Chowdhury, S., Shahvari, O., Marufuzzaman, M., Li, X., and Bian, L. (2021). Drone
routing and optimization for post-disaster inspection. Comput. Industrial Eng. 159,
107495. doi:10.1016/j.cie.2021.107495

Dian, S., Zhong, X., and Zhong, Y. (2022). Faster r-transformer: an efficient method
for insulator detection in complex aerial environments. Measurement 199, 111238.
doi:10.1016/j.measurement.2022.111238

Ding, J., Cao,H., Ding, X., andAn,C. (2022).High accuracy real-time insulator string
defect detection method based on improved yolov5. Front. Energy Res. 10, 928164.
doi:10.3389/fenrg.2022.928164

Guo, F., Hao, K., Xia, M., Zhao, L., Wang, L., and Liu, Q. (2019). “Detection of
insulator defects based on YOLO V3,” in Artificial intelligence for communications
and networks. AICON 2019. Lecture notes of the institute for computer sciences, social
informatics and telecommunications engineering. Editors S. Han, and L. Ye (Springer,
Cham), 287. doi:10.1007/978-3-030-22971-9_25

Jiang, Z., Zhao, L., Li, S., and Jia, Y. (2020). Real-time object detection method based
on improved yolov4-tiny. arXiv preprint arXiv:2011.04244

Kiessling, F., Nefzger, P., Nolasco, J. F., and Kaintzyk, U. (2014).Overhead power lines:
planning, design, construction. Springer.

Kumar, N., Singh, B., and Panigrahi, B. K. (2019). Grid synchronisation framework
for partially shaded solar pv-based microgrid using intelligent control strategy. IET
Generation, Transm. Distribution 13, 829–837. doi:10.1049/iet-gtd.2018.6079

Kumar, N., Singh, B., and Panigrahi, B. K. (2022). Voltage sensorless based
model predictive control with battery management system: for solar pv
powered on-board ev charging. IEEE Trans. Transp. Electrification 9, 2583–2592.
doi:10.1109/tte.2022.3213253

Kumar, N., Singh, B., Wang, J., and Panigrahi, B. K. (2020). A framework of l-hc and
am-mkf for accurate harmonic supportive control schemes. IEEE Trans. Circuits Syst. I
Regul. Pap. 67, 5246–5256. doi:10.1109/tcsi.2020.2996775

Kumari, P., Kumar, N., and Panigrahi, B. K. (2022). A framework of reduced
sensor rooftop spv system using parabolic curve fitting mppt technology for household
consumers. IEEE Trans. Consumer Electron. 69, 29–37. doi:10.1109/tce.2022.3209974

Liu, M., Li, Z., Li, Y., and Liu, Y. (2022). A fast and accurate method of power line
intelligent inspection based on edge computing. IEEE Trans. Instrum. Meas. 71, 1–12.
doi:10.1109/tim.2022.3152855

Ma, L., Zhao, L., Wang, Z., Zhang, J., and Chen, G. (2023). Detection and counting
of small target apples under complicated environments by using improved yolov7-tiny.
Agronomy 13, 1419. doi:10.3390/agronomy13051419

Pan, L., Chen, L., Zhu, S., Tong, W., and Guo, L. (2022). Research on small
sample data-driven inspection technology of uav for transmission line insulator defect
detection. Information 13, 276. doi:10.3390/info13060276

Qiu, W., Yadav, A., You, S., Dong, J., Kuruganti, T., Liu, Y., et al. (2023).
Neural networks-based inverter control: modeling and adaptive optimization
for smart distribution networks. IEEE Trans. Sustain. Energy, 1–11.
doi:10.1109/tste.2023.3324219

Saxena, V., Kumar, N., Singh, B., and Panigrahi, B. K. (2021). An mpc based
algorithm for a multipurpose grid integrated solar pv system with enhanced
power quality and pcc voltage assist. IEEE Trans. Energy Convers. 36, 1469–1478.
doi:10.1109/tec.2021.3059754

Siu, J. Y., Kumar, N., and Panda, S. K. (2022). Command authentication using
multiagent system for attacks on the economic dispatch problem. IEEE Trans. Industry
Appl. 58, 4381–4393. doi:10.1109/tia.2022.3172240

Sun, K., Qiu, W., Dong, Y., Zhang, C., Yin, H., Yao, W., et al. (2022). Wams-based
hvdc damping control for cyber attack defense. IEEE Trans. Power Syst. 38, 702–713.
doi:10.1109/tpwrs.2022.3168078

Tao, X., Zhang, D., Wang, Z., Liu, X., Zhang, H., and Xu, D. (2018). Detection
of power line insulator defects using aerial images analyzed with convolutional
neural networks. IEEE Trans. Syst. man, Cybern. Syst. 50, 1486–1498.
doi:10.1109/tsmc.2018.2871750

Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023). Yolov7: trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors. Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 7464–7475. doi:10.1109/CVPR52729.
2023.00721

Wang, S., Liu, Y., Qing, Y., Wang, C., Lan, T., and Yao, R. (2020). Detection of
insulator defects with improved resnest and region proposal network. IEEE Access 8,
184841–184850. doi:10.1109/access.2020.3029857

Xia, H., Yang, B., Li, Y., and Wang, B. (2022). An improved centernet
model for insulator defect detection using aerial imagery. Sensors 22, 2850.
doi:10.3390/s22082850

Xiao, H., Gan, H., Yang, P., Li, L., Li, D., Hao, Q., et al. (2023a). Robust
submodule fault management in modular multilevel converters with nearest level
modulation for uninterrupted power transmission. IEEE Trans. Power Deliv., 1–16.
doi:10.1109/tpwrd.2023.3343693

Xiao, H., He, H., Zhang, L., and Liu, T. (2023b). Adaptive grid-synchronization
based grid-forming control for voltage source converters. IEEE Trans. Power Syst. 39,
4763–4766. doi:10.1109/tpwrs.2023.3338967

Xu, C., Li, Q., Zhou, Q., Zhang, S., Yu, D., and Ma, Y. (2022a). Power line-guided
automatic electric transmission line inspection system. IEEE Trans. Instrum. Meas. 71,
1–18. doi:10.1109/tim.2022.3169555

Xu, S., Deng, J., Huang, Y., Ling, L., and Han, T. (2022b). Research on insulator
defect detection based on an improved mobilenetv1-yolov4. Entropy 24, 1588.
doi:10.3390/e24111588

Yan, J., Zhang, X., Shen, S., He, X., Xia, X., Li, N., et al. (2023). A real-time
strand breakage detection method for power line inspection with uavs. Drones 7, 574.
doi:10.3390/drones7090574

Yu, D., and Song, K. (2021). Power line insulator detection. ICMLCA 2021; 2nd Int.
Conf. Mach. Learn. Comput. Appl. (VDE), 1–5.

Zhang, P., Zhang, Z., Hao, Y., Zhou, Z., Luo, B., and Wang, T. (2020).
Multi-scale feature enhanced domain adaptive object detection for
power transmission line inspection. Ieee Access 8, 182105–182116.
doi:10.1109/access.2020.3027850

Zhang, Y., Yuan, X., Li, W., and Chen, S. (2017). Automatic power line inspection
using uav images. Remote Sens. 9, 824. doi:10.3390/rs9080824

Zhao, W., Xu, M., Cheng, X., and Zhao, Z. (2021). An insulator in transmission
lines recognition and fault detection model based on improved faster rcnn. IEEE Trans.
Instrum. Meas. 70, 1–8. doi:10.1109/tim.2021.3112227

Zhou, L., Lin, T., Zhou, X., Gao, S., Wu, Z., and Zhang, C. (2020). Detection
of winding faults using image features and binary tree support vector
machine for autotransformer. IEEE Trans. Transp. Electrification 6, 625–634.
doi:10.1109/tte.2020.2982785

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1372618
https://doi.org/10.4018/ijaci.2020010102
https://doi.org/10.1016/j.cie.2021.107495
https://doi.org/10.1016/j.measurement.2022.111238
https://doi.org/10.3389/fenrg.2022.928164
https://doi.org/10.1007/978-3-030-22971-9_25
https://doi.org/10.1049/iet-gtd.2018.6079
https://doi.org/10.1109/tte.2022.3213253
https://doi.org/10.1109/tcsi.2020.2996775
https://doi.org/10.1109/tce.2022.3209974
https://doi.org/10.1109/tim.2022.3152855
https://doi.org/10.3390/agronomy13051419
https://doi.org/10.3390/info13060276
https://doi.org/10.1109/tste.2023.3324219
https://doi.org/10.1109/tec.2021.3059754
https://doi.org/10.1109/tia.2022.3172240
https://doi.org/10.1109/tpwrs.2022.3168078
https://doi.org/10.1109/tsmc.2018.2871750
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/CVPR52729.2023.00721
https://doi.org/10.1109/access.2020.3029857
https://doi.org/10.3390/s22082850
https://doi.org/10.1109/tpwrd.2023.3343693
https://doi.org/10.1109/tpwrs.2023.3338967
https://doi.org/10.1109/tim.2022.3169555
https://doi.org/10.3390/e24111588
https://doi.org/10.3390/drones7090574
https://doi.org/10.1109/access.2020.3027850
https://doi.org/10.3390/rs9080824
https://doi.org/10.1109/tim.2021.3112227
https://doi.org/10.1109/tte.2020.2982785
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 Insulator defect detection based on YOLOv7-tiny
	2.1 YOLOv7-tiny algorithm structure
	2.2 Improved insulator defect detection based on SIoU

	3 Edge device platform construction
	3.1 Edge device and UAV hardware interface
	3.2 Edge device and UAV software interface

	4 Experiments and analysis of results
	4.1 Experimental environment and parameter settings
	4.2 Experimental data preprocessing
	4.3 Evaluation indicators
	4.4 Experimental results and analysis
	4.4.1 Insulator detection experiment
	4.4.2 Comparison of the accuracy of different algorithms


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

