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Introduction: Precise fault diagnosis is crucial for enhancing the reliability and
lifespan of the flexible converter valve equipment. To address this issue,
depthwise separable convolution, bidirectional gate recurrent unit, and multi-
head attention module (DSC-BiGRU-MAM) based fault diagnosis approach
is proposed.

Methods: By DSC and BiGRU operation, the model can capture the correlation
between local features and temporal information when processing sequence
data, thereby enhancing the representation ability and predictive performance of
themodel for complex sequential data. In addition, by incorporating amulti-head
attention module, the proposed method dynamically learns important
information from different time intervals and channels. The proposed MAM
continuously stimulates fault features in both time and channel dimensions
during training, while suppressing fault independent expressions. As a result, it
has made an important contribution to improving the performance of the fault
diagnosis model.

Results and Discussion: Experimental results demonstrate that the proposed
method achieves higher accuracy compared to existing methods, with an
average accuracy of 95.45%, average precision of 88.67%, and average recall
of 89.03%. Additionally, the proposed method has a moderate number of model
parameters (17,626) and training time (935 s). Results indicate that the proposed
method accurately diagnoses faults in flexible converter valve equipment,
especially in real-world situations with noise overlapping signals.
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1 Introduction

The flexible converter valve equipment is a critical component in power systems as it
facilitates the conversion between high-voltage direct current transmission and AC
transmission (Zhang X. et al., 2021). Nonetheless, this equipment is susceptible to
malfunctions due to its intricate structure and operating environment, thereby
potentially affecting the overall operation of the power system (He et al., 2020).
Consequently, an effective fault diagnosis method is imperative to ensure the safe and
stable operation of the power system.
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Currently, fault diagnosis methods mainly include two
categories: model-based methods and machine learning methods
(Zhang et al., 2023). Model-based methods rely onmanual empirical
judgment or simple rules for fault diagnosis, e.g., fault tree analysis
(Yazdi et al., 2017) and state observer method (Hizarci et al., 2022).
These methods suffer from issues such as subjective interpretation,
low diagnostic efficiency, and susceptibility to human biases (Zhao
et al., 2022). Moreover, model-based methods have limited
capabilities in handling complex and variable fault modes as well
as large amounts of data (How et al., 2019; Esmail et al., 2023).
Additionally, these methods heavily depend on manual feature
extraction and rule design for fault diagnosis. Due to the
complex and ever-changing nature of flexible converter valve
equipment, these methods have limitations in extracting features
and designing rules for flexible converter valve equipment (Habibi
et al., 2019).

Based on this, researchers proposed fault diagnosis methods for
flexible converter valve equipment using machine learning
algorithms (Rohouma et al., 2023). For instance, in a study by
scholars (Ye et al., 2019), a KFCM and support vector machine
algorithm was proposed. This algorithm is capable of quickly and
accurately diagnosing faults in analog circuits. To enhance the
convergence speed and generalization performance of diagnostic
methods, scholars (Muzzammel, 2019) designed a machine learning
method to diagnose short faults in High Voltage Direct Current
(HVDC) transmission system.

However, the above-mentioned machine learning methods rely
on historical data and algorithmic rules for trial and error training.
The iterative process automatically adjusts and fine-tunes the model
parameters to obtain appropriate results (Abedinia et al., 2016). Due
to lack of deep feature extraction, machine learning methods may
perform poorly in diagnosing large amounts of data, heterogeneous
signals, and complex signals (Zhang et al., 2017).

In recent years, deep learning methods have gained significant
popularity in the field of fault diagnosis due to their ability to extract
fault features at a deeper level and achieve high diagnostic accuracy
(Yuan and Liu, 2022). For instance, in the case of insulator strings on
transmission lines, researchers (Zhou et al., 2022) presented deep
convolutional generative adversarial network to capture
comprehensive fault data characteristics, which enables accurate
diagnosis of insulator string faults and defects, even under
conditions of strong background noise. To against noise, a
steady-state screening model-based feedforward-long short-term
memory (FF-LSTM) is proposed to reduce complex variations for
lithium-ion batteries (Wang et al., 2022). In addition, an improved
anti-noise adaptive long short-term memory (ANA-LSTM) neural
network with high-robustness feature extraction and optimal
parameter characterization is proposed for accurate RUL
prediction for lithium-ion batteries (Wang et al., 2023).

To effectively extract subtle fault features, scholars (Salehi et al.,
2023) proposed transfer learning depthwise separable convolutional
neural network to address the issue of single-phase-to-ground fault
line selection in resonant grounding system. The smaller number of
separable convolutional neural network parameters increases the
portability of the model (Zhou et al., 2020).

To extend the previously mentioned research methods to flexible
converter valve equipment, it is essential to analyze and summarize
the fault diagnosis challenges specific to this type of equipment. The

following challenges are identified as crucial research opportunities
for diagnosing faults in flexible converter valve equipment:

(1) The flexible converter valve equipment has a complex and
ever-changing structure and working environment, which
leads to nonlinear characteristics in sensor data and
increases the difficulty of fault diagnosis.

(2) Flexible converter valve equipment is subject to varying
operational conditions, resulting in non-stationary data
patterns that can be difficult to analyze and interpret.

(3) In many cases, the available data samples for faulty
operations of flexible converter valve equipment are
scarce, which makes it challenging to develop accurate
models for fault diagnosis.

This article aims to propose a fault diagnosis method for flexible
converter valve equipment based on DSC-BiGRU-MAM, and
address the research challenges mentioned above. The specific
contributions are as follows:

(1) A novel framework is proposed to extract deep features from
the data generated by flexible converter valve equipment. This
framework leverages advanced deep learning techniques to
automatically learn and capture intricate fault patterns, even
in the presence of limited fault samples and non-stationary
working conditions.

(2) To avoid the disadvantage of neglecting fault categories with
smaller sample sizes during the training process, overlapping
sampling method is applied to expand categories with smaller
sample sizes through. The application of overlapping
sampling methods also helps to reduce the risk of
overfitting. Because fault categories with smaller sample
sizes usually have larger variances, they can easily lead to
overfitting problems. By overlapping sampling, it is possible
to increase the training samples for these fault categories,
reduce overfitting of the model to specific fault categories, and
improve the model’s generalization ability.

(3) By employing the proposed fault diagnosis models, accurate
classification of faults in flexible converter valve equipment
can be achieved, thus facilitating timely and effective
maintenance actions. As a result, maintenance
professionals can take prompt and appropriate actions to
address the identified issues, minimizing downtime and
maximizing the operational efficiency of the equipment.

2 DSC-BiGRU-MAM method

2.1 Depthwise separable convolution

Convolutional neural networks (CNN) are a type of artificial
neural network primarily designed for processing video and image
data. As shown in Figure 1A, they excel at extracting features from
input images and leveraging these learned features to classify output
images (Nguyen et al., 2020). In order to extend the benefits of CNN
to text data, a specialized variant known as the 1D Convolutional
Neural Network (1DCNN) has been developed and successfully
applied in signal processing and sequence data analysis (Junior et al.,
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2022). As shown in Figure 1B, 1DCNN performs convolution
operations on input sequences to extract informative features,
enabling it to tackle tasks such as sequence data classification
and regression.

1DCNN has the following important characteristics:

(1) The 1D Convolutional Neural Network is capable of capturing
local correlations within input sequences. By utilizing
convolutional kernels of various sizes, the 1DCNN performs
sliding window operations on the input sequences at different
scales, extracting local subsequences of varying lengths (Hsu
et al., 2022). This ability enables the network to effectively
capture local patterns and features present in the input sequence.

(2) In the convolutional layer, each convolutional kernel
convolves with the entire input sequence, resulting in the
creation of a new feature map. Consequently, the number of
parameters that the model needs to learn remains fixed
regardless of the length of the input sequence. This
parameter sharing mechanism substantially reduces model
complexity, leading to increased training efficiency.

(3) 1DCNN can enhance the depth and complexity of the model
by stacking multiple convolutional and pooling layers (Xiao
et al., 2023). This architecture enables the 1DCNN to perform

multi-level feature extraction and abstraction. As a result, the
network gradually learns more sophisticated and abstract
representations of the input sequence’s features. This
ability significantly enhances the model’s expressive power
when dealing with intricate and complex sequence data.

As shown in Figure 1C, depthwise separable convolution
decomposes the 1DCNN into two separate operations: depthwise
convolution and 1 × 1 convolution, also known as pointwise
convolution (Howard et al., 2017). Assume that input is
represented as X ∈ RW×Cin , output is represented as Y ∈ RW′×Cout ,
filter size is represented as k × 1, the depthwise separable
convolution operation is shown in Eq. 1:

Yi,l � ∑k
m�1

Xsi+m × Wm × W1,m,l (1)

where Yi,l is the i row and l channel of Y, Xsi+m is si +m row and k
channel of X, s is step of filters, Wm and W1,m,l are the weight
parameter of depthwise convolution and point-wise convolution.

This technique offers significant advantages by reducing both
the number of parameters and the floating-point operations
required for the convolutional operation (Salehi et al., 2023).

FIGURE 1
The difference between (A) Regular convolution layer, (B) 1D convolution layer and (C) Depthwise separable 1D convolution layer.
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Depthwise separable 1D-convolution has the following important
characteristics:

(1) It reduces the number of parameters compared to traditional
convolutional operations. By separating the spatial and
channel dimensions, it applies a separate 1 × 1 convolution
on each input channel, followed by a depthwise convolution.
As shown in Eq. 2, the difference between regular convolution
(R) and depthwise separable convolution (DS) is
Cin × [k × Cout − (k + Cout)](> 0), which significantly
reduces the number of parameters required for the
convolution operation.

Params � Cin × k + 1( ) × Cout, R
Cin × k + Cout × Cin × 1 + 1( ), DS

{ (2)

(2) It also decreases the overall computation cost. By
decomposing the convolution into separate depthwise and
pointwise convolutions, it requires fewer floating-point
operations, resulting in improved computational efficiency.

(3) It allows for more flexibility in model architecture design. It
enables the use of different kernel sizes for the depthwise and
pointwise convolutions, providing control over the receptive
field and feature representation of the network.

(4) Due to its parameter efficiency and hierarchical structure, it
helps prevent overfitting and improve generalization
performance on various tasks and datasets.

2.2 Bidirectional gate recurrent unit

In order to consider the temporal correlation in the voltage
signal data of the flexible converter valve, it is crucial to utilize
Recurrent Neural Networks (RNN) for extracting the trend
characteristics of data changes in time series (Bandara et al.,
2020). RNNs are a specific type of neural network that take
sequence data as input and recur in the direction of sequence
evolution, with all nodes (recurrent units) interconnected in a
chain. However, a common issue with RNNs is the problem of
gradient attenuation. To address this, a solution called Long Short-
Term Memory (LSTM) was proposed (Hochreiter and
Schmidhuber, 1997). LSTM maintains the model’s memory of
historical data through input gates, forgetting gates, and output
gates, thereby preventing the loss of important information over
time (Wang et al., 2023).

Another extension of RNN is the Bidirectional Gate Recurrent
Unit (BiGRU), which was presented as a simplified version based
on LSTM. It operates in a bidirectional manner, processing the
input sequence in both forward and backward directions
simultaneously (Zhang Y. et al., 2021). This allows the model to
capture information from both past and future contexts, enabling a
better understanding of the temporal dependencies in the time
series data. The calculation of the BiGRU can be divided into two
directions: forward and backward. Forward propagation
convolution operation is shown in Eqs 3–6:

rt
→ � σ W

xr
→xt +W

hr
→ht−1

��→+ br
→( ) (3)

ut
→ � σ W

xz
→xt +W

hz
→ht−1

��→+ bu
→( ) (4)

~ht
→

� tanh W
xh
→xt +W

hh
→ rt

→⊙ht−1
��→( ) + bh

→( ) (5)

ht
→ � 1 − ut

→( ) ⊙ht−1��→+ ut
→⊙~ht

→
(6)

where input sequence is (x1, x2,/, xt), hidden state sequence is
(h1→, h2

→
,/, ht

→), xt is the data of input sequence at time step t, �r
represents reset gate, and �z represents update gate. Backward
propagation convolution operation is shown in Eqs 7–10:

rt
← � σ W

xr
←xt +W

hr
←ht+1
←�� + br

←( ) (7)

zt
← � σ W

xz
←xt +W

hz
←ht+1
←�� + bz

→( ) (8)

~ht
←

� tanh W
xh
←xt +W

hh
← rt

←
⊙ht+1
←��( ) + bh

←( ) (9)

ht
←� 1 − zt

→( ) ⊙ht+1←�� + zt
←
⊙~ht
←

(10)

where ht−1
���→

and ht+1
←���

are the value of forward hidden state at time step
t − 1 and backward hidden state at time step t + 1, respectively.

As shown in Figure 2, the reset gate in BiGRU contributes to
capturing short-term dependencies in the time series. By
evaluating the current input, it determines which preceding
information should be disregarded or updated, enabling the
model to concentrate on the pertinent short-term patterns
present in the data. The update gate in BiGRU aids in
capturing long-term dependencies in the time series. It decides
how much of the previous information should be carried forward
to the current step, allowing the model to retain important long-
term patterns and context in the data.

Overall, the BiGRU architecture provides a balance between
computational efficiency and capturing both short-term and long-
term dependencies in time series data.

2.3 Multi-head attention mechanism

The attention mechanism is a technique employed to enhance
a model’s focus on important parts of the input sequence. In
sequential data processing tasks, attention mechanisms aid
models in autonomously discerning the contributions of

FIGURE 2
The reset gate, update gate, and hidden status of the GRU.
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different positions or features to the given task and weighting
them based on their significance. By incorporating attention
mechanisms, models gain the ability to adaptively attend to
various segments of the input sequence. In fault diagnosis
tasks, attention mechanisms can direct the model’s attention
towards signal fragments or features that may be pertinent to
faults, thereby enhancing the accuracy and robustness of fault
diagnosis. As depicted in Figure 3, the multi-head attention
module induces the activation of fault-related features relying
on the periodicity of temporal data or the importance of different
convolutional kernel channels. It achieves more comprehensive
semantic modeling by mapping input sequences into multiple
different subspaces and calculating attention weights and
weighted summation on each subspace. The proposed multi-
head attention module has two attention heads, which can be
represented as MA1 and MA2, as shown in Eqs 11–13.

MA1 � X + δ f1×k σ f1×1 �X � max X( )( )( )( )( ) (11)
MA2 � X + σ f1×c δ f1×c

r Xgmp +Xgap( )( )( )( ) (12)
Y � MA1 X( ) +MA2 MA1 X( )( ) (13)

where δ and σ represent the ReLU function and sigmoid function.
f1×k is the filter with size 1 × k. �X and max(X) represent the
average value andmax value fromX along the channel axis.f1×c and
f1×c

r represent fully connected operations with different hidden
sizes. Xgmp and Xgap represent global max pooling and global
average pooling operation of input X.

Additionally, the proposed multi-head attention module
provides an interpretable approach for understanding the
decision-making process of deep learning networks. By
analyzing the distribution of attention weights, researchers can

discern the network’s inclination towards fault features at
distinct time points or frequency ranges. This interpretability
proves beneficial for subsequent fault analysis and
optimization endeavors.

3 Proposed method

The fault diagnosis process of the proposed method is shown in
Figure 4, and the main process is as follows:

(1) Preprocessing: In order to augment the data and ensure
sample equalization on 1D voltage signals, we employed
the overlapping sampling method. Specifically, for each
sample type, we generated 300 datasets with overlapping
step size determined by the number of fault samples of
that type. This technique helped in reducing the class
imbalance and ensured that each sample type had an equal
representation in the training dataset. Moreover, by
generating multiple datasets with varying overlapping sizes,
we increased the robustness of the model to variations in
the input data.

(2) Feature deep extraction process: The initial stage of our
proposed approach involves the utilization of a depthwise
separable 1D convolutional kernel measuring 10 × 1, which
applies 40 distinct filters. Subsequently, in the second layer,
we incorporate a multi-head attention module. This module
encompasses two primary attention components. The first
component comprises a 1D convolutional kernel of size 1 × 1
and 40 depthwise separable 5 × 1 1D convolutional kernels,
which compute significance weights along the temporal

FIGURE 3
Multi-head attention module which enhances fault-related features relying on temporal data and convolutional kernel channels, where GMP, GAP,
and FC denote global mean pooling, global average pooling, and fully-connected layer, respectively.
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dimension. The second attention component consists of two
fully connected layers, one sized 5 × 1 and another with a size
of 40 × 1, which assign weights to individual channels based
on their respective importance. Following this, we employ two
BiGRU layers to comprehensively extract temporal variation
features from the feature maps.

(3) Classifier: The proposed method includes a global average
pooling layer, which simplifies the model architecture and
facilitates better generalization. Subsequently, the
resulting feature maps are fed into a Softmax layer for
classification. The model is optimized using a predefined
loss function until either the maximum number of
iterations is reached or the desired level of accuracy is
achieved. Once trained, we evaluate the performance of
the model using a distinct test set to determine the
effectiveness of the fault diagnosis model. This
evaluation helps to ensure that the model can
accurately diagnose faults in previously unseen data and
is robust enough to handle real-world scenarios.

4 Experimental verification

4.1 Experimental setup

The overall structure of the flexible converter valve
equipment is depicted in Figure 5. The control processing
device utilizes the FCK611 control chassis, which consists of

1 MC board, 1 recording board, 1 LER board, and 54 SCE boards
for networking purposes. A prototype of the flexible converter
valve equipment is illustrated in Figure 6. It is notable that in the
default configuration, the valve control command is initially
received by Receiver 1. If there is a communication fault with
Receiver 1, the system switches to Receiver 2. In case of a
malfunction with Receiver 1, frame synchronization is instead
carried out using Receiver 2.

The flexible converter valve may experience faults or failures,
which can result in system instability or even damage. In this
article, the main types of faults diagnosed include component fault,
fiber optic fault, power supply voltage drop fault, and abnormal
flow injection fault. Component fault occurs due to mechanical
wear and tear, overheating, or the aging of the valve’s components.
When a valve fails, it can cause a short circuit, which can lead to a
loss of DC voltage and a sudden drop in the converter’s output. In
addition, a valve failure can produce high-frequency noise, which
can interfere with other components in the system. Fiber optic
fault in a flexible converter valve refers to a failure or damage to the
fiber optic cables that are used for data communication between
the different control systems and components of the valve. A fiber
optic fault can occur due to various reasons, e.g., mechanical stress,
bending, twisting, crushing, or exposure to high temperatures or
harsh environments. When a fiber optic cable is damaged, it can
result in signal loss or interruption, which can cause the valve to
malfunction or even shut down. The power supply voltage drop is a
common fault in the flexible converter valve, and it can occur due
to a variety of reasons.

FIGURE 4
Flowchart of the proposed DSC-BiGRU-MAM method.
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The power supply voltage drop in the flexible converter valve
can be caused by various factors, including overloading of the power
source, loose connections, corrosion in the electrical contacts, or

damaged cables or wires. When the voltage drops below the required
level, the valve’s components may not receive enough power to
operate correctly, leading to system instability or even complete

FIGURE 5
Equipment structure diagram.

FIGURE 6
Prototype of fiber optic networking dynamic
simulation equipment.

FIGURE 7
Using an oscilloscope to collect voltage values of
experimental equipment.
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failure. An abnormal flow injection fault in a flexible converter valve
refers to an unexpected or irregular flow of a medium (e.g., coolant,
oil, or gas) into the valve’s internal components or control systems.
It may be caused by the leak in the valve’s seals, gaskets, or
connections, foreign particles or contaminants enter the valve,
and inadequate maintenance practices.

Data are collected using an oscilloscope, as depicted in Figure 7.
The voltage waveform patterns for both normal conditions and
different types of faults are presented in Figure 8.

The lengths of fault-free data samples, component fault, fiber
fault, voltage drop fault, and abnormal flow injection fault are
22,800, 102,300, 345,600, 526,100, and 125,300, respectively.
Each fault scenario is extended to 300 samples with 300 time
series data through different overlapping sampling steps based on
the sample length of each scenario. In total, 1,500 1D data

samples of size 300 are obtained. To simulate data
disturbances that may arise from equipment aging, external
factors, and other factors during actual operation, we added
10% Gaussian noise to the dataset mentioned earlier. This
noise was added to help improve the robustness of the model
and ensure its effectiveness in practical applications.

80% of these samples were used for training purposes, while the
remaining 20% was utilized for testing. Within the training samples,
20% of the data was allocated for validating the model under this
iteration number.

The experiment used Google’s TensorFlow deep learning
framework, version 2.3. The experiment was conducted in a
Windows 11 operating environment, using a simulation device
equipped with a Core i7-1165G7 2.8 GHz CPU. The hyper-
parameter settings of the model are shown in Table 1. Among

FIGURE 8
Voltage waveform under different faults. (A) No fault. (B) Component fault. (C) Fiber fault. (D) Voltage drop fault. (E) Abnormal flow injection fault.

TABLE 1 Model hyperparameter settings.

Optimizer Loss function Training Iterations Learning rate

Adam Classification cross entropy min-batch, batch_size = 16 100 0.001
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them, the optimizer selects Adam, the loss function selects
classification cross entropy, the training method is min-batch, the
batch size is 16, the number of iterations is set to 100, and the
learning rate is set to 0.001.

To evaluate the performance of the proposed method, F1-score
and Area Under Curve (AUC) are applied, which are range from
zero (the worst) to one (the best) and convolution operation is
shown in Eqs 14–17:

Precision � TP

TP + FP
× 100% (14)

Recall � TP

TP + FN
× 100% (15)

F1 − score � 2 ×
Precision × Recall

Precision + Recall
× 100% (16)

AUC � ∑i∈positiveClassranki − M 1+M( )
2

M × N
× 100% (17)

where TP, TN, FP, FN represent true positive, true negative,
false positive, and false negative results, respectively. M and N
represent numbers of positive and negative samples. ranki
represent the rank of the current number represents how
many pairs can be formed between the current number and its
preceding number. In this scenario, FP represents diagnosing
fault free data as faulty data (i.e., false alarms), and FN represents
diagnosing faulty data as fault free data (i.e., missing alarms).
Considering that flexible converter valve equipment is a
key component of the power grid, avoiding missing alarms
should be the first goal, by minimizing false alarms as much
as possible.

4.2 Result discussion

(1) Train loss: Figure 9 portrays the loss function indicators of the
proposed method throughout the 100 iterations. It is evident
that the accuracy and classification cross entropy of the
proposed method tend to stabilize during the training
process, indicating that the fault diagnosis model has
reached a relatively optimal state.

(2) Compared with machine learning methods: Due to the fact
that the equipment designed in this article is still in the
research and development stage, there are relatively few
fault diagnosis methods for this equipment. Based on this,
we compared classic fault diagnosis methods for similar
devices, e.g., Support Vector Machines [SVM (Ye et al.,
2019)], K-Nearest Neighbors [KNN (Chen, et al., 2023)],
Random Forests [RF (Movahed et al., 2023)], Logistic
Regression [LR (Mirsaeidi et al., 2018)], and Back
Propagation Neural Networks [BPNN (Liu and Wang,
2023)]. The comparison results between the above method
and the method proposed in this article are shown in Table 2.
From the results, it can be seen that the F1-score and AUC of
the proposed method in this article are significantly higher
than classical methods under similar devices, indicating that
the use of deep separable convolution and BiGRU has a
positive impact on fault related feature extraction.

(3) Compared with deep learning methods: Under the same
parameter configuration, the proposed method with
multiple methods, and the model structures of different
methods are shown in Table 3. Among them, Model 1,
Model 2, Model 3, Model 4 and Model 5 do not contain

FIGURE 9
Loss and diagnostic accuracy within 100 iterations under 10% Gaussian noise. Results indicate that loss and accuracy tend to stabilize during the
training process.
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attention modules, which are used to compare the accuracy of
model that only consists of the BiGRU layer, the model that
only consists of the BiLSTM layer and mixed models in fault
diagnosis. Model 6, Model 7, Model 8, and Model 9 are all
based on a mixture of Depthwise separable 1D Conv (DSC)
and BiGRU models. After the DSC layer, the Squeeze and
Excitation (SE) attention module (Li et al., 2018),
Convolutional Block Attention Module (CBAM) module
(Woo et al., 2018), Joint Attention Module (JAM) module
(Wang et al., 2019), and multi-head Attention Module
(MAM) module are added, respectively.

Figure 10 demonstrates the characteristics of fault-related data
(original signal in Figure 10A and frequency of signal in Figure 10B)
after undergoing depthwise separable 1D convolution operation (in
Figure 10C), multi-head attention operation (in Figure 10D), two
BiGRU operations (in Figures 10E, F). It is evident that the fault-
related data (represented by black dashed box) exhibit more distinct
features compared to other time periods. Furthermore, other time
periods’ noise data is effectively filtered out.

Figure 11A illustrates the average diagnostic accuracy, precision,
and recall of the aforementioned models under 10%, 30%, and 50%
Gaussian noise levels. Among them, precision refers to the
proportion of samples correctly predicted as a specific fault
among all the test samples, while recall represents the proportion
of samples accurately predicted as a specific fault among all the test
samples. Both of these evaluation metrics are commonly used to
assess the performance of fault diagnosis models when dealing with
imbalanced samples. The results indicate that the proposed method
achieves the highest diagnostic accuracy among the repeated
experiments, with an average of 95.45%, surpassing the second-
highest method by 0.76%. This outcome suggests that the proposed
method can accurately diagnose the five fault situations of the
flexible converter valve equipment.

Based on Figure 11B, it is evident that the proposed method
outperforms the comparative methods in terms of F1-score, AUC,
and generalization. Results suggest that the proposed method can

accurately diagnose the five fault situations with F1-score of 89.06%
and AUC of 94.76% related to the flexible converter
valve equipment.

In addition, this study also compared the accuracy, precision,
and recall of different models under Gaussian noise levels of 10%,
30%, and 50%, as shown in Figures 12–14. The reason for
choosing these noise levels is that they represent varying
degrees of noise interference. 10% noise level represents lower
noise interference, 30% noise level represents moderate noise
interference, and 50% noise level represents higher noise
interference. By considering these different levels, the
performance and robustness of the model can be evaluated and
compared under different levels of noise. The results indicate that
the proposed method achieved the highest accuracy metrics under
all Gaussian noise levels. As the proportion of Gaussian noise
increases, the accuracy metrics of all methods affected. However,
due to the deep extraction of fault features, the proposed method
has the minimum fluctuation of accuracy indicators. This also
demonstrates the strong tolerance of the proposed method to
noise during the actual operation of the device, maintaining high
diagnostic accuracy even in the presence of data deviations caused
by aging or other factors.

(4) Model efficiency: Figure 15 provides insights into
parameters and time required for one iteration of the
nine fault diagnosis models. In this figure, the blue line
represents the model parameter quantity, while the red line
represents the running time of one iteration. Model
parameters refer to the number of weights, biases, and
other learnable parameters in a model. The number of
model parameters is usually proportional to the complexity
of the model. More complex models typically have more
parameters, requiring more computational resources and
time for training. Choosing model parameters as a metric
helps evaluate the complexity and availability of the model.
Training deep learning models often requires significant
computational resources and time. Iteration time refers to
the time taken to complete one training iteration. Shorter

TABLE 2 Results of different fault diagnosis methods.

Fault rate Metrics 10 (%) 30 (%) 50 (%)

Proposed F1-score 89.33 91.2 86.67

AUC 95.56 96.05 92.67

SVM F1-score 35.2 29.07 32.27

AUC 59.5 55.67 57.67

KNN F1-score 25.6 22.67 21.87

AUC 53.5 51.67 51.17

RF F1-score 83.87 82.53 83.07

AUC 86.17 85.33 85.67

LR F1-score 63.73 59.73 64.27

AUC 77.33 74.83 77.67

BPNN F1-score 85.73 85.2 84.27

AUC 87.73 87 87.67

TABLE 3 Model structure of different methods, where “+” denotes serial
connection. For instance, “1 layer of DSC + 1 layer of MAM + 2 layers of
BiGRU” of Model 9 indicates that the structure of Model 9 is a DSC
operation in the first layer, a MAMoperation in the second layer, two BiGRU
operations in the third and fourth layers. All models adopt global average
pooling, Dropout and Softmax operation in the last layer.

Model name Model structure

Model 1 3 layers of GRU

Model 2 3 layers of BiGRU

Model 3 3 layers of LSTM

Model 4 3 layers of BiLSTM

Model 5 1 layer of DSC + 2 layers of BiGRU

Model 6 1 layer of DSC + 1 layer of SE + 2 layers of BiGRU

Model 7 1 layer of DSC + 1 layer of CBAM + 2 layers of BiGRU

Model 8 1 layer of DSC + 1 layer of JAM + 2 layers of BiGRU

Model 9 (Proposed) 1 layer of DSC + 1 layer of MAM + 2 layers of BiGRU
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iteration time means the model can complete training
faster, thereby accelerating the speed of fault diagnosis
processes. Additionally, shorter iteration time makes it
easier to scale the model to large-scale datasets and
more complex fault scenarios.

Based on the results, it is apparent that the proposed method has
a moderate number of model parameters (17,626 parameters) and
requires a reasonable amount of time for one iteration
(approximately 935 s). Although the model parameters and
training time of methods M1 and M3 are slightly lower than

FIGURE 10
After extracting features, the data features are clearly polarized. (A)Original signal. (B) Frequency of signal. (C) After DSC layer. (D) After MAM layer. (E)
After BiGRU layer. (F) After BiGRU layer.
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those of the proposed method, the diagnostic accuracy indicators of
M1 and M3 methods are significantly lower than those of the
proposed method. Considering the diagnostic accuracy and other
indicators, it can be concluded that the proposed method achieves
the highest diagnostic accuracy compared to the other methods.
Additionally, the model’s parameter quantity and training time are
also within acceptable ranges.

(5) Limitation of the proposed method: Although the
experimental results illustrate that the proposed method
can effectively diagnose the faults, the equipment
diagnosed in the experiment is only a submodule of the
flexible converter valve equipment. The impact of signal
aliasing and the coupling of multiple submodule faults
after the integration of multiple identical submodules in
the practical application are not considered in this paper.

In practical applications, important faults usually need to pay
more attention and higher priority in handling. Correspondingly,
faults slightly impact the system are usually receiving little attention.
The proposed method did not consider the importance of faults and
provided preferential training based on the fault situation to ensure
that important faults receive sufficient training.

5 Conclusion

This study addresses the limitations of diagnostic accuracy in
flexible converter valve equipment by using DSC-BiGRU-MAM
method. To evaluate the effectiveness of the proposed method,
multiple fault data are acquired from the flexible converter valve
through experimental methods. The data was enhanced balanced
using overlapping sampling techniques. The results demonstrate
that the proposed method can accurately diagnose the mentioned
faults of flexible converter valve equipment in this paper.
Compared to the comparative method, the proposed method
exhibits higher accuracy (with an average diagnostic accuracy of
95.45%) and robustness (with a maximum difference in diagnostic
accuracy of 0.76% across multiple experimental results), enabling
more precise detection and diagnosis of various faults. The
utilization of the proposed multi-head attention module enables
achieving precise classification of faults in flexible converter valve
equipment, which ultimately leads to facilitating timely and
effective maintenance actions. Based on this, we can effectively
extract informative features from raw sensor data and accurately
identify different fault categories in the valve equipment. The
proposed method can achieve good results in diagnosing
voltage signals in different noise environments, and can be

FIGURE 11
Accuracy indicators of different methods under 10%, 30%, and 50% Gaussian noise levels, where training results are shown as average diagnostic
accuracy, precision, and recall in (A), testing results are shown as average F1-score, AUC in (B).
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FIGURE 12
Accuracy of different method under Gaussian noise levels of 10%, 30%, and 50%.

FIGURE 13
Precision of different method under Gaussian noise levels of 10%, 30%, and 50%.
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transferred into similar scenarios model fine-tuning by where
voltage signals can reflect fault status, e.g., cable faults, circuit
board faults, transformer faults.

In addition, smaller model size and less training time
contribute to minimizing downtime and maximizing the
operational efficiency of the equipment. In this way, the

FIGURE 14
Recall of different method under Gaussian noise levels of 10%, 30%, and 50%.

FIGURE 15
Parameter and training time of different methods.
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proposed method can be embedded into IoT device to achieve
edge computing, reducing redundant data transmission and fault
response time.

In the future, there is great potential for further optimization of
both the model structure and algorithms in fault diagnosis. One
aspect that can be considered is the importance of different faults. By
assigning priority levels to each fault, the fault diagnosis system can
determine which faults are more critical or have a higher impact on
system performance. This allows for a prioritized approach to fault
handling, ensuring that the most important faults are addressed first.
To implement such prioritization, the fault diagnosis system can
incorporate techniques such as fault severity assessment or fault
criticality analysis. These techniques can provide a quantitative
measure of the impact of each fault on system operation,
allowing the system to make informed decisions regarding fault
handling priorities.
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