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With a high percentage of distributed new energy sources connected to the
power system, the power grid needs to reserve a larger margin to deal with the
uncertainty of renewable energy outputs, leading to an increase in the cost of
controlling the margins for the safe operation of the power grid. In order to
reduce costs and increase efficiency, a quantitative assessment of new energy
output uncertainty is needed. In this paper, a quantitative assessment method of
new energy output uncertainty based on the prediction error is proposed, which
makes use of a graph database to efficiently obtain massive new energy historical
data, uses the clustering in quest (CLIQUE) algorithm to cluster the new energy
historical data, and calculates the renewable energy real power confidence
interval based on a given new energy power prediction, taking account of the
impact of prediction errors caused by the new energy uncertainty and realizing
the quantitative description of new energy output uncertainty. Finally, the
method is calculated and analyzed together with the actual example data to
verify the practical effect of the method.
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1 Introduction

With the proposal of the “dual-carbon” goal, clean and low-carbon energy will be
developed and utilized on a large scale. According to the plan, the share of renewable energy
generation in China is expected to exceed 50% by 2060, becoming the mainstay of
electricity. However, new energy output has strong uncertainty and volatility
(Chongqing and Liangzhong, 2017), and the large-scale penetration of new energy
greatly increases the complexity and risk level of the power grid, which has a
significant impact on the reliable and economic operation of the power grid (Lingling
et al., 2018; Changjiu et al., 2020).

As the penetration rate of distributed new energy continues to increase (Zhang and
Shen, 2024), there are obvious contradictions in response to the uncertainty of new energy
resources in the preservation of consumption and the safe operation of the power grid (Zhi
et al., 2020), in which the insufficient new energy perception ability is one of the main
factors, mainly manifested in the difficulty of modeling refinement of distributed new
energy field stations and the lack of credibility of power prediction (Chao et al., 2021), which
seriously restricts the ability of the grid control department to control the power generation
capacity of new energy stations (Jinghua et al., 2022). For dealing with the uncertainty of
new energy, the power grid needs to reserve a larger margin (Dong et al., 2023), leading to an
increase in the cost of controlling the margin for the safe operation of the power grid and, at
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the same time, improving the difficulty of balancing and
guaranteeing the supply of power in the power grid. In order to
reduce costs and increase efficiency, there is an urgent need to carry
out research on the quantitative assessment of the uncertainty of
new energy output, which requires analyzing a large amount of new
energy historical data and thus puts high demands on the large-scale
and rapid acquisition of new energy data.

The graph database as a non-relational database emerged in the
last decade; its unique node and data format have a natural fit with
the grid topology, and it has a wide range of applications in power
system analysis and data mining (Guangyi et al., 2017). Zheng et al.
(2022) used graph databases to construct and apply power grid data
models to realize high-performance, large-scale power grid topology
analysis operations. Guangyi et al. (2020) proposed concepts and
methods for in-memory computation on graph databases and
investigated a real-time network topology analysis method for
power grids that incorporates node-parallel and hierarchical
computational mechanisms. Houming et al. (2012) proposed a
fast-power network topology analysis method based on a graph
database, which maps multi-state devices into multi-nodes.

Most of the above studies on graph databases focus on the
field of power grid topology analysis. The complex and huge
network structure of the power grid predetermines the
complexity of its data system, and the application of graph
databases to solve problems such as new energy data
acquisition has a natural advantage.

Unlike conventional energy sources, new energy output is
intermittent, volatile, and uncertain. In the problems of grid
power flow analysis, unit commitment, and economic dispatch
considering the case of new energy access (Zhiyu et al., 2022),
new energy power uncertainty is specifically represented by the
accuracy of the mathematical portrayal of the prediction error, and it
can have a significant impact on the optimization results (Huajie
et al., 2012). The day-ahead prediction error of the actual new energy
power presents a large kurtosis and skewness, and the use of the
classical normal distribution description will produce a large error,
so some scholars have proposed a new statistical model for the
prediction of wind and light. Bludszuweit et al. (2008) proposed
using beta distribution to fit the prediction error with reference to
the prediction results of the persistence model (PM). Tewari et al.
(2011) proposed using a combination of discrete distribution and
continuous function to describe the prediction error. Yutong (2020)
introduced seasonal variables and incorporated kernel density
estimation to give the distribution model of PV power prediction
error under different seasons.

Most of the above studies on the uncertainty of new energy
power use a certain mathematical distribution to fit the distribution
pattern of new energy prediction error; however, with the
development of distributed power generation technology (Caixia
et al., 2023), different types of new energy are integrated (Tan et al.,
2023), and the prediction error of their combined output no longer
obeys a single mathematical distribution.

Aiming at the above problems and needs, this paper proposes a
quantitative assessment method of new energy output uncertainty
based on prediction error using a graph database to efficiently obtain
massive new energy historical data and analyzes the coupling
relationship between the predicted power and prediction error
using the clustering in quest (CLIQUE) algorithm. Based on the

given new energy prediction power, the new energy actual power
confidence interval can be obtained according to the corresponding
prediction error distribution interval, which achieves the
quantitative assessment of new energy power uncertainty,
promotes the consumption of distributed new energy, improves
the safety level of grid operation, and promotes the intelligent
development of the dispatching system adapted to new energy as
the main body.

2 New energy data acquisition method
based on a graph database

2.1 Introduction to the graph database

A graph database consists of a collection of data based on
graph structure and a computation engine based on graph
traversal. The graph database uses vertices and edges to
represent the data model. Data attributes are stored in vertices
and edges, and relationships between data are described by edges
between vertices (Yuning and Bingbing, 2022). Querying a
collection of data based on graph structure is also known as
graph traversal or graph computation. In the data model of a
graph database, each vertex or edge can be equipped with
computational functions, which are both data storage units
and dynamic computational units. Parallelized graph
computation can be easily achieved by performing local
computation based on each vertex in the graph independently
and carrying out information exchange through edges.

2.2 Grid modeling based on a
graph database

Building a grid model based on a graph database is the basis
for applying graph computation technology to power system
analysis and computation. The CIM/E model is a specification for
describing power system models proposed by the State Grid
Corporation of China (Yaozhong et al., 2006; Weimin et al.,
2013). In this paper, we follow the CIM/E specification to build a
grid model based on a graph database, and at the same time, we
adapt the characteristics of the graph database to maximize the
access efficiency of the model.

The graph model (GM) in a graph database can be represented
as a ternary:

GM � N ,R, L( ), (1)
where N = { n1, n2, n3, . . . , nt } is a non-empty finite set of vertices
and t elements in N denote t vertices; R = { r1, r2, r3, . . . , rs } is the
edge set consisting of edges connecting ordered vertex even pairs (ni,
nj) in the vertex set N; s elements in R denote s edges and satisfy R ⊆
N × N; and L is the set of vertex attributes and edge attributes.
Vertices and edges can have multiple attributes. Different types of
vertices or edges are distinguished by their IDs. There can be several
different edges between vertices, and the number of their attributes
can be expanded dynamically.

Power system devices, such as buses, breakers,
disconnectors, generators, and loads, are defined as vertices,
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and connection lines between devices are defined as edges in the
graph database. In addition, in order to establish topological
associations between devices, the physical node attributes
describing the topological relationships between devices in
the CIM/E model are defined as vertices. The correspondence
between the grid entities and graph database elements is shown
in Table 1, and an example of the grid model based on the graph
database is shown in Figure 1.

2.3 New energy data acquisition process
based on a graph database

The new energy data acquisition process for a certain range of
new energy based on the graph database (taking the information of
all new energy units connected through topological relationships
under one main transformer as an example) contains the
following steps:

TABLE 1 Correspondence between grid entities and graph database elements.

Grid entity Graph database element/Attribute

Various devices in the grid, such as breakers and loads Vertex

Various line connections in the grid Edge

Attributes of various devices in the grid Vertex attribute

Attributes of various line connections in the grid Edge attribute

FIGURE 1
Example of a grid model based on a graph database.
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1) In the given new energy plant station, select a main transformer
and then find transformer’s medium-voltage side winding
(labeled TransformerWinding2) and low-voltage side winding
(labeled TransformerWinding3). These two windings of the same
transformer are associated with each other by the same value of
the transformer identification attribute.

2) For the medium-voltage side winding
TransformerWinding2 obtained in step 1, find the physical
node adjacent to it.

3) For the physical node found in step 2, query whether it has a
neighboring generator. If there is a neighboring generator,
determine whether it is a new energy generator based on the
generator node attribute ‘generator type’ (generator type is PV
or wind power), and record the generator ID value if it is a new
energy generator.

4) Continue querying neighboring physical nodes from the
physical node found in step 2.

5) For the physical node found in step 4, query whether it has a
neighboring generator. If there is a neighboring generator,
determine whether it is a new energy generator based on the
generator node attribute ‘generator type’ (generator type is PV
or wind power), and record the generator ID value if it is a new
energy generator.

6) Continue to search for its neighboring nodes and repeat steps
4–5 until it has no neighbors.

7) For the low-voltage side winding
TransformerWinding3 obtained in step 1, similar to the
processing of the medium-voltage side winding, repeat steps
2–6 to find all the new energy generators connected to low-
voltage side winding, and record the ID value of each new
energy generator connected to low-voltage side winding.

8) Based on the IDs of the new energy generators found, obtain
the required new energy generator information through the
database query code.

3 New energy uncertainty analysis
based on CLIQUE clustering

3.1 Cluster analysis of new energy historical
data based on the CLIQUE algorithm

The CLIQUE algorithm is a combination of density-based and
mesh-based clustering methods and provides a new way of thinking
about cluster analysis of high-dimensional data by introducing the
concept of subspace clustering. The CLIQUE algorithm can explore
the global distribution pattern of the data space by recognizing the
density of cells in the data space. The central idea of the CLIQUE
algorithm is as follows:

1) Given a large collection of multidimensional data points,
which are usually not evenly distributed in the data space,
the CLIQUE distinguishes between sparse and ‘crowded’
regions (or cells) in the space in order to discover the
global distribution pattern of the data collection.

2) A cell is dense if the number of data points in the cell exceeds a
certain input model parameter. A cluster in CLIQUE is defined
as the largest set of connected dense cells.

CLIQUE performs multidimensional clustering in two steps:
In the first step, CLIQUE divides the n-dimensional data space

into mutually disjoint rectangular cells (Gengsheng et al., 2008) and
identifies the dense cells in it. This work is performed for each
dimension. The intersecting subspaces representing dense cells form
a candidate search space in which higher-dimensional dense cells
may exist (Lu and Zhang, 2020).

In the second step, CLIQUE generates a minimized description
for each cluster. For each cluster, it determines the largest region that
covers connected dense cells and then determines the smallest
coverage (Xiangxiang and Dengsheng, 2012).

Compared to other clustering algorithms, such as k-means
clustering and DBSCAN clustering, the CLIQUE algorithm does
not need to set the initial number of clusters and does not need to
assume any standard data distribution. It scales linearly with the size
of the input data and has good scalability when the dimensionality of
the data increases. The CLIQUE algorithm is very effective for
clustering high-dimensional data in large-scale databases. In
addition, the time and space complexity of the algorithm are
linear, and the calculation speed is faster. The CLIQUE algorithm
is a grid-based clustering method. The classification boundary in the
clustering result is a grid boundary, so the boundary is a flat straight
line, which makes it easy to determine the coupling relationship
between the new energy prediction power and the prediction error.
Therefore, the CLIQUE algorithm is selected for clustering new
energy historical data.

The process of analyzing new energy historical operation
information based on the CLIQUE algorithm contains the
following steps:

1) Take {P1 = P’} and {P2 = P-P’}, i.e., the historical prediction
power and historical prediction error, as clustering data.

2) Intercept the two-dimensional data of {P1} and {P2} under the
same time scale at the same time period as the original
clustering data. Adjust the grid parameters and density
parameters of clustering according to the distribution of
clustered points in the original data of clustering, and carry
out the CLIQUE clustering algorithm to analyze the coupling
relationship between the predicted power and prediction error.

3.2 New energy actual power confidence
interval calculation

The CLIQUE algorithm is used for the new energy historical
data to analyze the coupling relationship between the predicted
power and prediction error. Based on a given new energy prediction
power, the confidence interval of the new energy actual power at the
same moment as the prediction power can be obtained according to
the corresponding prediction error distribution interval, which can
effectively quantify the uncertainty of the new energy output
(Sicheng and Weiqing, 2023).

Based on the coupling relationship between the prediction
power and prediction error obtained from the cluster analysis,
the lower and upper limits of the corresponding new energy
prediction error are obtained according to the range of
prediction power intervals to which the given new energy
prediction data belong. The lower limit of the new energy
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prediction error is denoted as ERRgd, and the upper limit of the new
energy prediction error is denoted as ERRgu.

Based on the given new energy power prediction value, the
corresponding lower limit of the new energy actual power
confidence interval is denoted as

Ped � Pe + ERRgd , (2)
where Pe is the given new energy power prediction value and ERRgd
is the lower limit of the new energy prediction error.

The upper limit of the new energy actual power confidence
interval is denoted as

Peu � Pe + ERRgu, (3)
where ERRgu is the upper limit of the new energy prediction error.

Based on the lower and upper limits of the new energy actual
power confidence interval, the new energy actual power confidence
interval is expressed as [Ped, Peu].

It should be noted that the above calculation step is based on the
predicted power of new energy at a single moment to calculate the
confidence interval of the actual power of new energy at the same
moment. On this basis, for the new energy prediction data over a
period of time, the predicted power at each time point can be used to
calculate the new energy actual power confidence interval at the
same time following the above calculation step, and the new energy
actual power confidence interval in the target time period can be
obtained by traversing all the time points based on the
prediction data.

4 Example analysis result

4.1 New energy data acquisition based on a
graph database

Combining the topology of a model system containing some
new energy plant stations, the CIM/E data are converted into vertex

and edge datasets and loaded into a graph database to build a
corresponding physical node graph model of the power system.
Based on this graph database test dataset, the above method is used
to obtain information on all new energy units under a certain main
transformer connected through topological relationships, as shown
in Table 2.

In Table 2, the left side contains the main transformer
winding ID as the starting point of the search path and the
right side contains the ID of the new energy generator found. For
this graph database test dataset, a part of the new energy
generators are found in main transformer low-voltage side
winding (ID: 117375065841997076), and the rest of the new
energy units are found in main transformer medium-voltage side
winding (ID: 117375065841997077).

In Table 3, based on the ID of the new energy generator found,
the information of the new energy generator searched under the
main transformer, such as generator type and generator output, is
obtained by the SQL query statement.

4.2 New energy historical data clustering
analysis based on the CLIQUE algorithm

Based on the new energy historical data in a region obtained
from the graph database, the new energy historical prediction and
measured data are analyzed using the above method, and the
operational distribution characteristics of the new energy
historical prediction power and prediction error are obtained
through the CLIQUE clustering method, as shown in Figure 2.

Based on Figure 2, the distribution intervals of prediction errors
for new energy sources at different prediction power levels can be
summarized, as shown in Table 4.

According to Figure 2 and Table 4, the fluctuation range of the
prediction error is the largest when the new energy prediction power
is 500 kW–1,000 kW. The range of fluctuation of the prediction
error is the smallest when the predicted power is > 2,500 kW.

TABLE 2 Transformer winding and new energy generators found from winding.

Transformer winding ID Connected new energy generator ID

117375065841997076 115686215981728842

117375065841997076 115686215981728843

117375065841997076 115686215981728844

117375065841997076 115686215981728829

117375065841997076 115686215981728830

117375065841997076 115686215981728831

117375065841997077 115686215981728833

117375065841997077 115686215981728835

117375065841997077 115686215981728837

117375065841997077 115686215981728839

117375065841997077 115686215981728840

117375065841997077 115686215981728841
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TABLE 3 New energy generator information searched under the main transformer.

New energy generator ID searched under the main transformer Generator type Generator output (kW)

115686215981728829 PV 1,911

115686215981728830 PV 2,833

115686215981728831 PV 2,776

115686215981728833 PV 4,985

115686215981728835 PV 4,587

115686215981728837 PV 3,602

115686215981728839 PV 3,262

115686215981728840 PV 2,812

115686215981728841 PV 2,208

115686215981728842 PV 4,165

115686215981728843 PV 2,465

115686215981728844 PV 4,656

FIGURE 2
Operational distribution characteristics of new energy prediction
power and prediction error.

TABLE 4 Distribution intervals of prediction errors.

New energy prediction power (kW) Distribution interval of prediction error (kW)

<500 [-150, 500]

500–1,000 [-350, 1,200]

1,000–1,500 [-620, 750]

1,500–1,800 [-750, 750]

1,800–2,200 [-750, 500]

2,200–2,500 [-620, 250]

>2,500 [-620, 50]

FIGURE 3
Distribution characteristics of new energy prediction power and
prediction error in region 1.
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The new energy historical data in two different regions are
analyzed and compared using the CLIQUE algorithm to obtain the
coupling relationship between the new energy prediction power and
prediction error in different regions, as shown below.

As can be seen from Figure 3 and Figure 4, the maximum range
of new energy prediction error fluctuation in region 1 is [-2,000,
1,250], and the maximum range of new energy prediction error
fluctuation in region 2 is [-2,500, 1,750]. According to the clustering
results, it can be found that the new energy characteristics of
different regions are more different.

4.3 New energy actual power
confidence interval

For the region to which the new energy data analyzed in Figure 2
belongs, based on the new energy prediction data within a given

day’s time, the new energy actual power confidence interval within
this day is calculated according to the corresponding prediction
error distribution interval, as shown in Figure 5.

In Figure 5, the red line represents the upper limit of the actual
power confidence interval, and the blue line represents the lower limit of
the actual power confidence interval. It can be seen that using the data-
driven new energy uncertainty analysis method proposed in this paper,
the new energy actual power confidence interval in the target time
period is obtained, and the impact of the prediction error caused by new
energy uncertainty is taken into account, realizing the quantitative
description of new energy output uncertainty.

5 Conclusion

In this paper, we use a graph database to efficiently obtain massive
new energy historical data and propose amethod to quantitatively assess
the uncertainty of new energy output based on prediction error using the
CLIQUE algorithm to quickly analyze the coupling relationship between
new energy prediction power and prediction error. Based on the given
new energy prediction power, the new energy actual power confidence
interval can be calculated according to the corresponding prediction
error distribution interval, which takes into account the impact of the
prediction error caused by new energy uncertainty and realizes the
quantitative assessment of new energy power uncertainty, which helps
improve the security and stability of the grid after the new energy is
connected to the grid and promotes the new energy consumption of the
grid. Our proposed method has a good application prospect. At present,
the proposed methodmainly uses the CLIQUE algorithm to analyze the
new energy output uncertainty. In the future, artificial intelligence
technology will be introduced to study the effect of its application in
the field of new energy output uncertainty assessment.

Data availability statement

The datasets presented in this article are not readily available
because the datasets are collected from the actual grid and are subject
to external confidentiality requirements according to company
regulations. Requests to access the datasets should be directed to
BC, chenbingsong@sgepri.sgcc.com.cn.

Author contributions

BC: conceptualization, data curation, formal analysis,
investigation, methodology, and writing–original draft. YW:
conceptualization, funding acquisition, methodology, resources,
and writing–review and editing. LW: funding acquisition,
resources, supervision, and writing–review and editing. ZH: data
curation, project administration, and writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This research
was funded by the National Key Research and Development

FIGURE 4
Distribution characteristics of new energy prediction power and
prediction error in region 2.

FIGURE 5
Confidence interval of actual power of new energy in one day.

Frontiers in Energy Research frontiersin.org07

Chen et al. 10.3389/fenrg.2024.1372465

mailto:chenbingsong@sgepri.sgcc.com.cn
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1372465


Program Project (Graph Computing Analysis and Optimization
Software for Ultra-Scale Grid Equipment Nodes, 2022YFB2404200).

Conflict of interest

Authors BC and YW were employed by NARI Technology Co.,
Ltd. Authors LW and ZH were employed by State Grid Jiangsu
Electric Power Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Bludszuweit, H., Dominguez-Navarro, J. A., and Llombart, A. (2008). Statistical
analysis of wind power forecast error. IEEE Trans. Power Syst. 23, 983–991. doi:10.1109/
tpwrs.2008.922526

Caixia, T., Zhongfu, T., Zhe, Y., Yujie, W., Shiping, G., and Lei, P. (2023). Study on
grid price mechanism of new energy power stations considering market environment.
Renew. Energy 203, 177–193. doi:10.1016/j.renene.2022.12.065

Changjiu, Z., Tiejun, Z., Mengmeng, R., Ye, T., Xiaoying, X., and Yiguo, N. (2020).
Voltage analysis of electric heating and photovoltaic scale access to low-voltage
agricultural networks. J. Power Syst. Automation 32, 40–48. doi:10.19635/j.cnki.csu-
epsa.000498

Chao, D., Yu, W., Changyun, W., Yan, X., and Pengfeng, L. (2021). Distributed
resilient control for energy storage systems in cyber–physical microgrids. IEEE Trans.
Industrial Inf. 17, 1331–1341. doi:10.1109/tii.2020.2981549

Chongqing, K., and Liangzhong, Y. (2017). Key scientific issues and theoretical
research framework of high percentage renewable energy power system. Power Syst.
autom. 41, 3–11.

Dong, Y., Chao, D., Changyun, W., and Wei, W. (2023). Finite-time distributed
resilient tracking control for nonlinear MASs with application to power systems. IEEE
Trans. Automatic Control, 1–16. doi:10.1109/TAC.2023.3332777

Gengsheng, D., Chengqi, L., and Yan, X. (2008). Research and implementation of
CLIQUE clustering algorithm based on grid and density. Comput. Mod. 12, 8–11.

Guangyi, L., Kewen, L., and Di, S. (2017). Graph computation and its applications in
smart grid. Honolulu, USA: IEEE International Congress on Big Data, 507–510. doi:10.
1109/bigdatacongress.2017.75

Guangyi, L., Renchang, D., Yi, L., Kewen, L., Zhiwei, W., Chen, Y., et al. (2020).
Development of real-time network analysis application for energy management system
based on graph computing. J. Electrotechnol. 35, 2339–2348. doi:10.19595/j.cnki.1000-
6753.tces.190901

Houming, J., Hao, S., and Zhen, K. (2012). A fast power network topology analysis
method based on graphical database. Comput. Syst. Appl. 21, 173–176.

Huajie, D., Zechun, H., and Yonghua, S. (2012). Stochastic optimization of the daily
operation of wind farm and pumped-hydro-storage plant. Renew. Energy 48, 571–578.
doi:10.1016/j.renene.2012.06.008

Jinghua, Y., Jiang, C., Zhi, C., and Yuxuan, L. (2022). “The optimal decision-making
method of planned outage and demand side management based on the confidence
interval of new energy prediction,” in 2022 4th International Conference on Power and
Energy Technology (ICPET), Beijing, China, July 28-31, 2022, 944–951. doi:10.1109/
icpet55165.2022.9918508

Lingling, S., Meichao, Z., Ning, W., Qingquan, J., and Guangyu, D. (2018). Research
on access capacity of distributed photovoltaic power generation based on voltage

deviation opportunity constraint. J. Electrotechnol. 33, 1560–1569. doi:10.19595/j.
cnki.1000-6753.tces.170185

Lu, J., and Zhang, L. (2020). Data mining technology of computer testing system for
intelligent machining. Neural Comput. Appl., 1–11. doi:10.1007/s00521-020-05369-6

Sicheng,W., andWeiqing, S. (2023). Capacity value assessment for a combined power
plant system of new energy and energy storage based on robust scheduling rules.
Sustainability 15, 15327. doi:10.3390/su152115327

Tan, C., Tan, Z., Yin, Z., Wang, Y., Geng, S., and Pu, L. (2023). Study on grid price
mechanism of new energy power stations considering market environment. Renew.
Energy 203, 177–193. doi:10.1016/j.renene.2022.12.065

Tewari, S., Geyer, C. J., and Mohan, N. (2011). A statistical model for wind power
forecast error and its application to the estimation of penalties in liberalized markets.
IEEE Trans. Power Syst. 26, 2031–2039. doi:10.1109/tpwrs.2011.2141159

Weimin, M., Yaozhong, X., Guodong, J., Dandan, X., Junliang, L., Zhibin, M., et al.
(2013). A comparative analysis of the grid model exchange standards CIM/E and CIM/
XML China. Grid Technol. 37, 936–941.

Xiangxiang, Q., and Dengsheng, L. (2012). A new outlier mining method based on
CLIQUE in multi-database. Adv. Mater. Res. 532, 959–963. doi:10.4028/www.scientific.
net/amr.532-533.959

Yaozhong, X., Hongzhu, T., Yisong, L., and Junjie, S. (2006). Power system data model
description language. E. Power Syst. Autom. 10, 48–51+92.

Yuning, L., and Bingbing, F. (2022). Overview of the development of graph databases.
Comput. Syst. Appl. 31, 1–16. doi:10.15888/j.cnki.csa.008713

Yutong, H. (2020). “Uncertainty analysis of photovoltaic power generation and its interval
prediction study,” (Beijing: North China Electric Power University). [dissertation]. doi:10.
27140/d.cnki.ghbbu.2020.000485

Zhang, X., and Shen, J. (2024). Master–slave game operation scheduling strategy of an
integrated energy system considering the uncertainty of wind and solar output. Front.
Energy Res. 11, 1291728. doi:10.3389/fenrg.2023.1291728

Zheng, C., Junbo, Z., Ge, C., and Zhihao, C. (2022). Construction and application of
CIM/XML of power grid based on RedisGraph. Electr. Power Inf. Commun. Technol. 20,
1–8. doi:10.16543/j.2095-641x.electric.power.ict.2022.04.001

Zhi, C., Qiang, D., Dan, X., Chi, Z., and Yi, S. (2020). “Generation schedule
considering branch security check under new energy access,” in 2020 IEEE
Sustainable Power and Energy Conference (iSPEC), Chengdu, China, 23-
25 November 2020, 331–336. doi:10.1109/ispec50848.2020.9351051

Zhiyu, L., Tao, W., Zhiqiang, W., Jingxiang, L., and Jiuye, Z. (2022). “Research and
application of optimization strategy for new energy on-grid consumption capacity,” in
2022 9th International Forum on Electrical Engineering and Automation (IFEEA),
Zhuhai, China, November 4-6, 2022, 736–739. doi:10.1109/ifeea57288.2022.10038079

Frontiers in Energy Research frontiersin.org08

Chen et al. 10.3389/fenrg.2024.1372465

https://doi.org/10.1109/tpwrs.2008.922526
https://doi.org/10.1109/tpwrs.2008.922526
https://doi.org/10.1016/j.renene.2022.12.065
https://doi.org/10.19635/j.cnki.csu-epsa.000498
https://doi.org/10.19635/j.cnki.csu-epsa.000498
https://doi.org/10.1109/tii.2020.2981549
https://doi.org/10.1109/TAC.2023.3332777
https://doi.org/10.1109/bigdatacongress.2017.75
https://doi.org/10.1109/bigdatacongress.2017.75
https://doi.org/10.19595/j.cnki.1000-6753.tces.190901
https://doi.org/10.19595/j.cnki.1000-6753.tces.190901
https://doi.org/10.1016/j.renene.2012.06.008
https://doi.org/10.1109/icpet55165.2022.9918508
https://doi.org/10.1109/icpet55165.2022.9918508
https://doi.org/10.19595/j.cnki.1000-6753.tces.170185
https://doi.org/10.19595/j.cnki.1000-6753.tces.170185
https://doi.org/10.1007/s00521-020-05369-6
https://doi.org/10.3390/su152115327
https://doi.org/10.1016/j.renene.2022.12.065
https://doi.org/10.1109/tpwrs.2011.2141159
https://doi.org/10.4028/www.scientific.net/amr.532-533.959
https://doi.org/10.4028/www.scientific.net/amr.532-533.959
https://doi.org/10.15888/j.cnki.csa.008713
https://doi.org/10.27140/d.cnki.ghbbu.2020.000485
https://doi.org/10.27140/d.cnki.ghbbu.2020.000485
https://doi.org/10.3389/fenrg.2023.1291728
https://doi.org/10.16543/j.2095-641x.electric.power.ict.2022.04.001
https://doi.org/10.1109/ispec50848.2020.9351051
https://doi.org/10.1109/ifeea57288.2022.10038079
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1372465

	Quantitative assessment method of new energy output uncertainty based on the prediction error
	1 Introduction
	2 New energy data acquisition method based on a graph database
	2.1 Introduction to the graph database
	2.2 Grid modeling based on a graph database
	2.3 New energy data acquisition process based on a graph database

	3 New energy uncertainty analysis based on CLIQUE clustering
	3.1 Cluster analysis of new energy historical data based on the CLIQUE algorithm
	3.2 New energy actual power confidence interval calculation

	4 Example analysis result
	4.1 New energy data acquisition based on a graph database
	4.2 New energy historical data clustering analysis based on the CLIQUE algorithm
	4.3 New energy actual power confidence interval

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


