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With the continued growth of smart grids in electrical systems around the world,
large amounts of data are continuously being generated and new opportunities
are emerging to use this data in a wide variety of applications. In particular, the
analysis of data from distribution systems (such as electrical substations) can lead
to improvements in real-time monitoring and load forecasting. This paper
presents a methodology for substation data analysis based on the application
of a series of data analysis methods aimed at three main objectives: the
characterization of demand by identifying different types of consumption, the
statistical analysis of the distribution of consumption, and the identification of
anomalous behavior. The methodology is tested on a data set of hourly
measurements from substations located in various geographical regions of
Colombia. The results of this methodology show that the analysis of
substations data can effectively detect several common consumption patterns
and also isolate anomalous ones, with approximately 4% of the substations being
identified as outliers. Therefore, the proposed methodology could be a useful
tool for decision-making processes of electricity distributors.

KEYWORDS

electrical data analysis, Smart Grids, electrical grid management, demand
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Introduction

The incorporation of Smart Grids to electrical networks allows a wide variety of
innovations in their management, both in terms of grid infrastructure and information
processing, with the primary goal of ensuring a more reliable and efficient supply of
electricity to end users while lowering costs and potential risks to operators (Dileep, 2020).
The infrastructure that supports Smart Grids, known as Advanced Metering Infrastructure
(AMI), includes on-site metering devices (located at transmission lines, distribution nodes,
and end users), communication networks to connect such devices, and servers that store the
data that is being continuously generated. While the analysis of these amounts of data poses
significant challenges in terms of computing power and economic investment, the insights
obtained from such process can be used in multiple ways to improve the overall operation of
the network (Chakraborty and Sharma, 2016). Various applications have been developed
based on data generated by Smart Grids (Bhattarai et al., 2019), including, among many
others, real-time optimization of power distribution from generators (Paul et al., 2023),
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reduction of prices through tariff schemes adapted to consumption
(Aurangzeb et al,, 2021), assessments of the integration of renewable
energy sources given their inherent variability (Mostafa et al., 2022;
Paul, 2022), and “demand response”, a mechanism designed to
increase the stability of the network through changes at times of
peak consumption through strategies such as user incentives or
automated monitoring (Siano, 2014; Siddiquee et al., 2021).

Integrating Smart Grids into existing power networks is a
complex and expensive process that faces significant and varied
challenges in both developed and developing countries. In
particular, in the case of Colombia, the growth of Smart Grids
has been accompanied by a notable increase in the country’s overall
electricity demand and a boost to the diversification of Colombian
energy sources, mainly hydroelectric and wind power (Colmenares
Quintero et al,, 2022). As a result, intelligent management of energy
demand and distribution has become a priority for utilities and
government agencies responsible for overseeing nationwide and
regional distribution and regulating the Colombian energy
market (Giral Ramirez et al., 2017; Téllez Gutiérrez et al., 2018).
The adoption of AMI systems in the Colombian power grid has been
gradually reaching different levels of the network, including end
users and power distribution substations, that serve limited areas
such as small towns or neighborhoods of a large city (Garcia-Guarin
et al,, 2019). However, the challenging geographical conditions of
Colombia, a highly mountainous country with a wide variety of
climates, have limited the development of reliable communication
networks and the integration of small local grids (Echeverri
Martinez et al., 2020), which constraint the expansion of Smart
Grids throughout the country (Molina C et al., 2019).

In scenarios such as the Colombian power network, where Smart
Grids are still expanding and have relatively low capabilities, grid
operators and other stakeholders are looking for fast and
undemanding ways to process the data generated by the network
and obtain meaningful information. Therefore, this paper proposes
a methodology focused on the analysis of data from electrical
substations, so that its results are centered around geographic
areas rather than individual users and thus allowing the results to
The
processing:

be more focused on regional electrical distribution.
three of data
dimensional reduction, consumption characterization through

methodology comprises stages
clustering, and statistical analysis through density estimation. The
results of these three processes (each involving two different
methods) include the segmentation of different substation
consumption behaviors and the identification of the most
common and rarest consumption profiles, that is, the detection
of rare or anomalous behaviors. Our proposal is tested by using a
series of three data sets provided by three Colombian grid operators,
that contain hourly active power measurements made by AMI
devices located at 394 electrical substations, covering a period
between 2019 and mid-2022. Our methodology is a lightweight,
easy-to-implement alternative, suitable for small grid operators; we
prove it is able to quickly identify the most frequent behaviors in
daily electrical consumption on substations, and also to isolate
unexpected or infrequent patterns. The main contributions of
this work can be described as:

I. The formulation of a comprehensive methodology for the
analysis of electricity consumption measurements in
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substations. This methodology is composed of data
preprocessing, dimensional reduction analysis, segmentation
analysis and density estimation analysis. For each of these
analyses, two different methods are applied in order to
guarantee the robustness of the results.

II. The application of the proposed methodology on three data
sets made up of consumption measurements in electrical
substations in different regions of Colombia, that shows it
is capable of finding common and anomalous behaviors in
multiple ways. Since the methodology is composed of
different data analysis methods, the results of each are
presented in the form of plots and compared using
performance metrics.

II. A comparison of the main results obtained for the data sets,
highlighting differences and similarities between the three
scenarios, and establishing the main advantages of the
proposed methodology, together with some possible areas
for improvement.

The structure of this paper is as follows: Section 2 provides an
overview of related work on worldwide cases of Smart Grids and
AMI implementation, as well as a literature review of the most
commonly used techniques for analyzing data generated by Smart
Grids. Section 3 gives a view of the characteristics of the data sets and
presents the framework in which the selected data analysis methods
are applied, establishing the order in which they are applied. The
results of this process on the data from the three grid operators are
presented in Section 4, and the conclusions of the work are presented
in Section 5.

Background and related work
Smart Grids overview

Classic power grids, originally designed to distribute power from
a few generating hubs to a large number of end users, are currently in
dire need of change. The pressure to improve the power grid system
can be traced, among other issues, to its inefficiency and
environmental footprint, a notable increase in electricity demand
in recent years, and the growing importance of less reliable energy
sources like renewables (Muench et al,, 2014). Increasingly sudden
fluctuations in energy supply and demand require efficient and rapid
control of power distribution to maintain acceptable levels of quality
and reliability. Smart Grids promise to address these challenges,
enabling precise and efficient control of large areas of the grid
(Berger and Iniewski, 2012), addressing peak demand and other load
issues (Bhattarai et al., 2019), allowing a precise management of
renewable energy sources (Paul, 2022; Li et al., 2020; Saxena et al.,
2021), and giving greater flexibility to address the rising demand of
electric mobility, such as electric vehicles and ships (Ismail et al.,
2023; Kumar and Panda, 2023).

Smart Grids and AMI infrastructure have been implemented
over the last decade in different regions of the world with varying
degrees of success. An interesting example of Smart Grids
development was presented as part of the implementation of a
smart cities scheme in Sydney, Australia between 2009 and 2014.
This process was relatively successful, but was also held back by high
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costs, regulatory issues and poor government leadership (Lovell,
2020). At national level, although there have been serious
investments in smart metering and renewable sources, other
issues had emerged, including the low levels of grid integration
and communication problems in remote areas (Haidar et al., 2015).
A more optimistic case is China, where the government’s push for
energy efficiency has allowed an accelerated development of smart
grid implementation in large areas, albeit with poorly defined
horizons and an outdated, fossil-fuel based network that is not
well suited to the requirements of Smart Grids (Yu et al., 2012). In
the case of Europe, the regulatory frameworks of the European
Union have promoted a series of programs that seek standardization
among operators in different countries. The geographic and
economic particularities of each region make it difficult to draw
general conclusions (Fotis et al., 2022), but the most successful
projects have been developed following the smart cities paradigm,
integrating Smart Grids with transport and water management in
large and mid-sized cities across Europe (Farmanbar et al., 2019).

Regarding the implementation of Smart Grids in developing
countries, two paradigmatic cases are those of India and Brazil. In
the first case, the obsolescence of the country’s electricity grid and
the reluctance of consumers to the high costs of AMI meters have
been progressively solved through the development of a clear
regulatory framework and a strong collaboration between the
Indian government and industry organizations (Kappagantu and
Daniel, 2018; Asaad et al., 2021). In the second case, Brazil has an
electricity grid based on renewable sources, and regulators are the
main drivers for the implementation of smart grids in the country to
manage the grid efficiently and detect energy losses and illegal
connections. The vast and challenging geography, the lack of
strong investment in modernization and the technological lag are
cited as the main challenges (Di Santo et al., 2015).

Among the challenges that are often common in these cases, it is
important to recall those related to leveraging the data obtained as a
result of Smart Grid deployment. Although these data have the
potential to provide valuable insights for network operators, their
exploitation on a large scale is generally difficult and presents several
important issues (Mohamed et al, 2019). Data is generated
continuously and in large volumes, quickly overwhelming the
capabilities of the information systems of the operators and
preventing effective analysis; in addition, it is often difficult to
integrate data from different operators and from multiple local
grids, which hinders the formulation of nationwide conclusions
(Bhattarai et al., 2019; Tu et al., 2017). This represents a long-term
loss of value, both for companies that could better understand the
consumption patterns of their users, and for government agencies
interested in formulating more efficient energy distribution policies
(Moreno Escobar et al., 2021).

Data analysis methods on Smart Grids

With the development and growth of Smart Grids, processing
the data they generate has become one of the main sources of
information for electric grid managers. The results of data analysis
can be applied to problems such as demand response, identification
of profiles or prediction of consumption or long-term costs, among
others (Bustos-Brinez et al., 2023). The data generated, however, are
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generated in large volumes and are increasingly complex, so they
usually start with a pre-processing stage that includes data
downsizing (Kotsiopoulos et al., 2021). In general, dimensional
reduction makes it possible to obtain results with greater
efficiency and improve visualization, at the cost of a small loss of
information. One of the most commonly used techniques for this
purpose is Principal Component Analysis (PCA), a method that
constructs linear combinations of existing features by minimizing
the loss of information measured by variance (Salem and Hussein,
2019). In the electricity sector, this technique and its variations have
been used as part of analysis schemes aimed at managing demand
response (Kafash Farkhad and Akbari Foroud, 2023) or detecting IT
security breaches in the data generated by Smart Grids (Acosta
et al., 2020).

Once data reduction has been performed, there are a large
number of applications in which different combinations of
methods
applications focus, for example, on the identification of load

are used for various purposes. Some of these
profiles. In this area, the preferred methods are clustering
techniques, that aim to segment the data into a series of groups
(called “clusters”) such that the data in each group are similar to each
other and very different from those in other groups (Si et al., 2021).
The most well-known clustering algorithm is K-Means, a distance-
based method that constructs a previously defined number of
clusters in such a way that minimizes their inner variances by
centering each cluster around a central point known as
“centroid”. The predefined number of clusters (denoted as k) is
the basic parameter of the method. An extensive list of applications
of this method within Smart Grids is presented in (Miraftabzadeh
et al., 2023), highlighting its uses to identify multiple load profiles.

Another commonly used clustering method is called Density-
based Spatial Clustering of Applications with Noise (DBSCAN), a
method that allows the construction of clusters of highly variable
sizes and determines some rare or anomalous values that might not
belong to any group. The method relies on the definition of dense
areas through the revision of the neighborhoods of data points; this
depends on two parameters, the size of the considered neighborhood
(determined by a parameter called eps) and the minimum number
of points in a dense area (denoted as min _samples). Data points in
dense areas tend to belong to the same cluster as its neighbors, and
data points outside of them are regarded as noise or outliers. Some
representative examples of the use of DBSCAN in Smart Grids are
shown in (Yang et al,, 2018), where a wide variety of consumption
profiles are identified for price prediction purposes, and in
(Ravinder and Kulkarni, 2023), where the method is used to
detect possible intrusions in the network that communicates
radio sensors.

There are many other types of data analysis methods that are
used in different applications of Smart Grids. In the area of load
forecasting, dimensional reduction can be accompanied by
[(Mukherjee et al, 2021)-MU1] or
classification models such as Support Vector Machines (Ayub

regression models
et al,, 2020). The analysis of the best physical location of devices
storing Smart Grid data can be performed with optimization models
on graphs (Gallardo et al, 2021). Detection of cybersecurity
weaknesses or data injection attacks can be addressed by
mechanisms such as neural networks and deep learning
[(Vimalkumar and Radhika, 2017; Mukherjee et al., 2022)-MU2],
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and other unwanted network intrusions, such as power theft, can be
addressed through the combination of clustering methods like
DBSCAN with density estimation methods like Gaussian
Mixtures (Zheng et al., 2017). The latter method is based on the
assumption that the data come from a series of normal distributions
that may or may not be correlated, and whose parameters are found
by the model. The base assumption is the number of different
gaussians that make up the distribution. A Gaussian Mixture model
similar to the previous one is also used in the area of electric mobility
for the identification of load profiles and flexibility analysis, making
an analogy between the different gaussians and the groups obtained
by clustering models (Mirtz et al., 2022).

Finally, some models are used in the area of renewable energies,
including the identification of energy generation profiles and their
contrast with consumption profiles (Miguel et al, 2016) or the
analysis of the distribution of solar energy generation in different
geographical areas using density estimation (Bouhorma et al., 2023).
In the latter case, where the density presents forms with multiple
modes that are difficult to analyze analytically, the algorithm chosen
is Kernel Density Estimation (KDE), which constructs a non-
parameterized distribution from the sum of the contributions of
each data point, measured through a transformation function called
a kernel. The distributions obtained with this method, although they
do not have an analytical form, are capable of modeling a wide
variety of complex scenarios (Hu et al., 2021).

Methodology

A graphical summary of the stages of the proposed methodology
and the models included in each stage is presented in Figure 1. By
sequentially applying these analysis methods, a series of
approximations to the cluster segmentation and probabilistic
distribution of the
combined to create a robust model of substation consumption

data are constructed. These results are

that takes into account the different types of behaviors that can
occur and separates them into different groups, and also captures the
general distribution of the data to point out the most common and
most anomalous behaviors. Next, we present a detailed description
of the steps performed at each stage.

Data preprocessing

The expected input to the methodology is a set of AMI
measurement records containing at a minimum information on the
substation where the measurement is taken, the date and time of the
measurement, and the value of the measurement. Measurements should
be taken every hour continuously, so that substations have records
associated with each of the 24 h of the day. Under these conditions, a
substation is discarded for further analysis if it has missing or null
measurements. For substations with complete measurements, their
associated records are preprocessed according to the scheme
2023),
summarizing the consumption of the substations in average load

proposed in (Bustos-Brinez et al, with the aim of

profiles. For each substation considered, all its associated records are

isolated and then divided into 24 groups, each one corresponding to the
hour of the day (from 0 to 23) in which the measurement was taken. The
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Raw Data

)

Data Preprocessing

Mean and Variance

Scaling + PCA

Density Estimation

)

« Segmentation of substations by load profile
« Segmentation of substations by magnitude of
consumption
« |dentification of anomalous behaviors

Gaussian Mixture KDE

FIGURE 1
Structure of the proposed methodology. It consists of four

stages: data pre-processing, dimensional reduction, clustering
analysis and density estimation. The main results obtained through its
application to electrical substation data are also presented.

average values of these 24 groups are obtained and then collected in a
load profile corresponding to a vector of dimension 24, where the first
value corresponds to the average of the measurements of hour 0, the
second value to the average of the measurements of hour 1, and so on
until hour 23. In this way, each substation ends up being represented by a
load curve made from the averages of its records for each hour of the day.

Dimensional reduction

Once the average load curves have been constructed, each
substation is represented by 24 values that depict its average
consumption behavior throughout the day. However, not all of
these values carry the same amount of information, or some of them
can be seen as redundant in some cases. Therefore, in order to
maximize the efficiency of subsequent analyses (both in terms of
processing time and use of computational resources), it is important
to establish how many values are sufficient to analyze the
consumption behavior with a small loss of information. Two
approaches are chosen for this purpose, considering the examples
given in (Duarte et al, 2022) (where dimensional reduction is
also stated as a powerful tool for graphical representation of
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FIGURE 2
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24-h plots of some behaviors associated with different types of end users. In general, Residential users show low consumption in the morning and
spikes in the afternoon or evening, Commercial users show more consumption in the afternoon and less in the night, and Industrial users tend to have
stable consumption throughout the day. The plots have been generated using data from (Bustos-Brinez et al., 2023).

high-dimensional data). The first approach involves a MinMax
scaling, which transforms the values in the profiles to the range [0, 1],
followed by the application of a principal component analysis
(PCA) that reduces the dimension of each profile from 24 to just
two. The scaling is intended to remove information about the
magnitude of consumption, allowing two substations with similar
consumption patterns but with different magnitudes to have similar
representations. The second approach also reduces the profiles from
24 dimensions to two, by using two measures of central tendency, the
mean and standard deviation of the 24 values; this discards
information about rising or falling patterns along the day to focus
on the consumption magnitude and the general variation it presents.

Profile characterization

Since two-dimensional reduction approaches are applied, which
generate two alternative representations for each substation, there is

Frontiers in Energy Research

a separate analysis for each one of them. The two-dimensional
representations are used to identify and isolate different electricity
consumption behaviors, in a similar fashion to market
segmentation. In particular, it is desired to find behaviors that
can be associated with different types of end-users, distinguishing
between Residential, Commercial and Industrial load profiles. In
(Di Santo et al., 2015), these are identified as follows: Residential
users tend to show low consumption in the early morning and peaks
in the afternoon or evening, Commercial users have high
consumption in the afternoon and lower consumption in the
morning and evening, and Industrial users show a more
uniform consumption through all the day. Figure 2 shows some
of the expected patterns for each user type, representing profiles as
24-h plots.

In this stage, two different methods are selected to perform the
segmentation of profiles into clusters: DBSCAN and K-Means.
These methods depend on a set of hyperparameters that strongly

influence the quality of the results. Most of these parameters are set
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to default values (suggested by the Scikit-Learn Python
implementation), leaving only some to be optimized by a grid
search process. For DBSCAN, the selected hyperparameters are
eps (searched between 0.10 and 0.25 with steps of 0.01) and
min_samples (searched from 2 to 5). In general, small values of
eps lead to the formation of a larger number of smaller clusters. For
K-Means, the main hyperparameter is k, the number of clusters,

searched from 3 to 10.

Consumption distribution

In this last stage, the goal is to build a statistical model of the
data that helps to identify the most common behaviors exhibited
by the substations and allows to perform density estimation and
other statistical tests. This statistical model is set up to emulate a
density function for the data points, that is, to have higher values in
regions where data points appear densely packed and lower values
in regions where data points are scarce. Since data points are
represented as points in a plane, the density model can also be
represented in a plane as a contour plot. The construction of this
density model is done twice, choosing two different methods,
commonly used for this task: Gaussian Mixture and KDE.
Although other, more powerful methods can be used, we select
these two methods because of their ease of implementation (both
are available as part of the Scikit-Learn Python library) and their
interpretability (for Gaussian Mixture, high-density regions are
associated with a series of bivariate Gaussian distributions, and for
KDE, the density of an area is made up of the weighted
contributions of all nearby data points, resulting in higher
densities where points lie in higher numbers). Similar to the
previous stage, the two models are run separately, and there are
a few hyperparameters that undergo grid search optimizations. For
Gaussian Mixture, the selected hyperparameter is the number of
components (that is, the different Gaussian distributions that
compose the overall model), searched between 3 and 8. For
the selected
hyperparameter is the bandwidth, a value that controls how

KDE, with a fixed Gaussian kernel function,

much area the contribution of a data point is able to influence;
the value of the bandwidth was searched between 0.10 and
0.50 with steps of 0.05 for PCA-based points, and between
0.10 and 0.30 with steps of 0.02 for mean-variance points.

One application of these models that is explored is the
identification of the most infrequent data points (anomalies),
under the assumption that these appear in low-density regions,
and the rarer a data point is, the lower its density value is. These
anomalies, due to their rarity, could indicate failures in energy
distribution, errors/vulnerabilities in data collection or fraudulent
consumption. To identify which points are anomalous and which
are not, it is necessary to identify a boundary value, from which a
separation between regions of high density and regions of low
density can be established. This value usually depends on the
number of anomalies assumed to be present in the data, or on a
pre-specified percentage of anomalies; in this case, we look for
thresholds that leave out a number of points similar to that identified
by the segmentation methods. The values taken by the selected
threshold in each scenario depend on the values of the contour lines
in the density functions built by each model.
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TABLE 1 Number of substations whose measurements are contained on
each dataset.

Dataset Substations

Operator A - DB 1 16
Operator B - DB 1 19
Operator C - DB 1 14
Operator C - DB 2 345

Results and analysis
Datasets

The proposed methodology has been tested against a group of
four data sets provided by three operators of the Colombian power
grid, located in different regions of the country. In total, the four data
sets contain active energy measurements for 394 substations, and the
number of substations in each data set can be seen in Table 1. In this
work, only the records corresponding to the year 2021 will be taken
into account, since each data set covers a different time period. All
records in each data set share a common structure, containing an
alphanumeric identifier of the substation assigned by the
respective operator, the date of the measurement separated into
year, month and day, the time of the measurement (since only one
measurement is taken per hour) and the value of the respective
measurement, which can be an integer or a float value depending
on the operator.

The proposed methodology was implemented separately for
each of the network operators; in this way it is possible to
observe how the results change depending on whether there is a
large or small amount of data. This analysis is possible because there
is much more information available for one of the operators than for
the other two. Since two different methods are applied at each stage,
the outputs of each are shown for comparison.

Operator A

This grid operator delivered data from 16 grid substations, and
its substations are located in the central region of Colombia.

MinMax Scaling and PCA

The first mechanism of dimensional reduction consists in the
application of a MinMax scaling followed by the application of PCA.
Figure 3 presents a summary of the results of the different methods
applied on the data of Operator A, when starting with this method in
the dimensional reduction phase. From these data points, the
characterization stage is performed, using the two chosen
clustering techniques. For DBSCAN, the selected parameters are
eps = 0.2 and min _samples = 2. The results of the method are in
Figure 3, second level from top to bottom. The blue dot labeled “-1”
could not be attached to any cluster, so it is separated as an outlier.
The curves obtained by averaging all the points within each cluster
are also presented. From the cluster graphs, it is possible to clearly
separate the consumption behavior