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In the process of multi-energy system optimal scheduling, due to the high data
processing requirements of the multi-energy devices and loads and the
complexity of the operating states of the multi-energy devices, the scheduling
optimization of the system is to some extent more difficult. To address this
problem, this paper proposes a regional multi-energy system optimal scheduling
model based on the theory of cloud-edge collaboration. First, based on
intelligent data sensors, a cloud-edge cooperative scheduling framework of
the regional multi-energy system is constructed. Then, the physical model of
operating state data of multi-energy system equipment and the allocation
mechanism of system scheduling tasks are studied. With the cloud service
application layer and the edge computing layer as the upper and lower
optimization scheduling layers, the double-layer optimization scheduling
model of the regional multi-energy system is established. The objectives of
the model are optimal scheduling cost and minimum delay of scheduling data
transmission. The multi-objective whale optimization algorithm is used to solve
the model. Finally, a simulation model is built for verification. The simulation
results show that the scheduling model established in this paper can effectively
improve the scheduling data processing capability and improve the economy of
regional multi-energy system scheduling.
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1 Introduction

The development and operation of power grids are now focused on constructing an
intelligent, informatized, and diversified new power system with new energy as the primary
source, with the goal of achieving “Carbon peak and Carbon neutralization” (Teng et al.,
2018). This requires higher standards for the operation, scheduling, and control of power
grids, especially with the integration of a high proportion of new energy power generation
resources (Teng et al., 2020). A regional multi-energy system is a complex system involving
the input, conversion, and supply of electricity, heat, and gas energy. It contains various
energy supply equipment. It can flexibly and reliably meet the consumption demands of
users through the conversion and coordination between multiple types of energy (Zhang
et al., 2017; Li et al., 2019). However, traditional centralized operation and control methods
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have difficulty meeting the requirements of large-scale, high-
capacity data and information processing of regional multi-
energy systems (Lo and Ansari, 2013; Zhang et al., 2018). The
rapid development of new intelligent control technologies, such as
edge computing (Sulieman et al., 2022; Raeisi-Varzaneh et al., 2023)
and IoT technologies (Abir et al., 2021; Gao et al., 2023), provides
favorable conditions for promoting the coordinated and integrated
development of regional multi-energy system data and information
networks. This development forms new application scenarios of
energy-information interaction and integration, including cloud-
edge synergy, information-physical synergy, digital twins, and other
new application technologies (Ren et al., 2019; Su et al., 2019). As a
result, there is an urgent need to study optimized operation methods
for regional multi-energy systems that can achieve flexibility,
reliability and high data and information computation efficiency.

In view of the development and application prospects, some
scholars have begun to research the optimization methods of
intelligent and informative operation and control of regional
multi-energy systems. In (Wang and Li, 2022), it focuses on the
problem of short-term load forecasting of power grids. The study
proposes a short-term forecasting method of power grid loads based
on cloud edge collaboration. The model is trained with a large
amount of historical data to provide accurate predictions. In (Luo
et al., 2022), aiming at the scheduling deviation of distribution
network in a long-time scale and considering the distribution
characteristics of transformer equipment in the distribution
network, a collaborative scheduling method of the distribution
network based on cloud edge cooperation is proposed. The
distribution network cooperative optimal scheduling is carried
out by taking transformer equipment in different power supply
areas of the distribution network as an edge layer, and the optimal
scheduling cost of each transformer power supply area is targeted.
This results in an improved dispatch economy for the distribution
network. In (Xia et al., 2022), a hybrid model for power grid data
recognition based on distributed compressed sensing and
bidirectional long-short memory network is proposed to address
the problem of low power quality data recognition accuracy in
power grid. It optimizes the recognition parameters in the model by
establishing a cloud-edge cooperative framework and using
distributed compressed perception as the edge algorithm, and
using a large amount of data to train the model. The
improvement of grid power quality data recognition accuracy
and anti-interference performance is realized. In (Liu et al.,
2018), it analyzed the information architecture and optimization
effect of edge computing technology when applied to the optimal
scheduling of electric vehicles. The study focused on data processing
and information security and proved the effectiveness of edge
computing technology in meeting the real-time communication
and arithmetic demands of the electric power network. In (Gooi
et al., 2023), the advantages of edge computing technology in
optimizing, allocating, and scheduling of smart grid resources are
analyzed. Then, it explores the relationship between smart grid and
artificial intelligence and proposes an optimization method for
power grid cloud computing by applying edge intelligence
technology. This reduces the pressure on cloud computing and
improves the computing efficiency of power grid operation
optimization tasks. As for the information and data security
problems faced in the process of adopting intelligent technology

for the optimal scheduling of power grids or energy systems, some
scholars have also carried out research and discussion. In (Li et al.,
2022; Li et al., 2023), it studied the collaborative energy management
method of multi-energy system under DoS attack for the problems
of cyber-attack faced during the energy optimization and scheduling
process of multi-energy system. The information security capability
for network optimization and energy management processes is
enhanced, and its cyber defense resistance capability is improved.
In (Huang et al., 2022), it focuses on the problem of the multi-energy
system scheduling economy. The study employs a distributed robust
optimization algorithm to develop a method for achieving this goal.
Meanwhile, a data privacy protection protocol has been researched
and designed to address network security issues encountered during
the distributed optimal scheduling of the system. This protocol
improves the reliability of information transmission during system
scheduling and promotes the system’s scheduling economy.

However, there is a lack of detailed modeling analysis and
research on the integration of edge computing technology and
cloud-edge collaboration technology into the optimization
modeling of regional multi-energy system operation and
scheduling. There is a lack of relevant research on how to better
improve the efficiency of regional multi-energy system scheduling.

Based on the above analysis, this paper studies a cloud-edge
cooperative optimal scheduling model of the regional multi-energy
system based on edge computing. By utilizing sensors and
controllers distributed at different nodes of the regional multi-
energy system for collecting and sending energy equipment data
and equipment operation control, a regional multi-energy system
scheduling framework is established. A multi-node cloud-edge
cooperative scheduling model of the regional multi-energy system
is established by coordinating different edge computing scheduling
layer base stations and by allocating scheduling tasks to multiple
base stations. On this basis, a double-layer scheduling optimization
model of the regional multi-energy system is established for
optimization, and a scheduling model solution process based on
multi-objective whale optimization algorithm is given. Thus, there
are three main contributions to this research.

(1) A cloud-side coordinated scheduling framework of multi-
node energy data information interaction for regional multi-
energy systems is established in this paper. The scheduling
process of the regional multi-energy system is optimized by
dividing it into five service layers and configuring the
corresponding computing servers in different scheduling
service layers. This improves the data information
processing capability of the scheduling calculation and
optimization process of the system.

(2) The physical model of the regional multi-energy system is
established. The operating parameters of the energy supply
equipment have been preliminarily clarified, and amethod for
sensing the operating state data of the equipment of the multi-
energy system has been studied. Further, the multi-node
scheduling task allocation model of the regional multi-
energy systems has been established to optimize scheduling
results among the systems in the coverage area of different
regional edge computing layer base stations.

(3) A double-layer optimization scheduling model of the regional
multi-energy system is established, which aims at optimal
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operational scheduling costs and scheduling task
transmission delays. The model is solved using the multi-
objective whale optimization algorithm.

Finally, the feasibility and validity of the scheduling model
established in this paper are analyzed and verified by obtaining
the historical data of power grid operation in a region of Northeast
China and building a simulation model.

2 Multi-node cloud-edge cooperative
schedulingmodel of the regional multi-
energy system

2.1 Scheduling framework of the regional
multi-energy system

For the regional multi-energy system, the use of a centralized
optimization scheduling method may result in increased energy

consumption, scheduling costs, and network latency due to the
centralized transmission, processing, computation, and distribution
of distributed new energy power supply operation information and
load demand information. To mitigate these issues, alternative
scheduling methods should be considered. Edge computing
technology makes use of various data sensors, data routing and
other devices configured in the regional multi-energy system to
analyze and process the collected operation information data on
the side of each distributed power generation equipment. The
calculation results are then transmitted to the cloud service data
computing center for centralized coordination and scheduling.
Based on this, this paper establishes a cloud-side coordinated
scheduling framework of multi-node energy data information
interaction for regional multi-energy systems, as shown
in Figure 1.

The scheduling framework shown in Figure 1 is mainly
composed of five scheduling service layers: equipment entity
layer, state data perception layer, edge computing layer, data
network communication layer, and cloud service application

FIGURE 1
Scheduling framework of the regional multi-energy system.
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layer (Ilic et al., 2010; Si et al., 2020). Computing servers are
configured in the corresponding service layers to facilitate data
processing, analysis, and storage.

(1) The equipment entity layer is composed of various energy
equipment and equipment operation control module. The
main task is to use each energy equipment to generate
electricity, heat, gas and other energy supply to the
consumer. Through the equipment operation control
module, it controls and adjusts the operation status of
energy equipment.

(2) The state data perception layer is composed of various
intelligent energy data collection and measurement
modules. Its main task is to assist the edge computing
layer and cloud service application layer in perceiving the
operating state of each energy equipment in the system.

(3) The edge computing layer is composed of edge computing
modules and data storage. Its main task is to calculate the
optimal operation scheme for each energy equipment in the
regional energy system. This includes determining the
optimal output of energy equipment, energy supply, and
transaction prices.

(4) The data network communication layer is composed of data
routing, wireless modules, etc., Its main task is to facilitate the
communication and transmission of energy data, scheduling
data, and control commands between the state data
perception layer, edge computing layer, cloud service
application layer, and other layers. Its goal is to ensure
quick and lossless data transmission.

(5) The cloud service application layer serves as the energy
management center for power generation, transmission,
and supply in the regional multi-energy system. It is
composed of servers and centralized scheduling centers,
and its main task is to provide data storage, reading,
computation, analysis, and dynamic display services for the
centralized regulation and control of the regional multi-
energy system. Through computation and analysis, the
optimal supply scheme for a regional multi-energy system
is calculated to realize the optimal scheduling of regional
multi-energy system.

2.2 Physical model of the regional multi-
energy system

As shown in Figure 1, the construction of the physical entity
model of each energy supply equipment within the system is the
basis for the optimal scheduling of the regional multi-energy system.
To carry out this study, the network topology of the regional multi-
energy system is established, as shown in Figure 2. The system is
composed of photovoltaic cells, wind turbines, gas turbines, gas
boilers, PtG equipment, and energy storage equipment. It provides
electricity and heat energy to the system energy users by purchasing
natural gas from the superior gas network. Part of the natural gas is
directly supplied to the users through the gas network. The gas
turbine and gas boiler are used to provide electricity and heat energy
to the system energy users, respectively. The wind turbine and
photovoltaic are used to provide electricity to users. The system

is connected to the main power grid to compensate for any
electricity shortages. The PtG equipment is used to output the
gas energy to the energy users. The energy storage equipment is
mainly used to regulate the input and output of various energy
sources of the regional multi-energy system by charging and
discharging energy.

2.2.1 Physical model of the wind turbine
Taking doubly-fed wind turbine as an example, the physical

model of the wind turbine can be described by Eq. 1:

Jw _ωw,t � Qw,r − Qw,m

Qw,m � Km θw,r − θw,g
Nw,g

( ) + Bd ωw,t − ωw,g

Nw,g
( )

Qw,r � 3∫Rwind

0

1
2
πρv3w Cu

w sinφ − Cd
w cosφ( )Rsrdr

Jw,g _ωw,g � Qw,m

Nw,g
− Qw,e

Pw,t � Qw,rωw,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where Pw,t is the output of the wind turbine at time t; Qw,r is the
torque corresponding to the force of the wind turbine blade in the
rotation process;Qw,m andQw,e are the input mechanical torque and
the output electromagnetic torque of the unit, respectively; Jw is the
rotational equivalent inertia of the blade; Jw,g is the rotational
equivalent inertia of the wind turbine; ωw,t and ωw,g are fan
speed and wind turbine speed, respectively; Km is the stiffness
coefficient of the low-speed rotating shaft of the unit; Bd is the
damping factor of the wind turbine; θw,t and θw,g are the angular

FIGURE 2
Topology of the multi-energy system.
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velocity displacement of the wind wheel rotor and the rotational
velocity displacement of the wind turbine rotor, respectively; Nw,g is
the gearbox ratio; Cu

w and Cd
w are the rising force factor and drag

coefficient of fan blades when rotating, respectively; Rs is the chord
length of the section at the radius r of the fan blade; ρ and vw are the
density and wind speed of the air in the operating environment,
respectively; Rw is the length of the fan blade.

Therefore, there are 14 operational parameters needed to be
sensed by the wind turbine, which can be expressed by Eq. 2:

Pw,t � vw,ωw,t,ωw,g, ρ;Cu
w, C

d
w ,φ;

Km, Bd, θw,r, θw,g, Nw,g;Rw, Rs
[ ] (2)

2.2.2 Physical model of the photovoltaic
The physical model of the photovoltaic cell can be described by

Eq. 3:

PPV,t � U2
PV

Rsh + Rs
+ I2PVRs

IPV � Iph − I0 exp
UPV + IPVRs

βkTPV
( ) − 1[ ] − UPV + IPVRs

Rsh
, UPV ≥ 0

IPV � Iph + I0 − UPV + IPVRs

Rsh
, Ubr <UPV < 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

where PPV,t is the output of the photovoltaic cells at time t; UPV and IPV
are the voltage and current at both ends of the photovoltaic cells,
respectively; Ubr is the diode reverse breakdown voltage in the
equivalent schematic diagram; Rs and Rsh are the equivalent series
resistance and parallel resistance at both ends of the battery in the
equivalent schematic diagram; Iph is the photogenerated current of the
photovoltaic cells when the illumination is QPV and the temperature is
TPV; I0 is the diode equivalent reverse saturation current in the equivalent
schematic diagram; k = 1.38 e−23 J/K; β is the fitting factor of the output
characteristics of the diode inside the photovoltaic cell, which reflects the
similarity between the output characteristics of the diode inside the
photovoltaic cell and the output characteristics of the ideal diode.

Therefore, there are 10 physical parameters of the photovoltaic
cell, which can be described by Eq. 4:

PPV,t � UPV, IPV, Iph;Ubr, I0, Rs, Rsh;TPV, β, QPV[ ] (4)

2.2.3 Physical model of the gas turbine
The operating status of the gas turbine is mainly limited by its

operating efficiency and intake volume. The physical model of the
gas turbine can be described by Eq. 5:

PMGT,t � 1 + f( )PMGT,g − PMGT,pa

∣∣∣∣ ∣∣∣∣ − PMGT,gc

∣∣∣∣ ∣∣∣∣
PMGT,g � ηgcg Tgin − Tgout( )Vgas

PMGT,pa � cpa Tpa,in − Tpa,out( )
ηpa

Vpa

PMGT,gc �
cg Tgc,in − Tgc,out( )

ηgc
Vgas

′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where PMGT,t is the output of the gas turbine at time t; PMGT,g, PMGT,pa,
and PMGT,gc are the turbine output, compressed air consumption

power, and compressed natural gas consumption power,
respectively; f is the ratio coefficient of natural gas to air when
natural gas is fed into the gas turbine; Vgas and Vpa are the gas
intake and air volume of the gas turbine, respectively; Vgas

′ is the
compression volume of the natural gas; cg and cpa are the specific
heat capacity of natural gas and air, respectively; ηg, ηpa, and ηgc
are the turbine efficiency, compressed air efficiency, and
compressed natural gas efficiency of the gas turbine,
respectively; Tgin and Tgout are the temperature of the gas
entering the equipment and the temperature of the output
equipment when the turbine is running, respectively; Tpa,in

and Tpa,out are the inlet temperature and outlet temperature of
the compressor, respectively; Tgc,in and Tgc,out are the inlet
temperature and outlet temperature of the natural gas
compressor in the gas turbine unit, respectively.

The physical parameters of the gas turbine can be described by
Eq. 6:

PMGT,t � Tgin, Tgout, Tpa,in, Tpa,out, Tgc,in, Tgc,out;Vgas, Vpa, Vgas
′ ;f, ηg, ηpa, ηgc[ ]

(6)

2.2.4 Physical model of the gas boiler
The relationship between energy input-output of a gas boiler is

described by Eq. 7:

PGB,t � VGB,tηGBHCVNG (7)
where PGB,t is the heat output of the gas boiler at time t; VGB,t is the
amount of natural gas intake at time t; ηGB is the heat production rate of
the equipment; HCVNG is the low calorific value of natural gas.

The physical parameters of the gas boiler can be described by
Eq. 8:

PGB,t � VGB,t, ηGB[ ] (8)

2.2.5 Physical model of the PtG equipment
The relationship between electrical energy consumption and

natural gas output in the PtG equipment can be described by Eq. 9:

PPtG,t � ηPtG,t PPtH,t − PH2,t

ηH2,t

+ PHtG,tηHtG,t( )
QH2,t+1 � QH2,t + PH2,t · Δt − PHtG,t · Δt
Qsto

H2,t ∈ QH2
min, QH2

max[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(9)

where PPtG,t is the natural gas output power of the PtG equipment at
time t; PPtH,t, PH2,t, and PHtG,t are the electric-hydrogen conversion
output power, hydrogen storage power and hydrogen-gas conversion
output power inside the PtG equipment at time t, respectively; ηPtH,t,
ηH2,t, and ηHtG,t are the hydrogen methanation efficiency, hydrogen
storage efficiency and hydrogen discharge efficiency of the PtG
equipment at time t, respectively; QH2,t is the hydrogen storage
capacity in the PtG equipment at time t, and Qmin

H2 and Qmax
H2 are its

minimum and maximum values, respectively.
The physical parameters of the gas turbine can be described by

Eq. 10:

PMGT,t � PPtH,t;PH2,t;PHtG,t; ηPtG,t, ηH2,t , ηHtG,t;QH2,t, QH2
min, QH2

max[ ] (10)
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2.2.6 Physical model of the energy
storage equipment

The regional multi-energy system utilizes electricity storage
batteries, gas storage equipment, and heat storage equipment for
charging and discharging, which serve to regulate the output of the
regional multi-energy system. Therefore, it can be described by
Eqs 11–13.

Qe,t+1 � 1 − ηloss( )Qe,t + ηe,cP
c
e,t −

Pd
e,t

ηe,d
( )Δt

0≤Pc
e,t ≤ γc · Pcmax

e

0≤Pd
e,t ≤ γd · Pdmax

e

Qe
min ≤Qe,t ≤Qe

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where P c
e,t and Pd

e,t are the charging and discharging power of the
electricity storage battery at time t, respectively, and Pcmax

e and
Pdmax
e are its upper limit, respectively; ηe,c and ηe,d are the

charging and discharging efficiencies, respectively; ηloss is the
proportion of the equipment’s electricity loss; Qe,t is the capacity
of the equipment, and Qe

min and Qe
max are its lower and upper

limits, respectively; γc and γd denote that the battery is charged or
discharged.

Qg,t � ∫t

t0
Pg,tdt � Qg,t0 + ηg Pin

g,t − Pout
g,t( ) t − t0( )

0≤Qg,t ≤Qg
max{ (12)

where Qg,t is the storage volume of gas storage equipment at time t;
ηg is the storage efficiency; Qg,t0 is the storage volume of natural gas
at time t0; P

in
g,t and Pout

g,t are the charging and discharging power of
the gas storage equipment at time t, respectively.

Qh,t � ∫t

t0
Ph,tdt � Qh,t0 + ηh Pin

h,t − Pout
h,t( ) t − t0( )

0≤Qh,t ≤Qh
max{ (13)

where Qh,t is the heat energy storage of the equipment at time t; ηh is
the heat efficiency; Qh,t0 is the heat energy storage of the equipment
at time t0; P

in
h,t and P

out
h,t are the heat storage and heat release power of

the heat storage equipment at time t, respectively.

2.3 Multi-node scheduling task
allocation model

Assuming that the regional multi-energy system being
studied includes m edge computing layer base stations (which
handle the main tasks of the edge computing layer and the data
network communication layer) and n energy-consuming users.
These can be denoted as edge computing layer base station set
M = {1, 2, . . . , m} and energy-consuming user set Nuser =
{1, 2, . . . , n}, respectively. At this time, all energy-consuming
users in the regional multi-energy system must satisfy the
constraints of Eq. 14.

Nuser � ∪
k
Nuser,k∈M (14)

The edge computing layer base station provides data support
and scheduling calculation services to energy consumption users
and the cloud service layer. This is achieved according to the edge
computing module, data storage and communication module, data

routing and other equipment deployed in the system. At the same
time, the base station can transmit the calculated data and collected
data to the neighboring base station. Then, by allocating the computation
tasks to be completed by its own base station, it realizes the cooperative
computation of multiple edge computing base stations to better complete
the edge node scheduling optimization in the regional multi-energy
system. If the edge computing layer base station is responsible for a
small amount of computation tasks, the current base station can be used
to complete the scheduling tasks.

If all energy equipment and energy consumption users in the
scheduling process of the regional multi-energy system perform
system scheduling optimization at the same time, all the
computation tasks of the edge computing layer base station are
allocated according to Eq. 15.

X � xn,i,m{ }
xn,i,m � 1,

the computational task i of the energy consumption user
n are assigned to the base stationm

0, else

⎧⎪⎪⎨⎪⎪⎩

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(15)

where X is the system scheduling task allocation decision set; xn,i,m is
the corresponding values taken in the set.

Meanwhile, at least one base station in the edge computing layer
must perform all computational tasks while satisfying the constraint
of Eq. 16.

∑
m∈M

xn,i,m � 1,∀n ∈ N, i ∈ Yn

Ecul
X,m � ∑

n∈N
∑
i∈Yn

cn,ixn,i,m ≤Emax cul
m ,m ∈ M

Esto
X,m � ∑

n∈N
∑
i∈Yn

en,ixn,i,m ≤Emax sto
m ,m ∈ M

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(16)

where the first term is the constraint on the computational tasks to be
completed by the edge computing layer base station; the second and
third terms are the constraints on the response of the computational and
data storage capacity of the edge computing layer base station m; EculX,m
and EstoX,m are the amount of the response of the computational and data
storage capacity of the edge computing layer base stationm, and Emaxculm
and Emax sto

m are their corresponding upper limits; cn,i is the scheduling
task computation demand; en,i is the scheduling task data storage
demand; Yn is the optimized scheduling computation task n in
the system.

When performing optimized scheduling computation tasks for the
regional multi-energy system, each task requires energy for
computation and data communication, as well as incurs
transmission delays. Therefore, the cost and transmission delay
consumed by the edge computing layer and the cloud service
application layer can be expressed by Eq. 17:

Ccoop,t � NumMCcul,m

�Tcoop � 1
NumN

∑
n∈N

Tcoop,i

Tcoop,i � max
i∈Yn

Tsend
n,i + Tcul

n,i + Tmerge
n,i{ } + Treturn

n,i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(17)

where Ccoop,t is the consumption cost of the optimized scheduling
computation task performed by the regional multi-energy system;
NumM is the number of edge computing layer base stations
executing the computation task at time t; Ccul,m is the operation
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cost of the mth edge computing layer base station; Tcoop,i is the
transmission delay of the optimized scheduling computation task
performed by the regional multi-energy system at time t, and �Tcoop is
the average of its delay value; NumN is the number of energy
consuming users; Tsend

n,i , Tcul
n,i , T

merge
n,i , and Treturn

n,i are the optimization
scheduling task transmission delay, computation delay, computation
result convergence delay, and computation result return delay,
respectively.

In the actual optimization scheduling process, the computing
process of multi-node cloud-edge cooperative scheduling in the
regional multi-energy system is shown in Figure 3.

The state data sensing layer collects the operating state data and
ledger data of each energy equipment in the equipment entity layer and
stores them in the databases of the edge computing layer and the cloud
service application layer. Then, the optimization scheduling task begins
at each energy equipment and energy consumption user. It is then
uploaded to the edge computing layer, where the computing task is
allocated based on Eq. 15. The corresponding optimization
computation is executed, and the operation scheduling commands
are sent to the equipment entity layer based on the computational
results to regulate the operation state of the energy equipment. At the
same time, the computation results are summarized, merged, and sent

to the cloud service application layer. Finally, the cloud service
application layer performs the scheduling of region multi-energy
systems covered by the edge computing layer base stations based on
the received scheduling optimization data and the energy equipment
operation data. The scheduling optimization calculation is unified and
coordinated for the whole multi-energy system. The calculation results
are also sent to the edge computing layer through the data network
communication layer.

3 Cloud-edge cooperative optimization
schedulingmodel of the regional multi-
energy system

3.1 Scheduling model

To fully utilize the multi-node cloud-edge collaborative scheduling
capability in the optimization and scheduling process of the regional
multi-energy system, the double-layer optimization scheduling model
of the regional multi-energy system is established as shown in Figure 4.
The upper-layer optimization model in the cloud service application
layer adopts an intelligent optimization algorithm to minimize the

FIGURE 3
Multi-node cloud-edge collaborative scheduling computing process.
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overall operation and scheduling cost of the regional multi-energy
system. It completes the scheduling optimization of the systems in the
coverage area of the different regional edge computing layer base
stations in the regional multi-energy system and obtains the optimal
energy supply scheduling scheme, based on the received scheduling
optimization data and energy equipment operation data. The lower-
layer optimizationmodel is that the edge computing layer calculates the
optimal energy supply scheduling scheme based on the optimal energy
supply scheduling scheme and control commands calculated by the
cloud service application layer.

The objective function of the upper-layer scheduling
optimization model for the cloud service application layer can be
described by Eq. 18:

minF1 � ∑24
t�1

∑NumM

i�1
CePi,t + ∑NumM

i�1
∑NumM

j�1
Ce

exchange P
e
i,j,t

∣∣∣∣∣ ∣∣∣∣∣(⎧⎨⎩
+ Cg

exchange P
g
i,j,t

∣∣∣∣∣ ∣∣∣∣∣ + Ch
exchange P

h
i,j,t

∣∣∣∣∣ ∣∣∣∣∣)} + ∑NumM

i�1
αiF2 +∑24

t�1
Ccoop,t (18)

where F1 is the overall operation and scheduling cost of the regional
multi-energy system; Ce is the unit electric energy interaction price
between the regional multi-energy system covered by different

regional edge computing layer base stations and the large power
grid; Pi,t is the interactive electric power between the regional
multi-energy system covered by different regional edge
computing layer base stations and the large power grid;
Ce
exchange, C

g
exchange, and Ch

exchange are the unit exchange cost of
electricity, natural gas, and heat energy in the area covered by the
ith and jth regional edge computing layer base stations,
respectively; Pe

i,j,t, Pg
i,j,t, and Ph

i,j,t are the exchange power of
electricity, natural gas, and heat energy in the area covered by
the ith and jth regional edge computing layer base stations,
respectively; When the regional system covered by the ith
regional edge computing layer base station exchanges electricity,
natural gas and heat energy to the region covered by the jth regional
edge computing layer base station, Pe

i,j,t, P
g
i,j,t, and P

h
i,j,t are taken as

a positive value, and the opposite are taken as a negative value; αi is
the scheduling optimization priority of the different regional edge
computing layer base station, the larger the value of the priority
level is, the higher the priority level of the computation order is in
the calculation of the optimized scheduling task in this region; F2 is
the scheduling and operating cost of the regional multi-energy
system covered by the regional edge computing layer base stations
obtained by the edge computing layer calculation.

FIGURE 4
Double-layer optimization scheduling model of the regional multi-energy system.
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The objective function of the lower-layer scheduling optimization
model for the edge computing layer can be described by Eq. 19:

minF2 � ∑24
t�1

∑NumM

i�1
∑
I

Ci,I,tPi,I,t (19)

where Ci,I,t is the operating cost of the Ith energy equipment in the
area covered by the ith regional edge computing layer base station at
time t; Pi,I,t is the electricity, heat energy or gas energy supply of the
Ith energy equipment at time t.

In addition to the consideration of system operating costs, the
regional multi-energy system to perform scheduling calculations
is also required to consider the scheduling task transmission
delay under the multi-node cloud-edge collaborative scheduling
strategy, and minimize the data transmission delay of the
scheduling optimization calculation process, which can be
expressed by Eq. 20:

minF3 � �Tcoop (20)

3.2 Constraints

The supply balance constraints for electricity, gas, and heat in
the regional multi-energy system can be described by Eq. 21

∑
I1

Pi,I1 ,t − Pc
i,e,t + Pd

i,e,t + Pi,t + Pe
i,j,t � Pi,Le,t

∑
I2

Pi,I2 ,t − Pin
i,g,t + Pout

i,g,t + Pg
i,j,t � Pi,Lg,t

Pi,GB,t − Pin
i,h,t + Pout

i,h,t + Ph
i,j,t � Pi,Lh,t

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(21)

where Pi,Le,t, Pi,Lg,t, and Pi,Lh,t are the electricity, heat and gas loads in
the area covered by the ith regional edge computing layer base
station, respectively; I1 is the set of electricity energy equipment in
the area covered by the ith regional edge computing layer base
station, and I1 = {wind turbine, photovoltaic, and PtG equipment};
I2 is the set of natural gas energy equipment in the area covered by
the ith regional edge computing layer base station, and I2 = {gas
turbine, PtG equipment, and gas boiler}; Pe

i,j,t, P
g
i,j,t, and Ph

i,j,t are the
exchange power of electricity, natural gas, and heat energy between
the areas covered by the ith and jth edge computing layer base
station, respectively; Pc

i,e,t and Pd
i,e,t, P

in
i,g,t and Pout

i,g,t, P
in
i,h,t and Pout

i,h,t are
the charging and discharging power of the battery storage
equipment, gas storage equipment and heat storage equipment at
time t, respectively.

The operation constraints of multiple energy equipment in the
regional multi-energy system can be described by Eq. 22

Pi,w,t
min ≤Pi,w,t ≤Pi,w,t

max

Pi,PV,t
min ≤Pi,PV,t ≤Pi,PV,t

max

Pe,min
i,PtG,t ≤Pe

i,PtG,t ≤P
e,max
i,PtG,t

Pi,GT,t
min ≤Pi,GT,t ≤Pi,GT,t

max

Pi,GB,t
min ≤Pi,GB,t ≤Pi,GB,t

max

Pg,min
i,PtG,t ≤Pg

i,PtG,t ≤P
g,min
i,PtG,t

Pc,min
i,e,t ≤Pc

i,e,t ≤P
c,max
i,e,t

Pd,min
i,e,t ≤Pd

i,e,t ≤Pd,max
i,e,t

Pin,min
i,g,t ≤Pin

i,g,t ≤Pin,max
i,g,t

Pout,min
i,g,t ≤Pout

i,g,t ≤Pout,max
i,g,t

Pin,min
i,h,t ≤Pin

i,h,t ≤P
in,max
i,h,t

Pout,min
i,h,t ≤Pout

i,h,t ≤Pout,max
i,h,t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

where Pi,w,t
min and Pi,w,t

max, Pi,PV,t
min and Pi,PV,t

max, Pe,min
i,PtG,t and Pe,max

i,PtG,t are the
minimum and maximum output power of the wind turbine,
photovoltaic and electricity power consumed by PtG
equipment in the area covered by the ith regional edge
computing layer base station, respectively; Pi,GT,t

min and Pi,GT,t
max,

Pi,GB,t
min and Pi,GB,t

max, Pg,min
i,PtG,t and Pg,min

i,PtG,t are the minimum and
maximum values of the gas power consumed by gas turbine,
gas boiler, and gas output power of PtG equipment in the area
covered by the ith regional edge computing layer base station,
respectively; Pc,min

i,e,t and Pc,max
i,e,t , Pd,min

i,e,t and Pd,max
i,e,t are the

minimum and maximum values of the charging power and
discharging power of the battery storage equipment at the
time t, respectively; Pin,min

i,g,t and Pin,max
i,g,t , Pout,min

i,g,t and Pout,max
i,g,t

are the minimum and maximum values of the charging power
and discharging power of the gas storage equipment at time t;
Pin,min
i,h,t and Pin,max

i,h,t , Pout,min
i,h,t and Pout,max

i,h,t are the minimum and
maximum values of the charging power and discharging power of
the heat storage equipment at time t, respectively.

Data transmission constraints in the multi-node cloud-edge
cooperative scheduling framework. The relevant equations can be
found in Eqs 15–17.

The regional grid operations flow constraints can be described
by Eq. 23

Pi,w,t + Pi,PV,t − Pe
i,PtG,t − Pc

i,e,t + Pd
i,e,t + Pi,t + Pe

i,j,t − Pi,Le,t � Ui,x ∑
y�1

Ui,y Gxy cos θxy + Bxy sin θxy( )
Qi,w,t + Qi,PV,t + Qi,t + Qe

i,j,t − Qi,Le,t � Ui,x ∑
y�1

Ui,y Gxy sin θxy − Bxy cos θxy( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(23)

where Ui,x and Ui,y are the voltage at the node x and node y in the
regional grid covered by the ith regional edge computing layer base
station;Qi,w,t,Qi,PV,t,Qi,t, andQe

i,j,t are the output reactive power of wind
turbine, output reactive power of photovoltaic, interaction reactive power
with the larger grid, and reactive power exchange between regional grids,
respectively; Qi,Le,t is the reactive power of loads within the regional grid;
Gxy and Bxy are the conductance and conductivity between the node x
and node y in the regional grid, respectively.

4 Multi-objective whale
optimization algorithm

To achieve optimal computation and control of regional multi-
energy system scheduling under the framework of edge computing
and cloud-edge collaborative scheduling, this paper proposes a
multi-objective whale optimization algorithm, which is used to
solve the optimal scheduling scheme of the regional multi-
energy system.

4.1 Fundamentals of the algorithm

The whale optimization algorithm is a heuristic, single-
objective optimization algorithm that simulates the feeding
behavior of whale groups (Mirjalili and Lewis, 2016). It has
the advantages of a simple algorithm structure, easy
implementation, and high convergence speed and optimization
accuracy. proposes a multi-objective whale optimization
algorithm for solving regional multi-energy system scheduling
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schemes, based on a multi-objective algorithm framework with
non-dominated as well as congestion ranking. The algorithm is
divided into three phases: encircling prey, bubble net attack, and
searching prey.

4.1.1 Encircling prey
In the first phase, the whale gradually approaches the prey

through an encirclement approach. Assuming that the current
optimal solution is the target prey, the positions of other

FIGURE 5
Solving algorithm.
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individuals in the group are moved to the position of the optimal
solution, and updated as Eq. 24:

W � C · X* t( ) − X t( )| |
X t + 1( ) � X* t( ) − A ·W{ (24)

where X*(t) = {X1*,X2*, . . . ,XN*} is the optimal solution solved by
the algorithm, which is the position vector of the target prey hunted
by the whale; t is the number of iterations; X(t) is the position vector
of the solution; A·W is the encircling step size, which can be
calculated according to the Eq. 26:

A � 2a · Rand − a
C � 2a · Rand{ (25)

where Rand is a random number between [0,1]; a is the convergence
factor, which decreases linearly from 2 to 0 as the number of
iterations increases, and is denoted as Eq. 26:

a � 2 − 2t
Tmax

( ) (26)

where Tmax is the maximum number of iterations.

4.1.2 Bubble net attack
There are two ways to describe the feeding behavior of whales:

the shrinking encirclement mechanism and the spiral
updating position.

a) Shrinking encirclement mechanism: It is realized by constantly
encircling the prey by the value of the convergence factor a.

b) Spiral updating position: The algorithm first calculates the
distance between the current individual and the optimal
solution position. Then, it approaches the optimal solution
position in a spiral manner. The mathematical model can be
expressed as Eq. 27:

X t + 1( ) � W* · ekl cos 2πl( ) + X* t( ) (27)
where W* is the distance between the current individual and the
current optimal position; k is a constant coefficient to qualify the
logarithmic spiral form; l is a random number between [0,1].

Both above methods have a certain probability to appear in the
actual whale hunting process. Therefore, the algorithm sets the
selection probability coefficient p for performing the shrink-wrap
mechanism and the spiral position update, denoted as Eq. 28:

TABLE 1 Simulation parameters

Parameter Value Parameter Value

Turbine efficiency of the gas turbine 0.8 Hydrogen storage efficiency 0.9

Compressed air efficiency of the gas turbine 1.3 Hydrogen discharge efficiency 0.85

Compressed natural gas efficiency of the gas turbine 1.3 Charging efficiency 0.85

Hydrogen methanation efficiency 0.75 Discharging efficiency 0.85

Gas turbine power generation costs/($/MWh) 74.14 Gas Storage Efficiency 0.85

Gas boiler heat production costs/($/MWh) 45.72 Heat Storage Efficiency 0.8

PtG Operating Costs/($/MWh) 78.57 Natural gas prices/($/m3) 0.39

FIGURE 6
Photovoltaic and wind power output data.

FIGURE 7
Load data.
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X t + 1( ) � W* · ekl cos 2πl( ) + X* t( ),
X* t( ) − A ·W,

{ p> 0.5
p≤ 0.5

(28)

4.1.3 Searching prey
When |A|≥1, the whale searches away from the reference target

to find a superior prey, denoted as Eq. 29:

W � C · Xrand − X t( )| |
X t + 1( ) � Xrand − A ·W{ (29)

whereXrand is the randomly selected position vector of the next prey.

4.2 Optimal solution selection mechanism
of the algorithm

In a multi-objective optimization problem with n objective
functions Fi(x), i = 1, 2, . . ., n, a decision variable Ya is said to
dominate Yb if Eq. 30 is satisfied. If there is no other decision variable
that can dominate a decision variable, it is considered a non-
dominated solution.

Fi Ya( )≥Fi Yb( ),∀i ∈ 1, 2, 3,/, n
Fi Ya( )>Fi Yb( ),∃i ∈ 1, 2, 3,/, n

{ (30)

This paper proposes the idea of multi-objective particle swarm
algorithm, which takes the global optimal solution as the target of
bubble net attack, and the local optimal solution as the target of prey
search. To achieve a local optimal solution, select the individual that
dominates the current local optimal solution after moving positions.
If the individual after moving position and the current local optimal
solution do not dominate each other, randomly select both as the

local optimal solution to ensure solution distribution and non-
domination. The process of whale moving position fully uses the
information obtained in the process of whale moving position, and
the global optimal solution is selected according to the hierarchical
analysis method, which ensures the effectiveness and objectivity of
the global optimal solution selection process.

The distribution of the solution set of the algorithm uses the
results of the crowding degree ranking in this paper as the standard
for updating the solution set in the iterative process. The crowding
degree is calculated using Eq. 31.

Yd � Yd + Fi+1 − Fi−1
Fmax − Fmin

(31)

where Fmax and Fmin are the maximum and minimum values of the
objective function, respectively; Fi-1 and Fi+1 are the values of the
objective function of the previous individual and the next individual
after the descending order ranking, respectively.

The algorithm uses the crowding degree, which can visualize the
distribution of solutions. A larger crowding degree indicates a better
distribution of solutions, while a smaller crowding degree indicates a
worse distribution. Therefore, during the iteration process of
updating the solution set, larger solutions can be filtered based
on the size of the crowding degree, and smaller solutions can be
eliminated to maintain diversity and distribution of solutions.

4.3 Solution process of scheduling model
based on multi-objective whale
optimization algorithm

Figure 5 shows the solution process, and the specific steps are
as follows:

FIGURE 8
Electricity energy optimized scheduling results of Region 2.
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(1) Initialize parameters, such as the output population size and
iteration number, for each equipment in the regional multi-
energy system. Randomly initializing the position of each
individual in the output population, and initializing the local
optimal value of each equipment in the regional multi-
energy system.

(2) Calculate the objective function value for each individual in
the initial population, which represents the output power of
each device in the regional multi-energy system.

(3) Use the hierarchical analysis method to select the global
optimal solution from the entire output population of
equipment and guide the position of the equipment power
output population in the desired direction.

(4) To update the position of each individual of the output
population of each equipment in the multi-energy system,
use Eqs 27, 28 based on the values of |A|, p and the judgment
conditions.

(5) Update the local optimal solution in the power output
population of each equipment in the multi-energy system
using the optimal solution domination principle of Eqs 30, 31.

(6) Check if each individual in the equipment output population
has been traversed. If not, go back to Step (4).

(7) Check if the maximum number of iterations has been reached
or if the algorithm iteration has met the end condition. If yes,
output the optimal scheduling result of the regional multi-
energy system and end the algorithm. Otherwise, go back
to Step (3).

5 Example analysis

Using the model established in this paper, the historical
operation data of new energy units and the historical load
data of a regional power grid in Northeast China on a typical
operation day are selected. The topology shown in Figure 2 is

used to build a regional multi-energy system multi-node cloud-
edge cooperative scheduling simulation model to optimize the
scheduling.

The parameters of the electricity/heat/gas multi-energy system
are shown in Table 1. Figures 6, 7 show the PV and wind power
output and load data during the simulation.

The regional power grid is divided into NumM regions, and the
equipment entity layer, state data perception layer, edge computing
layer, data network communication layer, and cloud service
application layer are set up according to the established multi-
node cloud-edge collaborative scheduling model, respectively. In
this paper,NumM is set to 4. An AMD R7 5800H, 16 GB computer is
used for scheduling optimization of the regional multi-
energy system.

The scheduling optimization result of the edge computing
layer of the region 2 multi-energy system are given in
Figures 8–10.

According to Figures, the wind turbine and photovoltaic
equipment output is consistently high throughout each time,
resulting in a higher utilization of new energy in the region. Other
power generation equipment is adjusted based on changes in load
demand to better meet load requirements. During nighttime
hours, electricity prices are low. As a result, the regional grid
chooses to purchase electricity from the grid more frequently.
Battery storage equipment is charged during these hours to
discharge energy during times of high demand. This reduces
the operation and dispatching costs of the regional multi-energy
system. When demand is high, battery storage equipment will be
charged and used to discharge energy when the load is high. This
will reduce the operation and scheduling costs of the regional
multi-energy system. To meet the heat and gas load demand in
the regional multi-energy system, the edge computing layer
calculates the optimal heat and gas energy supply arrangement
scheme based on the acquired equipment data and load demand

FIGURE 9
Heat energy optimized scheduling results of Region 2. FIGURE 10

Gas energy optimized scheduling results of Region 2.
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data. It then adjusts the operation status of the corresponding
energy equipment to meet the heat and gas load demand of users
in the region when the load demand is high. Table 2 shows the
results of the 24-h operation cost comparison for the regional
multi-energy system.

Figure 11 gives the results of the electricity interaction between
the region 2 multi-energy system and the other three regional multi-
energy systems. The interaction of electric energy is mainly affected
by changes in the output of new energy units and customer
load demand.

This paper also explores the effectiveness of regional multi-
energy system scheduling solution under two approaches: multi-
node cloud-edge cooperative scheduling and centralized scheduling,
and the results are shown in Table 3, Figure 12.

When the edge computing layer has not received the latest
inter-regional energy interaction commands from the cloud
service application layer, the edge computing layer can
perform optimization calculations of energy equipment
outputs within the regional multi-energy system by directly
utilizing the operating state data and ledger data of each
energy equipment in the equipment entity layer collected by
the state data perception layer. At the same time, the amount of

energy data and equipment operation data that need to be
processed is smaller when each edge computing layer
performs scheduling optimization calculation compared to
centralized scheduling optimization. This reduction in data
results in a decrease in the number of iterative calculations
required for scheduling optimization solving using the multi-
objective whale optimization algorithm. The corresponding
results are shown in Table 3. Table 3 also shows the results of
the number of iterations and average delay of scheduling
optimization among regional multi-energy systems performed
by the cloud service application layer. The number of iterations
and delay are significantly lower than that of the centralized
scheduling method.

The results of system operation data information processing
and calculation time are shown in Figure 12. Compared to
centralized scheduling method, cloud-edge cooperative
scheduling technology improves the rate of data processing
and calculation of the regional multi-energy system. The data
processing time is reduced by 20.94%, and the optimization
calculation time is reduced by 29.64%. This finding suggests
that cloud-edge cooperative scheduling technology is a more
efficient option for the regional multi-energy system.

TABLE 2 Operating costs

Cost Before Optimization After Optimization

Equipment operating cost /$ 236.17 181.93

Natural gas cost /$ 146.14 167.10

Power Purchase Cost /$ 39.81 21.88

Power sales revenue /$ 5.50 28.01

Total cost /$ 427.62 398.92

FIGURE 11
Optimized scheduling results of the electricity interaction.
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6 Conclusion

Based on edge computing technology and cloud-edge
cooperative control framework, this paper proposes a multi-node
cloud-edge cooperative optimal scheduling strategy of the regional
multi-energy system coordinated with multiple edge service layer
base stations. The paper establishes a two-layer optimal scheduling
model for regional multi-energy systems. The method is simulated
and verified through analysis, and the conclusions are presented
as follows:

(1) The use of the cloud edge cooperative scheduling
technology for the perception, monitoring, and
optimization of the regional multi-energy system can
effectively improve the ability of data information
processing and calculation of the multi-energy system.
The time of data information processing is reduced by
20.94%, and the time of optimization calculation is reduced
by 29.64%.

(2) The efficiency of scheduling and optimization of the
regional multi-energy system has been improved by

allocating the scheduling and optimization tasks of the
whole system to the edge computing service layer, and then
performing cooperative computation among the multiple
edge service layer base stations to reduce the amount of
data computation and processing for the execution of the
optimization and scheduling tasks of the regional multi-
energy system;

(3) Through the analysis of the scheduling optimization
results of the regional multi-energy system, the
double-layer optimal scheduling model of the regional
multi-energy system established in this paper can
increase the flexible adjustment ability of the system,
and realize the economic operation of the multi-
energy system.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

TABLE 3 Operating Costs Solution comparison of scheduling optimization task

Number of
regions

Cloud-Edge Cooperative Scheduling Method Centralized Scheduling
Method

Number of iterations of
edge computing layer

Number of iterations of cloud
service application layer

Average
delay/s

Average
delay/s

Number of
iterations

2 106 84 2.03 3.69 373

4 232 167 2.97 6.27 583

8 536 241 4.12 8.95 1386

16 1272 501 7.62 13.28 2768

FIGURE 12
Comparison of data information processing and calculation time before and after optimization.
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