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In today’s digital age, multi-energy systems (MES) have become an indispensable
part of the social infrastructure, providing people with diversified energy support
such as electricity, gas, water and so on. However, with the increasing popularity
and networking of MES, the network security threats they face are becoming
more and more serious, especially the threat of network attacks. This makes it
essential to detect attacks on MES and precisely classify attack types in order to
establish effective defense strategies. In this paper, a Dual-Head output network
attack detection and classification method based on parallel CNN-BiLSTM
network is proposed. The method adopts a parallel structure and can process
different aspects of information at the same time, speeding up the training and
inference process of the whole network, making the system respond more
quickly to potential network attacks, and improving real-time and efficiency.
Themulti-model fusion structure can give full play to the advantages of CNN and
BiLSTM in processing different types of data, so that the systemcan capture attack
characteristics more comprehensively in many aspects, and improve the overall
detection and classification performance. The dual-head output not only
improves the system’s ability to accurately detect attacks, but also can
effectively classify different types of attacks in detail, which helps to formulate
more targeted defense strategies. In addition, in order to effectively evaluate our
proposed method, the network traffic data required for the experiment were
collected in an environment very similar to the actual operating environment of a
multi-energy system. Finally, the experiment verifies that our method can not
only realize effective detection of network attacks, but also accurately classify
different types of attacks.
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1 Introduction

A multi-energy system is a comprehensive and integrated approach to energy
management that embraces the coexistence and coordination of various energy carriers
and sources within a unified framework (Li et al., 2020; Zhang et al., 2022). This innovative
concept diverges from traditional single-energy systems by acknowledging the diversity of
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available energy forms and harnessing their synergies to optimize
efficiency, enhance reliability, and foster sustainability (Li et al.,
2019). But the increasing reliance on digital communication, smart
grid technologies, and interconnected devices in these systems has
made them susceptible to various forms of network attacks (Li et al.,
2021; Li et al., 2022). These attacks pose serious risks to the stability
and functionality of multi-energy infrastructures; the economic
implications of a successful cyber attack on MES are substantial
(Huang et al., 2022). In addition, with the integration of advanced
technologies such as the Internet of Things (IoT) in MES, privacy
and safety concerns emerge (Elmaghraby and Losavio, 2014). The
main types of cyber attacks that affect MES include Port Scanning
Attacks, Denial-of-Service (DoS) Attacks, and False Data Injection
(FDI), among others. A port scanning attack is an attempt by an
attacker to discover open network ports on a target system to
identify services running on the system and potential
vulnerabilities in preparation for subsequent attacks (Moubayed
et al., 2019; Singh et al., 2021). DoS Attacks involve an attacker
preventing normal users from accessing a system or service by
overloading the system, blocking communication channels, or using
other means (Li et al., 2023). DoS Attacks can lead to the stagnation
of energy services, affect the stability and reliability of the system,
and may even lead to widespread power outages (Li et al., 2022). FDI
is a cybersecurity attack strategy where an adversary deliberately
introduces inaccurate or deceptive information into a system. This
manipulation of data aims to mislead the system’s decision-making
processes, compromise its integrity, or deceive users relying on the
authenticity of the data (Lu and Wu, 2022; Zhao et al., 2022). In
response to these vulnerabilities, there is a pressing need to develop
and implement effective network attack detection mechanisms
tailored to the specific characteristics of MES. Research in this
area is essential to safeguard the reliability, security, and
resilience of multi-energy infrastructures, ensuring their
continued contribution to a sustainable and interconnected
energy landscape (Li et al., 2021).

In the realm of academic research, scholars have developed and
evaluated various methods for detecting network attacks. These
methods encompass diverse strategies aimed at identifying and
mitigating cyber threats. The classification of these network
attack detection methods can be outlined as follows: Rule-Based
Detection methods, Statistical-Based Detection methods, and
Machine Learning (ML) methods. Rule-based detection methods
use predefined rules or specifications to identify abnormal or
malicious activity in a network. These rules can include specific
signatures, pattern matching, or specific attributes of network traffic.
It is suitable for accurate identification of known attack patterns. For
example, in (Birkinshaw et al., 2019), an intrusion detection system
based on a software-defined network design was used to detect and
prevent port scanning and DoS attacks in real-time. In (Egala et al.,
2021), a decentralized selective ring-based access control
mechanism was introduced along with device authentication and
patient records anonymity algorithms to improve the healthcare
system’s security capabilities (Liu et al., 2022). Constructed an attack
model based on three typical attacks (the Stuxnet-like, DoS, and
FDI) and detects anomalies by quantifying the dynamic variations of
generalized models implied by operating data. In (Saad et al., 2020),
a practical resilient control algorithm was developed to detect cyber
attacks by authenticating every incoming update from the point of

common coupling agent to guarantee the system’s security. In
(Bhayo et al., 2022), a counter-based detection module reads the
logs’ statistics continuously and determines whether the controller
raises the alarm based on defined malicious activity parameters.
Additionally, a Payload-Based detection module helps determine
whether packets are sent by legitimate users or bots based on the
payload size. However, these Rule-based detection methods are less
effective against unknown attacks or variants and are not flexible
enough to adapt to new threats. Statistical-based detection methods
use statistical characteristics of network traffic or system behavior to
identify anomalies. This can include statistical analysis of traffic
patterns, frequencies, timestamps, etc. It can detect unknown attacks
and has a certain adaptability to the changing attack forms. For
instance (Kotenko et al., 2020), used fractal analysis and
mathematical statistics to develop an approach for detecting
cyber attacks against smart power supply networks by identifying
anomalies in network traffic through assessing its self-similarity
property (Ilha et al., 2021). Utilized information-theoretic and
statistical analysis to accurately distinguish between normal and
abnormal traffic patterns, classifying packets as either legitimate or
malicious, thus realizing attack detection. In (Amma et al., 2020), a
Class Scatter Ratio and Feature Distance Map (FDM) based
statistical approach was proposed for detecting DoS attacks. The
attack is detected by comparing the computed FDM of new traffic
with normal and attack profile vectors (Velliangiri et al., 2023). Also
used a statistical method based on FDM to identify DoS attacks. In
(Çakmakçı et al., 2020), a DDoS detection scheme extracted four
entropy-based and four statistical features from network flows as
detection metrics. In (Wang et al., 2019), an interval state estimator
based on Unscented Kalman Filter was used to quantify the normal
fluctuation range of each state variable; any state that exceeds its
normal fluctuation range is treated as an abnormal state. However,
these statistics-based detection methods may produce a high false
positive rate, requiring high complexity and variability of the
network environment.

Rule-based detection methods and Statistics-based detection
methods provide a basic, intuitive means of detection, while ML
methods leverage algorithms to analyze and learn from network
data, enabling the system to autonomously identify patterns
associated with malicious activities. These techniques offer adaptive
and dynamic detection capabilities to better adapt to unknown attack
patterns and variants, helping enhance the system’s ability to recognize
evolving cyber threat (Zhang et al., 2022). In (Li et al., 2021), extreme
gradient boosting, light gradient boosting machine and extreme
learning machine were separately designed as individual detectors
for intrusion identification. In (Gorzałczany and Rudzinski, 2022), a
data-mining/machine learning approach was adopted to address the
intrusion detection problems in Internet of Things systems, thismethod
used a multi-objective evolutionary optimization algorithm to optimize
the tradeoff between accuracy and interpretability of the detection
system. In (SaiSindhuTheja and Shyam, 2021), a detection system
was proposed to detect DoS attacks, which integrated the Crow
Search Algorithm and Opposition Based Learning method to select
essential features, then classified using Recurrent Neural Network
(RNN) classifier, this method can effectively improve the detection
accuracy. In (Rashid et al., 2022), to address the two problems of over-
fitting and higher complexity of model training caused by redundant
features, Developed a tree-based stacking model for intrusion detection

Frontiers in Energy Research frontiersin.org02

Li et al. 10.3389/fenrg.2024.1367199

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1367199


which considers the ranking of features based on a score and then
creates a stacking model built on those features, and adopts the scaling
of the input feature and model hyperparameter fine-tuning have been
employed. In (Tang et al., 2020), a new LDoS attack detection method
was proposed, Based on an analysis of network traffic, a network feature
set was constructed for feature calculation and feature selection of
network traffic data, and then the network traffic was classified by the
Adaboost algorithm. In (Kravchik and Shabtai, 2022), this paper
examined an attack detection method based on simple and
lightweight neural networks, namely one-dimensional convolutional
neural networks and autoencoders, these networks were applied to the
time and frequency domains of the data, and the pros and cons of each
representation approach were discussed. In (Zadsar et al., 2022), a
multilayer perceptron (MLP) model was trained to detect FDI attacks
against integrated power and gas systems. In (Martin et al., 2021), a self-
supervised learning framework under a hierarchical model was used to
train the encoding network, which is based entirely on a neural network,
allows incremental training. In (Tian et al., 2020), two concurrent
models of feature discriminator based on CNN and data discriminator
based on FastText were developed, adding the results from the two
discriminators in varying proportions for comprehensive decision
result. In (Fard et al., 2021), the lower and upper estimation method
based on the feedforward neural network model constructed optimal
prediction interval with high confidence level surrounding the forecast
target for malicious cyber attacks detection. In addition, compressing
data, reducing data dimensions, and retaining only the most important
features helps to reduce the storage space required, remove redundant
information, and improve detection accuracy (Li et al., 2020; Li et al.,
2021). So in the field of intrusion detection, more and more attention
has been paid to data preprocessing methods of ML, such as PCA
(Kravchik and Shabtai, 2022), Multi-Objective Evolutionary techniques
(Mauro et al., 2021), the XGBoost-based feature selection method
(Kasongo and Sun, 2020), combination of hash functions and
embeddings (Martin et al., 2021), dimensional-reduction technology
based on clustering (Li et al., 2022).

The aforementioned AI-based methods have yielded remarkable
outcomes. However, there are two challenges. On the one hand,
these AI-based methods (Tang et al., 2020; Tian et al., 2020; Fard
et al., 2021; Li et al., 2021; Martin et al., 2021; SaiSindhuTheja and
Shyam, 2021; Gorzałczany and Rudzinski, 2022; Kravchik and
Shabtai, 2022; Rashid et al., 2022; Zadsar et al., 2022) mainly
determined whether the network is attacked by extracting
features from the data, but these methods either need to improve
the extraction ability of data features, or the extraction of data
features is too complicated, and the calculation cost and calculation
time consumption of the model are too large. To address this issue, a
potential approach, inspired by (Tang et al., 2022; Zhang et al., 2023)
[43], was to utilize parallel CNN-BiLSTM model, which can
simultaneously extract and integrate data features, provide
efficient model representations, and take full advantage of the
power of parallel computing, Significantly improve computing
efficiency. On the other hand, the above methods (Birkinshaw
et al., 2019; Wang et al., 2019; Amma et al., 2020; Kotenko et al.,
2020; Saad et al., 2020; Tang et al., 2020; Tian et al., 2020; Çakmakçı
et al., 2020; Egala et al., 2021; Fard et al., 2021; Ilha et al., 2021; Li
et al., 2021; Martin et al., 2021; SaiSindhuTheja and Shyam, 2021;
Bhayo et al., 2022; Gorzałczany and Rudzinski, 2022; Kravchik and
Shabtai, 2022; Liu et al., 2022; Rashid et al., 2022; Zadsar et al., 2022;

Velliangiri et al., 2023) can only detect one type of network attack,
while the actual multi-energy system’s network attack situation is
very complex, and it is likely to be subjected to more than one type of
attack. Accurate detection of network attacks and accurate judgment
of attack types are essential for taking appropriate response
measures, such as optimizing resource allocation and making it
more targeted, so as to improve the overall security of the network.
Therefore, it is necessary to classify the detected attack types, and the
design of Dual-Head Output models is an effective solution.

To tackle those challenges, the paper proposes a Dual-Head
Output network attack detection method that can extract data
features in parallel. The main contributions are as follows:

1) We introduce parallel CNN and BiLSTM into the network
attack detection method, and make use of their different
working principles to extract features from data from
different angles, make full use of the potential information
of the data, and achieve accurate network attack detection.

2) By using the Dual-Head Output network structure, we upgrade
the network attack detectionmodel from single attack detection to
accurately identify and classify multiple network attacks.

3) We simulate the normal state and the attacked state of the
information network of the multi-energy system on a data
acquisition system which is very similar to the real multi-
energy system, and collect the network traffic data required by
the experiment, which improves the reliability of the
experimental results.

4) The network attack detection method proposed in this paper
has been verified by experiments, which proves that it can
realize accurate classification of network attack types while
accurately detecting network attacks.

The remainder is summarized as follows. Section 1 introduces
the Dual-Head Output network attack detection method which can
extract data features in parallel in detail. Section 3 introduces the
data acquisition scheme of the attack detection experiment. Section
4 presents simulations to evaluate the performance of the proposed
method. Finally, Section 5 concludes the paper.

2 Network attack detection method

In order to realize effective identification of network attacks and
accurate classification of the types of attacks encountered by the
network, we proposed a Dual-Head Output attack detection method
based on parallel CNN-BiLSTM. The main process of the method is
shown in Figure 1, including data preprocessing, time-frequency
domain transformation of data based on Mixed-Radix Fast Fourier
transform algorithm (Mixed-Radix FFT), data dimension reduction
based on PCA and Dual-Head Output attack detection model based
on parallel CNN-BiLSTM.

2.1 Data preprocessing

Before converting time domain signals into frequency
domain signals, some data preprocessing steps are usually
required to ensure accurate and meaningful frequency domain

Frontiers in Energy Research frontiersin.org03

Li et al. 10.3389/fenrg.2024.1367199

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1367199


representations, which mainly include data normalization and
Blackman-Harris window.

1) Data normalization: The data normalization of the time domain
signal can ensure that the amplitude of the signal is within a
reasonable range and avoid the numerical stability problems
caused by too large or too small signal amplitude. In this
paper, the Min-Max normalization method as Formula (1) is
adopted, which scales the data to a specified range by linear
transformation.

xnormalized � xcollected − min data( )
max data( ) − min data( ) (1)

where max(data) and min(data) represent the maximum and
minimum values of the column where xcollected resides, xnormalized

is the result of the normalization of xcollected.

2) Window function is a technique often used in signal
processing to reduce the amplitude at both ends of the
signal and avoid introducing unnecessary leaks in the
frequency domain. Compared with other window
functions, although the computational complexity of
Blackman-Harris window may be higher, it works well in
reducing spectral leakage and helps to improve
spectral accuracy.

After data normalization, the Blackman-Harris window
function is applied to the time-domain signal, which is
equivalent to introducing a window in the time-domain
signal to reduce the discontinuity of the signal at the window
boundary, thereby reducing spectrum leakage and improving
the accuracy of spectrum analysis. The steps usually involve
point-by-point multiplication, that is, multiplying each sample
of the signal with the corresponding sample of the
window function.

FIGURE 1
The main process of our approach.
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The general form of a Blackman-Harris window is as
Formula (2) is adopted:

w n( ) � a0 − a1 cos
2πn
N − 1

( ) + a2 cos
4πn
N − 1

( ) − a3 cos
6πn
N − 1

( ) (2)

where N is the window length, n is the index of the sample in the
window, n � 1, 2, . . . , N, and a0, a1, a2, and a3 are the coefficients.

Suppose there is a time domain signal x(n), and the signal y(n)
after applying the window function can be expressed as Formula (3):

y n( ) � x n( ) · w n( ) (3)
where · stands for point-by-point multiplication.

2.2 Time-frequency domain transformation
of data based on Mixed-Radix FFT

The conversion of the time-domain signal to the frequency-
domain representation helps to better understand the frequency
component of the signal. Frequency domain analysis has several
advantages: First, it provides a more compact representation of the
main signal components. Second, it allows the detection of attacks
that change the frequency of the usual operating pattern. Finally,
attacks that typically evade existing time-domain detection methods
are more easily detected in frequency-domain analysis.

Compared with other methods that convert time domain signals
into frequency domain signals, Mixed-Radix FFT is a flexible and
efficient discrete Fourier transform (DFT) calculation method. By
decomgenerating the length of DFT into the product of different
prime factors, Mixed-Radix FFT can make more effective use of
computing resources, reduce computing complexity and improve
computing efficiency, this makes it potentially more advantageous in
real-time applications, especially for cases where fast calculations are
required, and in addition, the Mixed-Radix FFT can handle
transformations of multiple lengths and is not limited to dealing
with DFT whose length is a power of 2, so it is more flexible.

The basic formula of DFT is to transform the time domain signal
into the frequency domain signal by Fourier transform of the signal
sequence. The DFT formula is as Formula (4):

X k[ ] � ∑M−1

m�0
x m[ ] · e−2πi

M ·k·m (4)

where x[m] represents the time domain sequence, X[k] represents
the frequency domain sequence, m represents the index in the time
domain, k represents the index in the frequency domain, M
represents the length of the input sequence, which is also the
length of the output sequence of the DFT, i is an imaginary unit,
full i2 � −1, e−2πi

M ·k·m is the rotation factor.
The idea of Mixed-Radix FFT is to divide the calculation task of

DFT into smaller subtasks to reduce the complexity of calculation,
and it realizes the DFT calculation of the whole signal by recursively
applying decomposition and Butterfly Operation. The key steps of
the algorithm include:

Decomposition: Decomposition of a DFT of length R into
multiple smaller DFTS, such as Formula (5):

R � R1 · R2 · . . . · Rl (5)

Groups: The calculation of the DFT is broken down into
multiple small-scale DFT calculations. Each small DFT length is
one of the prime factors obtained by decomposition. A set of radix is
selected, usually 2, 3, and 5 are selected as radix, so that Ri can be an
integer power of 2, 3, and 5 respectively.

Butterfly Operation: Each small DFT is calculated using the
butterfly operation. The butterfly operation involves multiplying
and adding complex numbers, and its specific form depends on the
length Ri of a small DFT. Each Butterfly Operation involves two
inputs and two outputs, one of which is the real part and the other is
the imaginary part. The mathematical representation is
as Formula (6):

Y0 � X0 +Wl
R ·X1

Y1 � X0 −Wl
R ·X1

{ (6)

where Wl
R is the rotation factor, which can be calculated from

Wl
R � e−2πi

R ·l. Y0 and Y1 are the outputs of the butterfly operation,X0

and X1 are the inputs of the butterfly operation, and l is the
frequency index of the current calculation.

Combination: The results of all small-scale DFT calculations are
combined to get the final DFT result. This usually involves an
appropriate weighted sum.

2.3 Data dimension reduction based on PCA

Before the data is input into the machine learning model, PCA is
used to reduce the dimension of the data set, which can remove
redundant information in the data, retain the most important
information in the data set, and reduce the training time of the
model, high-dimensional data sets are usually accompanied by more
computing overhead, and through dimensionality reduction, the
training process of the model can be accelerated. Overall, PCA can
help simplify data, improve model performance, reduce
computational costs, and provide better interpretability. In
addition, PCA assumes that the main information of the data is
concentrated in the direction of large variance, and can better play
its advantages of reducing the data dimension and extracting the
main information when processing the data with strong linear
correlation. The process of converting the time domain signal to
the frequency domain signal is usually achieved through the FFT,
which is linear, so the obtained frequency domain signal can be
considered as the data of linear structure. The basic steps of PCA are
as follows:

Data standardization: The data is standardized to ensure that
each feature contributes equally to the principal component.

Calculate the covariance matrix: Calculate the covariance matrix
of the normalized data. The covariance matrix reflects the
correlation between different features as Formula (7).

Cov X, Y( ) �
∑d
i�1

xi − �X( ) yi − �Y( )
d − 1

(7)

where,X andY are two features, xi and yi are the eigenvalues of the i
samples of the two characteristics respectively, �X and �Y are their
average values respectively, and d is the number of samples.
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Calculation of eigenvalues and eigenvectors: The eigenvalue
decomposition of covariance matrix is carried out to obtain the
eigenvalues and corresponding eigenvectors. The eigenvalue of the
covariance matrix represents the variance of the data in the direction
of the corresponding eigenvector. The eigenvectors represent these
directions. The idea of PCA is to select the eigenvector
corresponding to the maximum eigenvalue, that is, to select the
direction that can maintain the variance of the original data to the
greatest extent.

Select principal components: The eigenvalues are arranged in
order from largest to smallest, and the eigenvector with the largest
first h eigenvalues is selected as the principal component.

Projection: The original data is projected onto the selected
principal component to obtain a reduced data set.

2.4 Dual-head output attack detection
model based on parallel CNN-BiLSTM

In order to capture the potential relationship between different
network traffic data and the frequency dependency in the data, and
realize efficient detection of network attacks and accurate
classification of network attack types, we proposed a Dual-Head
Output model based on parallel CNN-BiLSTM, as shown in
Figure 2. The parallel CNN-BiLSTM network, as a shared
backbone network of multi-head output structures, can
simultaneously process different parts of the input data and
make full use of the capability of parallel computation, which
significantly improves the computational efficiency and speeds up
the model training and reasoning process. In addition, the parallel
CNN and BiLSTM layers help to extract and integrate data features
simultaneously, which allows us to capture information related to
various aspects of the data and provide efficient model
representations that improve prediction accuracy. Specifically, the
CNN component is used to extract inherent features between
different data types within a certain number of frequencies. At
the same time, BiLSTM captures deeper frequency features by
considering information in both “forward” and “backward”
directions. The parallel architecture of CNN and BiLSTM allows
the independent extraction of inherent features from various data
types and then concatenation of these features into a final feature
vector. The specially designed Dual-Head Output structure shares

the underlying feature representation extracted from the input data
by the parallel CNN-BiLSTM network, which helps to improve the
efficiency and generalization performance of the model, and can
accurately classify the types of network attacks while realizing the
detection of network attacks. In order to improve the accuracy of the
model for attack detection and type classification at the same time, it
is necessary to customize the degree of attention for different tasks.
We introduce a Self-Attention Mechanism in the middle layer of the
two output headers respectively. The Self-Attention Mechanism is
suitable for the task interested in the relationship between the
elements in the input sequence, and can capture the global
dependency. The middle layer usually contains more information
and abstract features, and the Self-AttentionMechanism can flexibly
and dynamically focus on the task-related part of the feature vector
output from the backbone network, which can effectively improve
the performance of the model on different tasks.

Remark 1. Multi-head output networks refer to neural network
architectures that incorporate multiple output heads, each dedicated
to a specific task or objective. Multi-task learning involves training a
single model to perform multiple tasks concurrently. The key
distinction lies in their architectural design and training
strategies. Multi-head Output Networks adopts a modularized
structure where each task corresponds to its own output head.
During training, the model optimizes the losses from all output
heads jointly. This modular design is advantageous when tasks are
independent or exhibit significant differences, as it allows for task-
specific fine-tuning without compromising the shared foundation.
In contrast, multi-task learning takes a holistic approach by jointly
training themodel on all tasks. The model optimizes a joint objective
that encompasses all tasks, promoting the discovery of shared
representations. This holistic approach is particularly effective
when tasks are interrelated or share underlying structures,
fostering a collaborative learning process that benefits multiple
objectives simultaneously.

In order to improve the convergence speed of the neural
network, reduce the sensitivity to the input feature scale, and
improve the generalization ability of the model. When using a
deep learning model, the data whose dimensionality has been
reduced by PCA needs to be normalized again to ensure that the
model can learn and adapt better. The detailed operations were
shown in Formula 1.

FIGURE 2
The dual-head output model based on parallel CNN-BiLSTM.
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The normalized data Xnor is modeled as tensor Xin, and two
corresponding data labels are modeled, including attack detection
label Yd and attack type classification label Yc, which correspond to
the attack detection output Ŷd and type classification output Ŷc of
Dual-Head Output respectively, as shown in the
Formula (8)–Formula (13).

Xnor � Xin1, Xin2, . . . , XinR[ ]T (8)
Xin � Xin1, Xin2, . . . , XinS[ ]T (9)
Yd � Yd1, Yd2, . . . , YdS[ ]T (10)
Yc � Yc1, Yc2, . . . , YcS[ ]T (11)
Ŷd � Ŷd1, Ŷd2, . . . , ŶdS[ ]T (12)
Ŷc � Ŷc1, Ŷc2, . . . , ŶcS[ ]T (13)

where Xnor ∈ RR×h, R represents the first dimension of the time
domain data, that is, the total number of samples, and the first
dimension of the frequency domain data transformed by DFT, that
is, the total number of frequencies; h is the number of data features
retained after PCA reduces the data dimension. Xins ∈ RL×h is the
s-th element of the data setXin ∈ RS×L×h that will be fed to the neural
network, Data set Xin is divided into S samples, and each sample
contains L frequency numbers, It should be noted that when each
sample is input into CNN network, it needs to be transposed and
then input into BiLSTM network at the same time. Yd ∈ RS×1 is a set
of numbers, each set of numbers has S numbers, and their values are
0 or 1, 0 indicates that the network is not attacked, and 1 indicates
that the network is attacked. Yc ∈ RS×b contains S groups of
numbers, each group of numbers has b values of 0 or 1, the e-th
number in each group corresponds to the e-th type of network
attack, e � 1, 2, . . . , b, there are b types of network attacks the
network may suffer, 0 indicates that the network is not attacked
by the e-th type, and 1 indicates that the network is attacked by the
e-th type. Ŷds ∈ R1×1 means that if you input the s-th sample into the
neural network model, it will output a real number between 0 and 1,
according to the size of this real number, determine whether the
network is under attack. Ŷcs ∈ R1×b means that feeding the s-th
sample to the neural network model will output b real numbers
between 0 and 1 and add up to 1, according to the size of these real
numbers to determine what kind of network attacks the network
may suffer, the larger the number, the more likely the network is to
be subjected to this type of attack.

Suppose that samples with a batch size of f are input into the
neural network each time, f≤ S, then the attack detection label and
attack classification label of the i-th sample are ydi ∈ R1×1 and
yci ∈ R1×b respectively, and the output value of attack detection
and attack classification are ŷdi ∈ R1×1 and ŷci ∈ R1×b respectively,
then the loss function Ld of attack detection and the loss function Lc
of attack type classification are set to as Formula (14), Formula (15):

Ld � −1
f
∑f
i�1

ydi log ŷdi( ) + 1 − ydi( )log 1 − ŷdi( )( ) (14)

Lc � −1
f
∑f
i�1
∑b
j�1
ycij log ŷcij( ) (15)

where ycij ∈ R1×1 represents the label of the j-th attack type in the
i-th sample in each batch, and ŷcij ∈ R1×1 represents the output

value of the j-th attack type corresponding to the i-th sample in
each batch.

We set a hyperparameter p as the threshold, 0≤p≤ 1, when
ŷdi >p, the intermediate parameter g is set to 1, which proves that
the network is under attack, otherwise it is set to 0, which proves that
the network is not under attack. Let q � max(ŷcij), j � 1, 2, . . . , b, q
corresponds to the j-th type of network attack, let v � q · g, Only
when v ≠ 0 occurs can it be proven that the network has experienced
the j-th type of network attack. Figure 3 shows the above
determination process.

3 Data acquisition scheme

In order to realize effective evaluation of our proposed attack
detection and classification algorithm, normal traffic data and
abnormal traffic data are collected successively in an
environment very similar to the actual operating environment of
the multi-power system. In Section 3.1, we describe the data
acquisition environment. Section 3.2 describes the three attack
scenarios used in the experiment and the attack tools used in
each scenario.

3.1 Data acquisition environment

The data acquisition environment is shown in Figure 4, is
composed of two parts, the physical topology and the
communication topology, which ensure the two-way transmission
of energy and information respectively (Ren et al., 2023; Teng et al.,
2023). The physical topology consists of 17 units. It includes three
energy carriers of electricity, gas and heat, four energy loads of
electricity load, gas load, heat load and colding load, three energy
storage devices of electricity storage, heat storage and gas storage,
four energy conversion devices of electrical refrigerant, electrical
boiler, CHP and refrigerating machine, but also through
photovoltaic panels and solar water heaters to use the renewable
energy of solar energy, in addition, the voltage is also changed by
transformers.

In the multi-energy system network, the collection of network
traffic data mainly involves the equipment and protocol related to
network traffic. Multi-energy system communication protocols
include Message Queuing Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP), OPC Unified
Architecture (OPC UA), and Distributed Network Protocol 3
(DNP3). The main communication protocol related to network
security is NetFlow, which is used for network traffic monitoring
and analysis. In the data collection process of this article, we used
a Netflow-enabled switch (HUAWEI-LSS7G48TX6E0), a
hardware device that generates NetFlow data and provides
detailed information about network traffic. Network traffic
data is collected using Switched Port Analyzer (SPAN), which
is a local traffic mirroring technology usually provided by a
switch. With SPAN, we can select multiple source ports and
then copy all traffic on those ports to a destination port dedicated
to monitoring. This allows us to get all the data flows through the
source port.
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To collect normal and abnormal traffic, we configure mirroring
on four Netflow-enabled switches and prepare four computers to
receive the mirrored traffic. Configure SPAN on the logged in
switch, connect the computer’s network adapter to the

destination port configured with SPAN, and then use Wireshark
to extract traffic from each network. Because normal traffic and
attack traffic are often mixed together in real networks, in order to
better simulate the real environment, it helps the model better learn

FIGURE 3
The above determination process.

FIGURE 4
Data acquisition environment.
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to work in the real environment. For normal traffic data and attack
traffic data, we do not collect them separately, but collect them
successively, and label the collected data to make it clear whether
each sample is normal traffic or attack traffic, so as to facilitate
subsequent model training and evaluation. It is important to note
that we only conduct one type of cyber attack at a time, that is, the
attack traffic data we collect contains information about only one
type of cyber attack, not a mixture of attacks.

3.2 Attack scenarios

In this study, we choose to generate and collect network traffic
data involving common port scanning attack, DoS attack and FDI
attack. When the attack data needs to be collected, the attack traffic
can be generated by connecting the attack host to the data collection
environment. The information on attack traffic is summarized
in Table 1.

1) For port scanning attack, we chose the easy-to-use nessus with
automated scanning and rules engine and the open source
NMAP with multi-platform support, the attack types include
SYN Scan, UDP Scan, XMAS Scan, and ACK Scan.

2) For DoS attack, we chose the open source LOIC and the
powerful Hping3, the Attack types include HTTP Flood Attack
and UDP Flood Attack.

3) For FDI attack, we chose the widely used SQLMap and the fast
and effective BSQL Hacker, types of attack include tampering
with readings from metering devices or sensors and false
energy storage data injection.

4 Simulations

In this section, we design simulation experiments to verify the
effectiveness of the proposed method, Figure 5 describes the overall
flow chart of the experiment in this paper. In Section 4.1, the preparation
work and specific details of the experiment are introduced, including
dataset, hyperparameters determination, network parameters and
performance evaluation metrics. Section 4.2 evaluates the performance
of the proposed method through the experimental results of the test set,
including the statistics and description of the experimental results, the
comparisonwith the detection results of several baselines, and the analysis
of the attack type classification results. In Section 4.3, an ablation analysis

was designed to evaluate the function and performance of the method by
purposefully removing a portion of the substructure, and the
indispensability of each substructure in the method was validated.

The calculation formula of the weighted loss involved in the
figure is as Formula (16):

Weighted Loss � w1 p Ld + w2 p Lc (16)
where Ld and Lc are the loss functions of attack detection and attack
type classification respectively, and w1 and w2 are their weights
respectively.

4.1 Preparation

4.1.1 Dataset
The data set was collected in a small experimental environment

very similar to the actual operating environment of a multi-energy
system. In order to ensure data quality, we clean the collected data to
remove abnormal or inconsistent samples. The final retained data
set contains about 3 to 1 normal traffic data and abnormal traffic
data, and the ratio of Port scanning attack, DoS attack and FDI
attack is about 5–18 to 6. Specifically, it includes data from
460,000 samples at a sampling frequency of 1300 Hz, 64 data
features, For example, dst_port_count, num_failed_logins, num_
connections, src_bytes, src_IP, num_shells, src_BPS_17, and num_
root. Non-numeric features are converted to numeric values by label
encoding. The data set was divided into training samples and test
samples in a ratio of 4 to 1.

4.1.2 Performance evaluation metrics
In network attack detection, the confusionmatrix and its derived

metrics are crucial for assessing the performance of the model in
detecting attack traffic and normal traffic. Table 2 is a confusion
matrix for a binary classification problem, where rows represent the
actual categories, and columns represent the predicted categories. In
this matrix, TP denotes the number of instances where the model
correctly classified positive samples as positive, FP represents the
number of instances where the model incorrectly classified negative
samples as positive, TN represents the number of instances where
the model correctly classified negative samples as negative, and FN
represents the number of instances where the model incorrectly
classified positive samples as negative.

Based on the confusion matrix, several performance metrics can
be calculated. In this experiment, we utilized three common
performance metrics, including Accuracy, Precision, and Recall,
with the specific formulas as Formula (17)–Formula (19):

Accuracy � TP + TN

TP + TN + FP + FN
(17)

Precision � TP

TP + FP
(18)

Recall � TP

TP + FN
(19)

where accuracy represents the proportion of the number of correctly
classified samples to the total number of samples, which measures
the proportion of the correct classification of the model. Precision
indicates how many of the samples predicted by the model to be

TABLE 1 The information on attack traffic.

Attack types Attack tools Attack traffic Volume (bit)

Port Scanning Nessus 12,578

NMAP 63,786

DoS LOIC 138,155

Slowloris 73,457

Hping3 57,673

FDI SQL Map 52,634

BSQL Hacker 37,634
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positive classes are actually positive classes, higher accuracy means
that the model misclassifies negative classes into positive classes less
often. Recall represents the proportion of samples successfully
predicted by the model as positive class over samples of actual
positive class, the recall rate measures the model’s ability to identify
positive class samples, i.e. the proportion of attack samples that the
model can correctly identify.

4.1.3 Hyperparameters determination
The hyperparameters in this paper include the coefficients a0,

a1, a2, and a3 of the window function, the number of data features
retained after PCA dimensionality reduction h and various
parameters in the neural network.

Because attack detection involves all data sets, including
normal traffic data and attack traffic data. The attack type
classification mainly involves only attack traffic data. The data
volume ratio is approximately (1 + 3) to 1, so we set the weights of
the attack detection loss function and the attack type
classification loss function to be w1 � 0.8 and w2 � 0.2,
respectively.

We used the coefficients of the Blackman-Harris
(4 coefficients) window, which are mathematically derived and
optimized, and validated to meet specific performance metrics,
including minimizing the main lobe width and side lobe level,
as Formula (20):

a0 � 0.35875
a1 � 0.48829
a2 � 0.14128
a3 � 0.01168

(20)

In this paper, the optimal value of window length N is
determined by comparing the value of Recall obtained when
differentN is selected. Figure 6 shows the experimental results. In
order to achieve this goal, we adopted a two-stage experimental
design. First, we selected values with large intervals for
experiments to ensure that possible optimization Spaces were
covered, and possible advantage areas were quickly located for
more targeted follow-up optimization. We first select the five
numbers of 60, 90, 120, 150, and 180 for experiments. By
analyzing the experimental results at this stage, we can
preliminarily determine the approximate range of N between
60 and 120. In this case, we chose a maximum value of 180, not a
larger number because a shorter window length provides better
time-domain resolution, and in addition, a longer window length
leads to increased computational complexity. After the first phase
of the experiment, in order to refine the value of N, we narrowed
the experiment interval to capture the performance changes more
finely. We selected five numbers of 70, 80, 90, 100, and 110 for the
experiment. Through the experiment at this stage, we roughly
determined that the optimal value of N was about 100. Note that
when N is 90, the Recall of the two experiments is different,
because two-time machine learning can only get similar but not
exactly the same results. In addition, the window function is
applied from the starting point of the entire data.

Determining the best dimension of PCA dimensionality
reduction usually involves weighing information retention and
the number of dimensions. We use the relationship between the
cumulative variance contribution rate and the number of principal

FIGURE 5
Overall flow chart of the experiment.

TABLE 2 Confusion matrix.

Predicted positive Predicted negative

Actual Positive True Positive (TP) False Negative (FN)

Actual Negative False Positive (FP) True Negative (TN)
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components to determine the number of data features retained after
PCA dimensionality reduction h. As can be seen from Figure 7,
when h is 20, there is an inflection point in the figure, and the
cumulative variance contribution rate at this time reaches 94%,
which ensures that most of the variance of the original data
is retained.

The structural parameters of the Dual-Head Output model
based on parallel CNN-BiLSTM are shown in Table 3. Parameters
of the CNN layer include the size and number of kernels, and
stride. The CNN layer has no padding. Parameters of the BiLSTM
layer and the Fully Connected (FC) layer refer to the size of
hidden units. The parameters of the output header for attack
detection (Output 1) and the output header for attack type
classification (Output 2) are 1 and 3 respectively. 3 is the
number of network attack types. The activation functions of
Output 1 and Output 2 are Sigmoid and Softmax respectively,
and the activation functions of CNN layer and FC layer are Leaky
ReLU. The keep-probability of the CNN layer is 0.5, and the
keep-probability of the BiLSTM layer and the FC layer is 0.8. We
used the Adam optimizer. The network accepts input data with
frequency numbers L � 20 and feature numbers h � 20. The
frequency numbers of the training set and the test set are R �
368000 and R � 92000, and the sample numbers are S � 367981

and S � 91981, respectively. We chose the batch size as 64, epochs
as 10, and the learning rate as 0.0006. We use stochastic gradient
descent to iteratively optimize the network parameters during
training (Liu et al., 2023). In our experiment, the mini-batch
training method is chosen because compared with the full-batch
training, it has the outstanding advantages of processing large-
scale data sets, speeding up the training process of the model and
saving memory (Song et al., 2023).

For the threshold p of the neural network, we determined its
optimal value through experiment. The decision principle is to
classify the samples correctly as much as possible, that is, to
select a number that can maximize the accuracy. The
experimental result is shown in Figure 8. When p is 0, accuracy
is 25%. As p increases to 0.3984, accuracy increases to 97.68%. As p
further increases to 1, accuracy decreases to 25%. Therefore, the
optimal value of p is 0.3984.

FIGURE 6
Recall-N curve.

FIGURE 7
The relationship between cumulative variance contribution rate
and number of components.

TABLE 3 The structural parameters of neural network.

Section Type Index Argument

Shared Backbone Network CNN I 4*4 6 2 6 2

II 4*4 8 1 8 1

III 4*4 16 1 16 1

BiLSTM I 16

II 8

III 4

Dual-Head Output Structure FC I 160

II 80

III 40

IV 20

Output 1 1

FC i 160

ii 80

iii 40

Output 2 3
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4.2 Performance evaluation of the
proposed method

4.2.1 Statistics and description of
experimental results

For the network attack detection task, a confusion matrix and
four values of TP, FP, FN and TN can be obtained by inputting test
set data into the trained model, from which the evaluation index can
be calculated. For the task of attack classification, we can get the
confusion matrix of different attack types and calculate their
evaluation indexes by statistical analysis of the experimental
results. Figure 9 clearly shows the data composition of the
experimental results.

Figure 10 is a confusion matrix drawn based on the experimental
results of the method in this paper, where 1 represents port scanning
attack, 2 represents DoS attack, 3 represents FDI attack, and
4 represents no attack. As can be seen from Figure 8, the color
of the squares on the main diagonal is obviously darker than that of
the squares in other positions, which proves that our method has a
better effect on the detection of attacks and the classification of
attack types. The following sections further analyze and prove this
conclusion with data and images.

4.2.2 Comparative results and analysis of network
attack detection

For the attack detection task, we evaluate the performance of our
approach by comparing it to several baselines. The baselines include
CNN, LSTM, BiLSTM, and CNN-LSTM. Table 4 shows the

evaluation metrics of network attack detection based on several
methods, Figure 11 compares the evaluation metrics of different
methods through a bar chart to intuitively understand the
performance differences of different attack detection methods.
The following conclusions can be drawn:

Compared with the baselines, the proposed method achieves the
highest accuracy, the highest precision and the highest recall. The
highest accuracy means that the overall performance of the model is
the best, including the classification of attack and normal conditions
is accurate. The highest precision means that the model has a high
precision rate in all samples that are judged to be attack cases. The
highest recall means that the model has a higher degree of detection
of attack cases, and fewer real attack cases are missed.

In comparison to the CNN-LSTM model, the BiLSTM in our
model considers both past and future context information when
processing data of different frequencies, which helps the model
to better capture long-term dependencies in the data. Similarly,
the BiLSTM model performs better detection than the
LSTM model.

Compared to the BiLSTM and CNNmodels, our method canmore
effectively extract spatial features and the relationship between data of
different frequencies from the data set, and has stronger data feature
mining ability. Similarly, CNN-LSTMmodel has better detection effect
than LSTMmodel and CNNmodel. For the same reason, CNN-LSTM
model also has better detection effect than BiLSTM model.

The LSTM model is more accurate and precise than the CNN
model, but the recall is lower, possibly because the key information
related to network attacks is mainly distributed in local areas. So the
LSTM model has a lower recall.

4.2.3 Experimental results and analysis of attack
type classification

In the whole test set, the evaluation metrics of network attack
detection, port scanning attack, DoS attack and FDI attack
are compared.

Wemake statistical data and confusion matrix according to the test
set sample information and experimental results. The four numbers in
the confusion matrices of network attack detection, port scanning
attack, DoS attack and FDI attack add up to the total number of
test set samples. Table 5; Figure 12 compare the evaluation metrics for
the four cases. The following conclusions can be drawn:

Compared with the accuracy of network attack detection, the
accuracy of port scanning attack, DoS attack and FDI attack is

FIGURE 8
Accuracy-p curve.

FIGURE 9
Data composition of the experimental results.
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slightly higher, This is because the value of TN in the confusion
matrix of the three attack types becomes significantly larger. The
precision and recall of the three attacks are significantly lower than
that of the network attack detection. There may be two reasons for
this. First, compared with the output header of network attack
detection, the structure design of the output header of attack type
classification is relatively simple, and it cannot meet the complex
multi-classification task. Second, the three types of attacks may have
some similarities in the characteristics of network traffic data, which
makes it difficult for the model to accurately distinguish them, which
will affect the classification performance of the model for certain
types of attacks, especially in terms of Precision and Recall.
Examples include higher traffic frequencies, different connection
durations than normal traffic, specific destination ports, abnormal
traffic patterns, and abnormal IP addresses.

4.3 Ablation analysis

In order to further verify the effectiveness of the proposed method,
an ablation analysis was carried out in this case. Table 6; Figure 13
compare the evaluation metrics of attack detection in these different
cases, namely, proposed method, no Blackman-Harris window (Case
1), no time-frequency domain transformation based on Mixed-Radix
FFT (Case 2), and no PCA dimensionality reduction (Case 3). Table 7;
Figure 14 compare the evaluation metrics of attack type classification in
different cases, including port scanning attack, DoS attack and FDI
attack. The following conclusions can be drawn:

The results show that our method has the highest evaluationmetrics
compared with no Blackman-Harris window, no time-frequency
domain transformation based on Mixed-Radix FFT and no PCA
dimensionality reduction. This is because Blackman-Harris window
can effectively reduce spectrum leakage and improve the accuracy of
time-frequency domain transformation. The Mixed-Radix FFT method
has both accuracy and computational efficiency, and provides more
accurate time-frequency information for complex signals. PCA
dimensionality reduction helps to reduce the input feature dimension,
improve the efficiency of model training, and filter out redundant
information, so as to optimize the performance of the neural network
and make it more suitable for processing the data after time-frequency
domain transformation. This integrated approach can improve the
accuracy of network attack detection and attack type classification.

The evaluation metrics of Case 2 is slightly lower than that of Case
1, and Case 3 has the lowest evaluationmetrics. It can be concluded that
PCA dimensionality reduction has the greatest impact on the accuracy
of network attack detection and attack type classification, because PCA
dimensionality reduction directly reduces the number of features and
can significantly affect the accuracy. The impact of the time-frequency

TABLE 4 Evaluation metrics of attack detection based on several methods.

Evaluation metrics Proposed method BiLSTM CNN CNN-LSTM LSTM

Accuracy (%) 96.38 89.49 85.16 92.31 86.25

Precision (%) 90.46 84.54 78.45 86.93 79.84

Recall (%) 94.68 87.33 84.48 90.53 83.80

FIGURE 11
Comparison of evaluation metrics of detection performance based on several methods.

FIGURE 10
The confusion matrix is drawn according to the
experimental results.
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TABLE 5 Evaluation metrics of attack classification.

Evaluation metrics Network attack Port scanning attack DoS attack FDI attack

Accuracy (%) 96.38 99.21 97.29 99.02

Precision (%) 90.46 88.98 88.58 88.95

Recall (%) 94.68 91.91 93.49 91.79

FIGURE 12
Evaluation metrics of attack type classification.

FIGURE 13
Evaluation metrics of attack detection in these different cases.

TABLE 6 Evaluation metrics of attack detection.

Evaluation metrics Proposed method Case 1 Case 2 Case 3

Accuracy (%) 96.38 94.42 93.15 91.29

Precision (%) 90.46 89.11 88.33 84.13

Recall (%) 94.68 92.90 92.84 89.70
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domain transformation based on Mixed-Radix FFT and Blackman-
Harris window on the accuracy of network attack detection and attack
type classification is similar, the time-frequency domain transformation
based on Mixed-Radix FFT is relatively important, because the time-
frequency domain transformation and window function are more
related to signal processing. The influence on the detection of
network attacks may be more subtle, in addition, the time-frequency
domain transformation based on Mixed-Radix FFT has great
advantages in capturing the local characteristics of the signal, which
helps to improve the performance of the model.

5 Conclusion

Aiming at the problem that MES are vulnerable to network attacks,
this paper proposes a dual-head output network attack detection and
classification method based on parallel CNN-BiLSTM network. This
method not only can detect network attacks effectively, but also has the
ability to classify attack types accurately. In order to improve the
detection and classification effect of the model on network attacks,
this paper adopts a series of data preprocessing methods to improve the
quality of data, including Blackman-Harris window, time-frequency
domain transformation based on Mixed-Radix FFT, data dimension
reduction based onPCA.The parallel structure designed to accelerate the
inference process of the network can effectively improve the detection

and classification efficiency of the model, and at the same time play the
advantages of CNN and BiLSTM in capturing data features to improve
the performance of the model. The dual-head output structure can
accomplish two different tasks of attack detection and attack type
classification simultaneously. The data acquisition environment can
simulate the normal working state and the state of different network
attacks of the multi-energy system to improve the authenticity and
availability of data. Finally, a comprehensive analysis of the experimental
results verifies the superior performance and effectiveness of ourmethod
in network attack detection and attack classification.
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