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Lithium-ion batteries are extensively utilised in various industries and everyday
life. Typically, these batteries are considered retired when their state of health
(SOH) drops below 80%. These retired batteries, known as secondary batteries,
can be repurposed for applications that demand lower battery performance.
Precise forecasting of the lifespan of secondary batteries is crucial for
determining suitable operational management approaches. Initially, we use
the CACLE dataset for thorough investigation. Therefore, to account for the
unpredictable and random character of the application circumstances, we
employ the U-chord long curvature feature extraction approach to minimise
errors resulting from rotation and noise. Additionally, we utilise the discharged
power as a feature. This study employs two optimization algorithms, namely,
particle swarm optimization (PSO) and sparrow optimization algorithm (SSA), in
conjunction with least squares support vector machine (LSSVM) to compare the
model against three conventional models, namely, Gaussian process regression
(GPR), convolutional neural networks (CNN), and long short-term memory
(LSTM). This work comprises two experiments: Experiment 1 utilises the
battery’s charging and discharging history data to train the model for
estimating the SOH of the remaining cycles of the same battery. Experiment
2, on the other hand, employs the complete discharging data of the battery to
train the model for predicting the SOH of the remaining cycles of other batteries.
The error evaluation metrics used are mean absolute error (MAE), mean absolute
percentage error (MAPE), and rootmean square error (RMSE). The results indicate
that the average MAE for SSA-LSSVM, LSTM, CNN, PSO-LSSVM, and GPR in
Experiment 1 and Experiment 2 are 1.11%, 1.82%, 2.02%, 2.04%, and 12.18%
respectively. The best prediction results are obtained by SSA-LSSVM.
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1 Introduction

Energy access is a paramount concern outlined in the United
Nations Sustainable Development Goals (SDGs) (Liang et al.,
2022a). A global endeavour is to furnish countries with
sustainable and economically viable energy solutions. In light of
the potential consequences of energy scarcity, researchers have
recently devoted more effort to enhancing the energy storage
capabilities of batteries as a source of power (Xie et al., 2023; Xie
et al., 2024). Continuous endeavours in sustainable energy storage
provide a dependable and efficient method for the commercial
sector to evaluate the condition of batteries in their second life.
The optimization of battery life cycle management facilitates the
incorporation of repurposed batteries into a more extensive energy
storage infrastructure (Kurniawan et al., 2022a).

Lithium-ion batteries (LIBs) have experienced accelerated
development as an energy source owing to their competitive
advantages, including high energy density and extended power
life (He et al., 2011; Zhang et al., 2020; Ran et al., 2022). LIBs
have found widespread applicability in electric vehicles (EVs) in
recent times. Given the substantial carbon dioxide (CO2) emissions
that fuel vehicles produce while in motion, there is an increasing
imperative to utilise LIBs in order to mitigate the carbon footprint of
public transportation. On the contrary, LIBs degrade progressively
over time following their initial use (Martinez-Laserna et al., 2018a).
In specific application contexts, the battery is decommissioned when
its health life reaches 80% of its maximum capacity. According to
statistics, the market for degraded batteries was enormous. By 2030,
the global capacity of retired batteries for electric vehicles will have
increased to 200 GWh (Shahjalal et al., 2022).

Improper disposal of batteries, which often contain iron (Fe),
cobalt (Co), manganese (Mn), nickel (Ni), and copper (Cu), can lead
to substantial pollution of land and water. Failing to administer
proper treatment before disposing of batteries can result in adverse
environmental consequences for the metals contained inside them,
hence presenting substantial hazards to both human wellbeing and
the survival of species (Briffa et al., 2020). Various approaches are
available for the proper disposal of fully utilised expended batteries
to enhance resource recovery in the energy sector. The optimal
method involves extracting valuable materials, such as heavy metals,
from the batteries, recycling the batteries in specialised facilities, or
repurposing second-life batteries with reduced performance
requirements. On the other hand, the least favoured approach for
getting rid of unused batteries is to discard them in open dumps as
noninorganic garbage (Colarullo and Thakur, 2022).

Notwithstanding the endeavours of governments to advance
circular economy implementations in the energy sector, the global
recycling rate for batteries stands at less than 6% owing to the
inadequate infrastructure for recycling (Bhar et al., 2023). Recycled
batteries were therefore not economically viable in the absence of
research and development (R&D) facilities. The waste recycling
process was rendered challenging due to the diverse chemical
composition and types of batteries, in addition to the inadequate
apparatus. As a result, within the framework of circular economy, it
is ecologically preferable to utilise batteries in situations that do not
necessitate exceptional performance (Jo and Myung, 2019;
Kurniawan et al., 2022b). Hence, in the context of the circular
economy, reusing batteries is among the most optimal alternatives

for safeguarding the environment against metal contamination and
promoting resource recovery from unused waste (Liang et al.,
2022b). This practice successfully prevents the disposal of
depleted batteries into nearby landfills as inorganic waste
subsequent to their capacities becoming full (Kurniawan
et al., 2023).

The requirement for material recovery from downstream
processing has led to a renewed emphasis in the field of energy
storage research on the repurposing of second-life batteries, as the
demand for sustainable energy solutions has increased in recent
times. By encouraging waste conservation and eco-friendly lifestyles,
China promotes environmental sustainability. A zero-waste strategy
is implemented when resource recovery is encouraged in order to
reduce waste generation through the utilisation of unused
byproducts from other industries. As a result, environmental
impacts are diminished and resource efficiency is increased
(Batool et al., 2023).

Nevertheless, determining the precise condition of these
batteries has evolved into a difficult task, further complicated by
the unpredictability of discharges in practical operational situations
and the uncertainty surrounding historical ageing data (Martinez-
Laserna et al., 2018b). After their initial use, secondary batteries
gradually lose their functionality. In the event of substantial
degradation in their lifespan, the batteries must be promptly
replaced with others. As a result, it is critical to precisely assess
the condition of secondary batteries in order to increase their
longevity and cost efficiency (Faraji-Niri et al., 2023).

To achieve this objective, strategies for predicting battery state of
health (SOH) were classified into three distinct categories: model-
based approaches, data-drivenmethods, and hybrid methods (Wang
et al., 2024). Model-based approaches allow for the feasibility of
predictions using a wide range of models. Li et al. (2016) introduced
a streamlined electro-thermal chemistry model with reduced
parameters, capable of simulating battery performance across
various operational scenarios. Son et al. (2016) introduced a
method for updating online models utilising the restricted
Kalman filter approach, which proved to be highly effective.
However, in reality, methods that predict the SOH based on
models are limited by many technological barriers. These barriers
include difficulties in extracting data and constructing models,
which eventually impair the accuracy of the predictions.

Compared to model-based approaches, data-driven methods
have been found to possess superior flexibility and accuracy in actual
scenarios (Qian et al., 2023). This allows them to anticipate battery
SOH without the need for a deep understanding of intricate physics.
In order to achieve accurate model predictions, it is essential to have
well-extracted features that have a significant link with battery
health when using data-driven approaches (Li et al., 2024). Guo
et al. (2019) introduced a feature extraction technique that relies on
charging voltage, current, and temperature curves. They applied
principal component analysis to eliminate unnecessary data and
decrease computing complexity. In order to assess the SOH of
satellite batteries, Yang et al. (2020) devised a technique that
relies on measurable metrics from the battery management
system, including voltage, current, time, and temperature. These
characteristics serve as dependable and universally applicable
indicators of the battery’s health. The efficacy of the suggested
health indicators was validated across various discharge rates.
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Machine learning models have utilised different data-driven
methods to forecast the battery SOH (Barré et al., 2014). These
methods include GPR (Richardson et al., 2017), weighted least
squares support vector machine (WLS-SVM) (Xiong et al., 2023),
LSTM (Wang et al., 2023), support vector machine (SVM), random
forest (RF), and multiple linear regression (MLR). Hybrid
approaches integrate optimization algorithms with data-driven
methods or combine filtering methods with other models. A
further study utilised machine learning (ML) methods and
electrochemical impedance spectroscopy (EIS) testing to improve
the accuracy of the SOH prediction process (Faraji-Niri et al., 2023).
Nevertheless, if the battery SOH was inadequate, their approach
could not be verified, and the range of its prediction interval
fluctuated between 0.7 and 1.0. Moreover, further verification is
necessary to determine the effectiveness of the aforementioned
integrated models in calculating the lifespan of secondary batteries.
Previous studies employed a blend of algorithm optimization and data-
driven methods to decrease errors. Their contribution was the
incorporation of data-driven methodologies and optimization
techniques, leading to negligible inaccuracies. The longevity of LIBs
can be forecasted using the whale optimization algorithm (WAO) and
Gaussian process regression (Li et al., 2023). These methods utilise an
improved bird swarm algorithm and least squares support vector
machine (IBSA-LSSVM) model (Li et al., 2019). Hybrid approaches,
in comparison to single data-driven methods, need more computer
resources and possess a greater number of parameters. Nevertheless,
this approach can effectively surpass the individual constraints of each
method, resulting in enhanced predictive capabilities.

When the battery health life exceeded 80%, reasonable prediction
results could be obtained using the two-pulse method (Coleman et al.,
2008). Alternatively, its accuracy diminished when the SOH of the
battery fell below 80%. As a result, there is an increasing imperative to
enhance research efforts concerning secondary batteries in order to
examine the predicament of batteries with a second life of less than 80%.

An additional technological limitation is that the assessment of
battery health is frequently complicated by the unpredictability of
their discharge patterns. In order to fill in the current research voids,
this study tackles the issue of uncertain discharge conditions by
proposing a comprehensive framework for feature extraction. The

curvature parameter is a critical feature that provides reliable
indicators of the health status of the battery. To accomplish this,
discrete curvature analysis is utilised to distinguish subtle variations
in discharge curves.

Moreover, this study aims to improve the accuracy of SOH
predictions for second-life batteries. To accomplish this, it examines
the functions of three publicly available datasets in the analysis of a
subset of health lifespan batteries with a range of 0.2–0.8, which more
closely resembles the practical operational conditions of second-life
batteries. In addition, a novel method for estimating the SOH of
second-life batteries under ambiguous discharge conditions is
proposed in this study. In order to mitigate the unpredictability
and uncontrollability of the real-world environment, this study
employed the U-chord long curvature feature extraction technique,
which utilised the uncertain discharge amount as an feature and
reduced errors caused by rotation and noise. In order to improve
the accuracy of the LSSVM-based batteries’ SOH prediction, this study
introduces a novel approach that utilises discrete curvature feature
extraction and the complexities of discharge profiles to leverage the
potential of discharge profiles. This is achieved by combining
optimization algorithms such as particle swarm optimization (PSO)
and sparrow optimization algorithm (SSA) with the LSSVM, which is
dependent on the precision of penalty factors and kernel parameters.
The techniques delineated are anticipated to efficiently manage
uncertainties linked to discharge scenarios of batteries, thereby
enhancing the dependability of health status in practical
applications. Furthermore, the results obtained from this research
can be implemented in battery management systems (BMS) in
order to enhance the health life management of secondary batteries,
prolong their operational lifespan, and mitigate the ecological
consequences associated with battery processing. Furthermore, it is
expected that the integration of SSA-LSSVM, PSO-LSSVM models,
and new energy systems will increase the proportion of renewable
energy consumption in the energy sector while making battery health
estimation techniques more dependable and economically viable.

The primary contributions of this article can be summarised as
follows: (1) The U-chord long curvature technology is employed to

FIGURE 1
SOH intervals for three data sets.

FIGURE 2
CALCE CS2_36 battery discharge curve.
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determine the curvature of the discharge curve of secondary
batteries. This allows for the division of the discharge curve into
three portions and the identification of the discharge plateau region.
(2) Four distinct eigenvalues, closely associated with battery SOH,
are chosen, with particular emphasis on the discharge capacity as
one of the eigenvalues. (3) Utilise optimization algorithms, such as
particle swarm optimization and sparrow optimization algorithm, in
conjunction with Least Squares Support Vector Machines, to
accurately predict the SOH of a battery.

The subsequent content of this article will be presented. Section
2 presents the process of filtering the data set, while Section 3
examines the discharge curve using U-chord long curvature and
extracts characteristic values. Section 4 primarily presents two novel
algorithms that combine optimization techniques with existing
optimization algorithms. Section 5 presents empirical data and
provides comparisons of different methodologies. Ultimately,
Section 6 presents the final findings and deductions.

2 Battery experimental datasets

In order to authenticate the suggested approach, an exhaustive
mining operation was performed on three publicly accessible
experimental datasets pertaining to battery ageing: the Center for
Advanced Life Cycle Engineering (CALCE) dataset from the
University of Maryland (Dos Reis et al., 2021), the National
Aeronautics and Space Administration (NASA) dataset (Jafari
and Byun, 2023), and the Oxford dataset from the Howey
Research Group UK (Birkl, 2017). The subsequent section
describes the experimental conditions for each dataset.

2.1 CALCE dataset

The CS2 dataset, consisting of CS2_35, CS2_36, CS2_37, and
CS2_38, was chosen from the CACLE public data. The dataset was
identified to contain trace amounts of Mn and had a chemical
composition of LiCoO2 cathode, as indicated by the EDS analysis.
Apply a steady current of 0.5 C until the voltage between the
terminals reaches a stable value of 4.2 V. The charging process
stopped when the current fell below 50 mA. During the process, a
current of 1.1 A was used to deplete the battery until the terminal
voltage reached the predefined cut off value of 2.7 V. The initial
capacity of these four batteries was at least 1.1 Ah.

2.2 NASA dataset

LiNi0.8Co0.15Al0.05O2 (NCA) cells (B0005, B0006, B0007, and
B0018) were obtained by NASA from one of their databases. At
24°C, both charging and discharging took place at room
temperature. A current of 1.5 A was employed to discharge the
battery to 4.2 V during the charging process. In constant voltage
(CV) mode, the charging procedure was discontinued when the
charging current decreased to 20 mA or less. A constant current of
2 A was applied during discharge until the predetermined voltages of
B0006 and B0018 were attained at 2.5 V, and B0005 and
B0007 attained the predetermined voltages of 2.7 V and 2.2 V,

respectively. The experiment was terminated when the battery
achieved the end-of-life (EOL) criterion, which stipulated a
reduction in rated capacity by 30%, from 2 to 1.6 Ah.

2.3 Oxford dataset

A selection of cells (Cell1-Cell8) was made from the Oxford
dataset that featured an anode composed of graphite and a cathode
composed of Li and LiNi-Co oxide. A hot cell underwent both
charge and discharging processes at 40°C. At the same current level,
the battery was charged to 4.2 V at 740 mA and discharged to 2.7 V.

2.4 Mining of data sets

The Equation 1 were applied to the data obtained from the three
databases in order to ascertain the state of health (SOH):

SOH � Ccur

Cnom
(1)

where: Cnom denotes the initial designated capability, while Ccur

indicates the actual capacity.

FIGURE 3
Steps for determining the support collar neighborhood.

Frontiers in Energy Research frontiersin.org04

Goh et al. 10.3389/fenrg.2024.1367444

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1367444


A SOH ranging from 1 to 0.8 distinguished primary batteries. In
contrast, there were divergent viewpoints among experts regarding
the secondary battery’s end of life (EOL) standard. Mussi et al.
(2022), Liu et al. (2022) proposed decommissioning of the secondary
battery at SOH 0.6, whereas others Braco et al. (2022) suggested
retirement at SOH 0.2. Unsurprisingly, the secondary battery is
ceased operation at the SOH is 0.2, a broad range.

This study is primarily concerned with estimating the SOH of a
secondary battery. The SOH statistics for the battery ranged from 0.2 to
0.8. Figure 1 depicts the batteries consisting of the Oxford dataset and
the NASA dataset, exhibiting SOH values ranging from 0.6 to 1.0. After
meeting the necessary requirements, we have chosen the CACLE
dataset as the subject of our studies. It is worth mentioning that the
highest value of battery SOH in any of the three datasets was not equal
to 1, as the rated capacity was only an approximation.

2.5 Sources of data

The experimental data were obtained from the CS2_35-CS2_38
battery datasets maintained by the CACLE group. The datasets
pertaining to the secondary battery section comprise data on the
complete discharge cycle of each battery, including time, voltage,
current, temperature, and capacity. In particular, the secondary
batteries CS2_35, CS2_36, CS2_37, and CS2_38 have respective
cycle periods of 330, 423, 419, and 476.

3 Feature extraction method

The procedure for obtaining the characteristics was outlined in
Section 3. Guo and Zhong (2014) introduced the U-chord curvature
technology, a discrete approach for calculating curvature that does
not rely on a defined curve function and exhibits strong robustness.
This section presents a model that is built on U-chord curvature and
identifies four straightforward features that have a strong link with
battery State of Health (SOH). The usefulness of these features is
then validated using the Pearson correlation coefficient (Deng
et al., 2021).

3.1 Discharging curve analysis

Since the features were obtained from the discharge curve, it
was necessary to analyse the discharge curve of the battery. The
greater SOH range of the CALCE No. CS2_36 battery (Figure 2)
could be ascertained through an examination of the battery’s
discharge curve. The discharge trajectories of this battery at SOH
values of 0.25, 0.5, and 0.8, respectively, are illustrated in Figure 2.
The CS2_36 battery’s discharging process was observed to be
divided into three phases, with point A delineating the initial
stage from stage two, and point B distinguishing the second stage
from stage three.

Point A signifies the maximum U-chord curvature, while point
B denotes the minimum U-chord curvature. Over the course of the
first and third phases, the voltage dropped precipitously. However,
as time progressed through the second stage, the voltage changes
diminished. This interval was investigated as it was referred to as the

voltage plateau region. The secondary battery’s discharge curve
exhibited a more rapid transition and the duration of the voltage
plateau zone decreased as the battery aged.

3.2 Discharge curve segmentation using
U-chord curvature

In order to identify the voltage plateau region of the discharge
curve, the coordinates A and B that divide the discharge curve must
be determined. The identification of the characteristic points of the
curve was predicated on the curvature of the profile. Curvature is a
parametric measure that characterises the localised nature of a curve;
more specifically, it quantifies the localised shape of a given point on
the curve. Curve C represents the rate of rotation of the arc length of
the point in the tangential direction. A point’s curvature decreases in
proportion to the degree of curvature of the curve.

As a result of the discrete nature of the discharge curve and the
lack of explicit function expressions, computing the curvature of
individual points on the curve presents a technical challenge. Hence,
it was necessary to develop a method for calculating curvature that
takes into consideration discrete properties and the lack of explicit
function expressions. The differential curvature method was
typically employed for the computation of discrete curvature.
With the advancement of mathematics, the U-chord curvature
method exhibited superior performance in terms of noise
resistance and rotation compared to earlier methodologies.

3.2.1 Support neighborhood of U-Chord curvature
The support neighbourhood is ascertained through the utilisation

of the Euclidean distance and the U-chord curvature. By employing
this methodology, the impact of rotation and disturbance on the
outcomes derived from the curvature computation is reduced. Eq. 2 is
collection of multiple discrete points, denoted by D.

D � di: ti, vi( ){ } i � 1, 2 . . . n (2)
where: ti and vi are the horizontal and vertical coordinates of the
discrete points, respectively, which represent time and voltage,

FIGURE 4
Discharge curves and corresponding U-chord length
curvature curves.
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respectively. Ω(di) is the supported neighborhood of the current
pixel point di, defined as Eq. 3.

Ω di( ) � di−Uf
, di+Ue[ ] (3)

where: Uf and Ue are positive integers, while di−Uf and di+Ue are the
front-end point of the support neighborhood, and the back-end
point of the support neighborhood, respectively.

The constraint is Eq. 4.

didi−Uf

∣∣∣∣∣ ∣∣∣∣∣∣∣∣∣∣ ∣∣∣∣∣ � didi+Ue

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ � U (4)

where: ‖ • ‖ is the Euclidean distance between pixels, andU> 0 is
the parameter set to preserve the curvature details when the value is
larger when it is smaller.

The implicit refinement approach for numerical curves presented in
Goh et al. (2022) is used to provide a solution to Eq. 3. A linear
interpolation was utilized to refine the curves since it was
computationally simple and yielded adequate numerical results, as
compared to polynomial interpolation of higher order. Particularly, Eq. 5.

df
i � udi−Uf+1 + 1 − u( )di−Uf

de
i � udi+Ue−1 + 1 − u( )di+Ue

{ (5)

where: u is the coefficient to be obtained, 0≤ u< 1. After selecting the
point i, the value of the coefficient u was determined. Accordingly
‖didfi ‖ �U was obtained to support the front end of the
neighborhood dfi . The specific solution steps are presented in
Figure 3. Similarly, the posterior endpoints of the support
neighborhood can be determined as Figure 3.

After performing the steps in Figure 3, [dfi , dei ] was the support
neighborhood of point di after determining dfi and dei .

3.2.2 Method of calculating U-chord curvature
To determine the U-chord length curvature, the discrete curvature

is the cosine value associated with the angle between the front and rear
arm vectors of the support field, as derived by Eq. 6.

ci � si

���������
1 − Di

2U
( )2

√
(6)

where: ci ∈ [−1, 1] is the final calculated of the U-chord
curvature, and a larger |ci| means that the curve is more curvy,
and when |ci| is close to 0, it means that the curve is almost not curvy.
ci ∈ [−1, 0) indicates that the curve is concave, while ci ∈ (0, 1] implies
that the curve is convex. si is the symbol for the U-chord curvature
value, while si is calculated by Eq. 7. Di� ‖dfi dei ‖ denotes the
Euclidean distance between points dfi and dei .

si � sign ti − tfi( ) vei − vfi( ) − tei − tfi( ) vi − vfi( )] (7)

where: (ti, vi), (tfi , vfi ), (tei , vei ) denote the coordinates of di, dfi , dei
respectively.

The U-chord length curvature associated with each position on
the discharge curve is illustrated in Figure 4. Between points A and B
was the curvature that constituted the voltage plateau zone. Point B
exhibited the least equivalent U-chord length curvature compared
to point A.

3.3 Feature extraction based on
discharging curves

As shown in Figure 2, the location of nodes A and B shifted
proportionally with the number of battery cycles. In order to
derive the features, the data from the two sites and the voltage
plateau region between them were utilised. In this study, the
plateau discharge capacity of the battery was utilised as an

TABLE 1 CS2_35-CS2_38 cell SOH and Pearson coefficient of features.

Batteries Pearson correlation coefficient

F1 F2 F3 F4

CS2_35 0.9561 0.9994 0.9996 0.9994

CS2_36 0.8667 0.9529 0.9347 0.9619

CS2_37 0.9120 0.9870 0.9573 0.9902

CS2_38 0.9697 0.9864 0.9869 0.9869

FIGURE 5
Principles of SSA-LSSVM and PSO-LSSVM prediction models.

Frontiers in Energy Research frontiersin.org06

Goh et al. 10.3389/fenrg.2024.1367444

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1367444


feature. SOH can be accurately predicted by identifying
representative features and associating them with the SOH of
a battery. The present article utilised four features denoted by
Eqs 8–13.

1) F1: Voltage at point B

F1 � vB (8)

2) F2: Time of point B

F2 � tB (9)

3) F3: Duration of the voltage plateau area

F3 � tB − tA (10)

4) F4: Discharge power during the duration of the
voltage platform

F4 � ∑n
i�2PiTinter( )
3600

(11)

Pi � viIi + vi−1Ii−1
2

(12)
Tinter � ti − ti−1 (13)

where: i denotes each point in a discharge curve. The point A is
denoted as i � 1, while the point B is denoted as i � n. Pi denotes the
power at that point, while vi and Ii denote the voltage and current at
point i, respectively, and Tinter represents the time interval between
point i and i − 1.

3.4 Correlation analysis

The correlation between the extracted features and the cell SOH
is investigated in this section. Equation 14 uses the Pearson
correlation coefficient which is commonly employed to quantify
the extent of linear correlation between two variables.

ρ � ∑n
i�1 Fi − �F( ) Ci − �C( )[ ]����������������������∑n

i�1 Fi − �F( )2∑n
i�1 Ci − �C( )2√[ ] (14)

where: ρ ∈ [1−, 1] denotes the Pearson correlation coefficient, Fi and
Ci denote the two variables for which correlation is required, Fi and
Ci denote their means.

When there is correlation coefficient ρ � ± 1, there is a perfect
linear relationship between the two variables, while when the
correlation is 0, there is no correlation. The Pearson coefficients
of the SOH and features of the CS2_35-CS2_38 cells are listed in
Table 1. The obtained features had an excellent linear connection
with the Pearson coefficient of battery SOH, which was close to 1,
and could be used to estimate the battery health life.

4 SOH estimation method for second-
life batteries

In Section 4, the models were trained and evaluated using
features that were correlated with the SOH of the battery. In
previous studies pertaining to the prediction of battery health
and life, effective techniques included Gaussian process
regression, artificial neural networks, and extended short-term
memory. In contrast to primary batteries, secondary batteries
exhibit a shorter charging platform and more substantial changes
that complicate conventional prognosis methods when it comes to
predicting their health life.

4.1 LSSVM

By utilising the sum of squared errors as an empirical loss and
converting the inequality constraints present in traditional SVM to
equality constraints, LSSVM reduced the convex quadratic
programming problem that SVM was originally designed to solve
to a system of linear equations (Suykens et al., 1999). LSSVM is
applicable for both regression curve fitting and classification. For

FIGURE 6
Flowchart of secondary battery health life estimation.
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predicting the health life of secondary batteries, its regression curve
fitting function was utilised extensively. The fundamental principle
is expounded upon as Eq. 15:

min w,b,e J w, e( ) � 1
2
wTw + γ

2
∑N

i�1e
2
i

s.t. yi � wTφ xi( ) + b + ei i � 1, . . . , N

⎧⎪⎪⎨⎪⎪⎩ (15)

where: w is weight vector, b is error, while e and γ are slack variable
and penalty factor, and φ(xi) is the kernel function. By defining the
Lagrange multiplier as α, the Lagrange function can be constructed
as Eq. 16.

L w, b, e; α( ) � J w, e( ) −∑N

i�1αi w
Tφ xi( ) + b + ei − yi[ ] (16)

By taking partial derivative of Eq. 16 and simplifying it to 0, Eq.
17 can be deduced.

∂L
∂w

� 0 → w � ∑N

i�1αi · φ xi( )
∂L
∂b

� 0 → ∑N

i�1αi � 0

∂L
∂ei

� 0 → αi � γei

∂L
∂αi

� 0 → ωT · φ xi( ) + b + ei − yi � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

The Eq. 18 is the matrix form of Eq. 17:

0 YT

Y β + γ−1I
[ ] b

α
[ ] � 0

y
[ ] (18)

Eqs 19, 20 provide further explanation of the parameters in Eqs
18, 21 defines gamma, another key parameter of the LSSVM.

β � φ xi( )Tφ xj( ) � K xi, xj( ) i, j � 1, 2, . . . , N (19)

K xi, xj( ) � exp −d xi, xj( )2
2 · σ2⎛⎝ ⎞⎠ (20)

gamma � 1
2 · σ2 (21)

where: YT � [y1, y2/, yN], β is the radial basis kernel function of
the prediction model, while gamma and σ are the kernel function
parameter and kernel function width factor.

When gamma setting was too large, there were few support
vectors. While the training effect was reasonable, the generalization
ability was low. The smaller gamma is, the more support vectors are,
the slower the training speed, and hence, the accuracy was affected.

By solving the system of Eq. 18 the LSSVM regression function
in Eq. 22 can be obtained as follows:

y x( ) � ∑N

i�1αiK x, xi( ) + b (22)

FIGURE 7
(A) Estimated results for CS2_35, (B) estimated results for CS2_36, (C) estimated results for CS2_37, (D) estimated results for CS2_38.
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The key parameters of LSSVM include kernel function
parameter gamma and penalty factor γ.To find the optimal
parameters, this work introduced PSO and SSA as the two
optimization algorithms.

4.2 PSO-LSSVM

The algorithm known as particle swarm optimization (PSO) was
suggested in consideration of avian behaviour (Kennedy and
Eberhart, 1995). During the search process, each particle
recorded its previous optimal results and parameters while
proceeding in its own specific trajectory. Concurrently, every
particle contributed its own outcomes and parameters. The
particle swarm was thus informed of the present optimal
parameters. With the passage of time and in consideration of
their own and the group’s experience, the particles modified their
subsequent search path and eventually discovered the global
optimal solution.

4.3 SSA-LSSVM

A metaheuristic algorithm, the sparrow search algorithm (SSA) is
designed to emulate the predation and anti-predation strategies
employed by sparrows (Xue and Shen, 2020). Sparrows were
classified as either producers or observers. Producers have larger
energy reserves, and the amount of energy reserves depends on
individual fitness. Each sparrow has the potential to develop into a
producer, but the total number of producers remains unchanged.
Identifying regions abundant in food resources and defending against
predation, wherein individuals vied for resources, fell under the
purview of producers. The producer led the followers as the
sparrows at the periphery swiftly relocated to a secure location
upon detecting impending danger. Those with diminished energy
reserves, meanwhile, sought sustenance elsewhere.

Both PSO and SSA exhibited remarkable optimization
capabilities. This work employed two optimization algorithms to
optimise the hyperparameters of the LSSVM. Figure 5 displays a
flowchart illustrating the process of creating the model.

4.4 SOH estimation process

The flowchart for the complete experiment is depicted in
Figure 6. This study began by screening the battery SOH data
between 0.2 and 0.8, then extracted the characteristic values of
secondary batteries using U-chord curvature technology, and
finally estimated the secondary battery’s health life using the
following five models: GPR, CNN, LSTM, PSO-LSSVM, and
SSA-LSSVM. Mean absolute error (MAE), root mean square
error (RMSE), and absolute percentage error (MAPE) were
subsequently employed as evaluation metrics to quantify the
discrepancy between the anticipated and realised secondary
battery health times. Eqs. 23–25 represented their respective
calculation methodologies.

MAE � 1
N
∑N

i�1 yi − ŷi

∣∣∣∣ ∣∣∣∣ (23)

RMSE �
��������������
1
N
∑N

i�1 yi − ŷi( )2√
(24)

MAPE � 1
N
∑N

i�1
yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (25)

where: yi is actual data, ŷi is prediction data, whileN is the number
of prediction samples.

In order to assess the efficacy of the suggested approach, two
experiments were conducted utilising three error indices MAE,
MAPE, and RMSE for this evaluation. Several models in
Experiment 1 exhibited significant errors. Nevertheless, with the
expansion of the training data in Experiments 2.1 and 2.2, the
prediction error exhibited a progressive decrease. This developed a
methodology to enhance the precision of forecasting second-life
batteries, particularly in situations involving discharge power
uncertainties.

4.5 Experimental layout

This section provides a detailed account of two experiments
in which the precision and effectiveness of various machine
algorithms and U-chord length curvature feature extraction
techniques were contrasted and validated. A Li-battery
discharge history cycle record was utilised to train the model
in Experiment 1. Following that, the model that had undergone
training was employed to predict the SOH of its own remaining
cycles. Similar to the primary battery, this experiment validated
the capability of the secondary battery to deduce its SOH for
subsequent cycles despite the scarcity of data.

The remaining cycle expectancies of secondary batteries CS2_
35-CS2_38 were predicted in Experiment 1 using their historical
cycle records. In order to train the model, additional numbered
secondary battery discharge recordings were utilised in Experiment
2. The model that had undergone training was subsequently applied
to predict the battery’s SOH. The objective of this experiment was to
evaluate the suitability of the model, augment the dataset, and
ascertain whether it could overcome the difficult predictive
characteristics of secondary batteries, which have restricted cycles
and variability.

Experiment 2.1 and Experiment 2.2 constituted the two discrete
components that comprised Experiment 2. Experiment 2.1 involved

FIGURE 8
Radar plot of prediction error for Experiment 1.
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training the regression model with CS2_35-CS2_38 in order to
generate predictions pertaining to the remaining three batteries’
health. To illustrate, the model was trained utilising CS2_35 in order
to generate forecasts regarding the anticipated lifetimes of CS2_36,
CS2_37, and CS2_38 batteries, respectively.

Experiment 2.2. involved training the model with three
secondary batteries in order to generate predictions regarding the
residual lifespan of the secondary batteries. In light of this rationale,
the model underwent training utilising three secondary batteries,
namely, CS2_35, CS2_36, and CS2_37, with the purpose of
predicting the remaining useful life of CS2_38.

5 Results and discussion

5.1 Experiment 1: prediction with training set

70% of the data from each secondary battery was initially
designated as the training set in Experiment 1, with the
remainder of the data being allocated as the test set. It is evident
that the magnitude of the voltage plateau region of the secondary
battery increased in tandem with the number of cycles performed.
Notwithstanding this, an abrupt decline in length occurred,
characterised by a swift progression of degradation. The

FIGURE 9
Estimated results for Experiment 2.1. (A)CS2_35 trainingmodel to predict other batteries’ SOH: (1) Estimated results for CS2_36, (2) estimated results
for CS2_37, (3) estimated results for CS2_38. (B) CS2_36 training model to predict other batteries’ SOH: (1) Estimated results for CS2_35, (2) estimated
results for CS2_37, (3) estimated results for CS2_38. (C) CS2_37 training model to predict other batteries’ SOH: (1) Estimated results for CS2_35, (2)
Estimated results for CS2_36, (3) Estimated results for CS2_38. (D) CS2_38 training model to predict other batteries’ SOH: (1) Estimated results for
CS2_35, (2) Estimated results for CS2_36, (3) Estimated results for CS2_37.
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behaviour of this conduct was in direct contrast to that of the
primary battery. The work’s predictive capabilities were dramatically
tested by the rapid rate of change and substantial degree of
instability.

The positive prediction outcomes of GPR, CNN, LSTM, and
SSA-LSSVM were comparable to the actual values, as shown in
Figure 7A. The preponderance of the various prediction approaches,
however, predicted subpar results, as shown in Figures 7B–D.
Figure 7B did not display the GPR prediction method, however,
because the GPR prediction results exceeded the axes’ range and
were therefore irrelevant to the reference. Conversely, in comparison
to alternative prediction methods, it was evident that the SSA-
LSSVM prediction method exhibited a markedly superior
performance.

On the other hand, as illustrated in Figure 7D, the LSTM
prediction method demonstrated an inadequate initial
performance. Conversely, the SSA-LSSVM prediction approach
approached the actual value with a more pronounced degree of
convergence (Figure 7C). In addition to improved CS2_35 cell
prediction outcomes, GPR performance was substantially
diminished. Failure of GPR was observed in the remaining cell
predictions. The significant variations in the voltage plateau region
of the secondary battery’s discharge curve with increasing cycle
count, in conjunction with the non-representative nature of the
historical data, may account for the suboptimal results observed with
the various prediction methods. Experiment 1’s results indicate that
alternative algorithms, excluding SSA-LSSVM, do not perform

optimally when applied to historical data in order to estimate the
remaining service life of secondary batteries.

Figure 8 displays the error plots of Experiment 1, which
employed self-historical data to predict its own healthy life
expectancy. Figure 8 employs a logarithmic coordinate axis to
accommodate the significant fluctuation in inaccuracy resulting
from the use of various techniques. The logarithmic coordinate
axis was more effective than the traditional coordinate axis in
accurately representing errors of different magnitudes. Figure 8
demonstrates that SSA-LSSVM outperformed the other four
prediction methods when the experimental dataset was limited in
size. The hybrid approaches have a benefit when there is less data, as
they require more appropriate hyperparameters in such cases. The
sparrow optimization algorithm enhances its ability to discover the
global optimal solution more efficiently by adapting its search
strategy and search speed. The particle swarm optimization
technique exhibits superior global search capabilities during the
first phase, but it is susceptible to converging towards a local
optimal solution.

5.2 Experiment 2

5.2.1 Experiment 2.1: enhancing the training set’s
prediction

The projected durations of the three secondary batteries are
depicted in Figure 9. The predictions were generated by training the

FIGURE 10
Radar plot of prediction error for Experiment 2.1: (A) CS2_35 train, predict others, (B) CS2_36 train, predict others, (C) CS2_37 train, predict others,
(D) CS2_38 train, predict others.
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model using CS2_35, CS2_36, CS2_37, and CS2_38 as input data.
Unlike the results shown in Figure 7, there was a substantial increase
in the convergence between the real values and the predicted values
produced by the different prediction algorithms. However,
Experiment 2.1 demonstrated that the forecasting performance of
the GPR approach was not dependable. Insufficient training samples
are a significant factor contributing to this issue. Alternatively,
several datasets may be appropriate for distinct types of kernel
functions. Improper selection of hyperparameters can also lead to a
decline in the performance of GPR.

The forecast values of the different prediction methods were
observed to be more closely aligned in Figure 9 (A, 1), (B, 1), (B, 2),
(C), (D, 2), and (D, 3).

The PSO-LSSVM method exhibited the highest level of
monitoring accuracy, as shown in Figure 9 (A, 2). In particular,
the PSO-LSSVM method maintained its stability and demonstrated
a strong correspondence with the actual values of the curve, while
the GPR, LSTM, CNN, and SSA-LSSVM methods displayed
substantial increases during the cyclic period around 280. The
PSO-LSSVM method consistently produced a downward shift in
the predicted value curve (Figure 9 (A, 3) and (B, 3) relative to the
actual value of the curve. On the contrary, the predicted value curve
obtained through the PSO-LSSVM method exhibited an upward
shift in comparison to the actual value depicted in Figure 9 (D, 1).
Based on the experimental results, it can be observed that the
predicted value curves generated by the SSA-LSSVM, CNN, and
LSTMmethods in Experiment 2.1 exhibited the highest proximity to
the actual values. While the PSO-LSSVM approach did demonstrate
intermittent vertical or horizontal shifts, it did not undergo any
abrupt transitions.

Furthermore, Figures 10A–D represented the error results for
each training session, corresponding to Figures 9A–D accordingly.
In Experiment 2.1, the GPR had the highest prediction error,
surpassing the average value, as depicted in Figure 9. In contrast,
the remaining approaches exhibited relatively reduced
prediction errors.

FIGURE 11
CS2_35-CS2_38 Training model for any three secondary batteries to predict remaining battery health life: (A) Estimated results for CS2_35, (B)
Estimated results for CS2_36, (C) Estimated results for CS2_37, (D) Estimated results for CS2_38.

FIGURE 12
Radar plot of prediction error for Experiment 2.2.
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TABLE 2 Errors in the prediction results of various prediction methods for the U-chord long curvature model.

Experiment/serial number/
number

Train Test Index
(%)

Method

GPR CNN LSTM PSO-
LSSVM

SSA-
LSSVM

EXP_1_1 CS2_35 (Top 70%) CS2_35 (Back 30%) RMSE 1.58 0.85 2.01 2.80 0.55

MAE 1.02 0.61 1.85 2.58 0.39

MAPE 3.80 1.98 6.42 8.46 1.30

EXP_1_2 CS2_36 (Top 70%) CS2_36 (Back 30%) RMSE 68.83 3.68 2.57 1.00 0.64

MAE 68.38 3.07 1.93 0.68 0.38

MAPE 211.07 10.33 6.59 2.22 1.12

EXP_1_3 CS2_35 (Top 70%) CS2_35 (Back 30%) RMSE 15.27 7.93 3.79 4.42 0.55

MAE 12.38 6.34 2.65 3.72 0.40

MAPE 40.17 20.76 8.92 10.46 1.22

EXP_1_4 CS2_35 (Top 70%) CS2_35 (Back 30%) RMSE 35.06 4.68 1.97 5.13 2.20

MAE 31.44 3.91 1.01 4.15 1.32

MAPE 106.18 13.47 3.12 12.76 2.81

EXP_2.1_1 CS2_35 CS2_36; CS2_37;
CS2_38

RMSE 12.16 5.05 4.45 3.15 3.63

MAE 6.04 1.61 2.03 2.64 1.21

MAPE 10.04 2.74 3.80 4.76 2.21

EXP_2.1_2 CS2_36 CS2_35; CS2_37;
CS2_38

RMSE 17.52 2.45 3.23 3.04 2.97

MAE 9.51 1.59 2.66 2.29 2.05

MAPE 21.99 3.32 5.14 4.57 4.70

EXP_2.1_3 CS2_37 CS2_35; CS2_36;
CS2_38

RMSE 20.20 1.83 2.34 2.64 2.73

MAE 8.97 1.01 1.50 1.97 1.64

MAPE 23.44 2.05 3.01 3.69 3.08

EXP_2.1_4 CS2_38 CS2_35; CS2_36;
CS2_37

RMSE 10.85 3.20 4.63 2.93 2.07

MAE 3.91 1.81 2.32 2.50 1.16

MAPE 10.83 4.02 4.00 4.75 2.37

EXP_2.2_1 CS2_36; CS2_37;
CS2_38

CS2_35 RMSE 1.93 1.13 2.54 1.52 1.53

MAE 1.48 0.83 2.03 1.32 1.19

MAPE 3.46 1.69 3.97 2.83 2.88

EXP_2.2_2 CS2_35; CS2_37;
CS2_38

CS2_36 RMSE 1.53 1.54 2.10 1.66 2.88

MAE 0.86 1.03 1.10 0.60 0.84

MAPE 1.93 1.90 2.37 1.19 1.57

EXP_2.2_3 CS2_35; CS2_36;
CS2_38

CS2_37 RMSE 1.26 2.12 1.37 0.79 1.36

MAE 0.73 1.82 0.90 0.64 1.10

MAPE 1.65 2.98 1.73 1.22 2.23

EXP_2.2_4 CS2_35; CS2_36;
CS2_37

CS2_38 RMSE 3.14 2.92 2.88 3.02 2.86

MAE 1.41 0.64 1.90 1.34 1.61

MAPE 1.73 1.22 3.96 2.76 3.43
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5.2.2 Experiment 2.2: predictive results for the
largest training set

Upon augmenting the training dataset with three supplementary
secondary battery datasets, the model demonstrated the capability to
forecast the healthy lifespan of the remaining secondary batteries.
The experimental results are visually represented in Figure 11,
whereas Figure 12 illustrates the prediction error.

The predictions of Experiment 2.2 are illustrated in Figure 11.
Upon comparing Figure 7 with Figure 9, it was observed that the
predicted values derived from various prediction methods
approached the actual values in a progressive manner.
Consequently, the implementation of the GPR method is no
longer deemed ineffective and can be regarded as a dependable
approach to prediction.

Figure 12 clearly shows that Experiment 2.2 revealed the LSTM
approach to have the highest error in prediction. In contrast, the
PSO-LSSVM and SSA-LSSVM techniques had the lowest prediction
error. The primary cause of this phenomena can be attributed to the
memory function of the LSTM. In Experiment 2.2, we trained the
model using three secondary batteries, which potentially
overburdened the LSTM’s memory function due to the varying
decay and history of each battery. In addition, it is important to
mention that the mean absolute error (MAE) for all evaluated
techniques is consistently below 2.03%, with the exception of
SSA-LSSVM and PSO-LSSVM, which have reduced their MAE
errors to below 1.61%.

5.3 Comparative analysis of projected
outcomes derived from the present study

For each experiment, the error values are detailed in Table 2.
More precisely, the error in forecasting the secondary battery (CS2_
35) was assessed in Experiment 1 (EXP_1). According to the results,
the MAE achieved with SSA-LSSVM was 1.24%, 2.16%, 2.86%, and
27.68% less than with LSTM, PSO-LSSVM, CNN, and GPR,
respectively.

However, it is important to highlight that the MAE linked to
the GPR prediction approach in Experiment 1, particularly in
regards to the forecast of CS2_36 (EXP_1_2), was considerably
elevated at 68.38%. The observed disparity in performance
between the GPR’s exceptional predictive capabilities for
primary batteries and its below average performance for

secondary batteries implies that specific prediction techniques
might not produce acceptable outcomes for the latter. The
heightened prediction error that resulted from the accelerated
decrease in voltage plateau and increased individualization of
secondary batteries relative to primary batteries can be
attributed to this.

Experiment 2.1 (EXP_2.1) employed five prediction approaches
to estimate the remaining lifespan of three additional batteries.
Assertions were produced using the CS2_35 training model. The
computation of mean errors (EXP_2.1_1) revealed that the
maximum MAE decreased to 9.51% with the implementation of
several prediction algorithms. Conversely, theMAE obtained a value
of 1.21%. Figure 12 exhibits the precise discrepancies between the
predicted values and the actual values that were observed in
Experiment 2.1.

Experiment 2.2 (EXP_2.2) consisted of training the model to
predict the healthy life expectancy of CS2_35 (EXP_2.2_1) using
data fromCS2_36 to CS2_38. TheminimalMAE remained at 0.83%,
while the maximum MAE for the different prediction approaches
reduced to 2.03%. The MAE in EXP_2.2_2 ranged from 1.1% to
0.6%. The MAE in EXP_2.2_3 ranged from 1.82% to 0.64%. The
MAE in experiment EXP_2.2_4 reduced to a range of
1.90% to 0.64%.

In order to facilitate a thorough assessment of the
effectiveness of these models in estimating the longevity of the
secondary batteries, the mean errors generated by the five
prediction methods throughout the experiment are displayed
in Figure 13. From Experiment 1 to Experiment 2, as the
volume of data increased, the predictive accuracy of GPR
demonstrated a progressive enhancement. This implies that by
increasing the quantity of experimental data, the proposed
prediction model for secondary batteries could be improved in
terms of effectiveness. Errors were reduced in Experiment 1 using
the LSTM, PSO-LSSVM, and SSA-LSSVM prediction
methodologies. Nevertheless, the SSA-LSSVM method
exhibited the highest level of predictive efficacy in Experiment
2.1. In general, the predictive algorithms PSO-LSSVM and SSA-
LSSVM produced smaller errors than alternative approaches.
GPR is the most efficient in terms of computational load.
Artificial neural networks, such as LSTM and CNN, exhibit
sluggish performance, however hybrid technologies, including
SSA-LSSVM and PSO-LSSVM, incorporate parameters such as
optimization range, number of iterations, and optimization step

FIGURE 13
Mean values of predictive errors for the CACLE Group lithium battery dataset: (A) MAE, (B) MAPE, (C) RMSE.
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length in the optimization method. Their computation time and
workload varies from that of the optimization algorithm.
Regarding parameter configuration.

6 Conclusion

This work has demonstrated that the predictive accuracy of
secondary batteries is primarily determined by the quality of the
modelling and the quantity of historical data. The superior
performance of the established prediction model SSA-LSSVM
was evidenced by Experiment 1, which employed a reduced
dataset and yielded an average MAE of 0.62%. It was determined
that this value exceeded the MAEs of LSTM, PSO-LSSVM, CNN,
and GPR, which stood at 1.24%, 2.16%, 2.86%, and 27.68%
correspondingly. Specific models displayed errors during periods
when there was a scarcity of historical data regarding secondary
batteries. This experiment, in contrast to Experiment 1, had anMAE
of 2.1. The corresponding reductions for PSO-LSSVM, CNN, and
GPR are 0.43%, 1.98%, and 21.2%. Experiment 2.2 revealed that the
average MAE of the LSTM, PSO-LSSVM, SSA-LSSVM, and GPR
methods decreased by the following percentages: 0.33%, 0.43%,
0.65%, 1.38%, and 5.98%, respectively, when compared to
Experiment 2.1. When considering the prediction of the health
life status of secondary batteries, SSA-LSSVM exhibited superior
performance compared to the three conventional models (GPR,
CNN, and LSTM).

This work has not only increased the application and
longevity of secondary batteries, but it has also contributed
to the field study by reducing environmental contamination,
extending the life of secondary batteries, and alleviating energy
shortages. Through the utilisation of discrete curvature feature
extraction, this approach has furnished an all-encompassing
comprehension of the discharge profiles of the batteries,
thereby enhancing the precision with which their condition
is evaluated. Moreover, this study has surpassed theoretical
assertions by integrating empirical verification through the
utilisation of a dataset consisting of second-life batteries
that have undergone a variety of utilisation patterns. The
incorporation of practical situations has bolstered the
methodology’s resilience and relevancy. In general, the
accessibility of novel energy systems facilitated by the low
cost of secondary batteries can promote the adoption of
clean energy sources and safeguard the environment. It is
imperative to validate the suitability of both PSO-LSSVM

and SSA-LSSVM across various battery types in order to
advance future research.
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