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Pore-scale simulation of miscible
displacement in an inclined
porous medium
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Engineering, Shanghai, China

Introduction: This study investigates the displacement of two miscible fluids
within an inclined porous medium at the pore scale, highlighting how the pore-
scale microstructure, inclination angle, and viscosity ratio affect the interfacial
instability between two fluids during displacement processes.

Methods: The lattice Boltzmann Method (LBM) is employed to solve the
governing equations. Two distribution functions are used to simulate the velocity
field and the concentration field, respectively.

Results and discussion: An increase in inclination angle exacerbates the
interfacial instability between fluids and the viscous fingering phenomenon. This
viscous fingering expands the sweep range of displacing fluids, which improves
the displacement efficiency. When θ > 50°, further increase in inclination angle
will not cause significant changes in displacement efficiency. In addition, the
viscosity ratio is a key factor affecting displacement efficiency. The larger the
viscosity ratio, the greater the displacement efficiency. Furthermore, the critical
viscosity ratio has been found, and any increase in the viscosity ratio above the
critical value will not affect the displacement efficiency.

KEYWORDS
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1 Introduction

Developing energy storage systems or technologies can provide long-term support for
future low-carbon energy systems while reducing energy supply risk. At present, the main
energy storage technology is pumpedhydro energy storage (Rehman et al., 2015; Javed et al.,
2020), and the research and application of phase change energy storage (Yang et al., 2020;
Huo et al., 2022; Yang et al., 2022; Liu et al., 2023a), battery energy storage (Heyhat et al.,
2020; Naghavi Sanjani et al., 2023) and other energy storage technologies are developing
(Koohi-Fayegh andRosen, 2020; Liu et al., 2023c).However, the energy storage technologies
mentioned above are still unable tomeet the demands for big capacity and long-term energy
storage. Meanwhile, underground energy storage (Strobel et al., 2020; Zivar et al., 2021) can
serve as both energy transmission and storage in the energymarket, and it is a viable solution
to the problem of big-capacity long-term energy storage.

Hydrogen energy (Lackey et al., 2023; Zhang et al., 2023) is an excellent solution to the
problem of energy sustainability, with advantages such as a large number of sources, a
high calorific value, no pollution, and a wide range of applications. Hydrogen has a lower
molecular weight than natural gas, hence it requiresmore space and better sealing. Reservoir
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FIGURE 1
Schematic diagram of the initial state of the system.

rocks, as a result, provide a conducive environment for large-
scale hydrogen energy storage and are potential hydrogen storage
sites (Lankof and Tarkowski, 2020). The process of underground
hydrogen storage is extremely complicated because it involves the
interaction of fluid flowwith heat andmass transfer in porousmedia.
One common issue in porous media is miscible displacement.

Miscible displacement refers to the displacement of two or
more miscible fluids, such as seawater and freshwater, surface
sewage and groundwater, tracer-containing fluids and pure fluids,
supercritical carbon dioxide and crude oil, which are widely
used in the fields of hydrology (Tosco et al., 2014), chemistry,
medicine, and petroleum engineering (Jia et al., 2019; Bashir et al.,
2022). Due to the differences in the pore structure characteristics
(connectivity, tortuosity, etc.) and fluid flow characteristics (viscosity
ratio of displacing fluid and displaced fluid, molecular diffusion,
displacement flow rate, etc.) of porous media, fingering instabilities
often occur during miscible displacement. When a less viscous fluid
is intruded into amore viscous fluid, the interface between them can
become unstable, resulting in viscous fingering (Saffman and Taylor,
1958).Themain focus of this investigation is on the viscous fingering
in the miscible displacement process.

The viscous fingering phenomenon has been extensively studied
over the past several decades (Homsy, 1987; Bacri et al., 1991;
Liu et al., 2023b), with the majority of the study being done at
the representative elementary volume (REV) scale (Zimmerman
and Homsy, 1992; De Wit and Homsy, 1997; Norouzi and Shoghi,
2014). At the REV scale, a porous medium containing a complex
solid skeleton is averaged to a homogeneous medium. The

structural properties of the porous medium are characterized
only by two macroscopic structural parameters of the porous
medium, namely, porosity and permeability. Comparatively, there
is relatively less work focused on pore-scale viscous fingering.
Viscous fingering involves complex processes such as fluid flow,
diffusive mass transfer, and interfacial instabilities. Furthermore,
at the pore scale, the displacement process in different directions
of a porous medium significantly influences the development of
viscous fingering and the progression of the displacing fluid.
These processes are closely coupled with pore structure, and the
development of the viscous fingering between large and small
pores greatly determines the displacement process. Thus, the pore-
scale investigation is important and can largely improve our
understanding of the effects of these coupling processes and the
microscopic pore structure on viscous fingering and displacement
efficiency.

Existing studies on the miscible viscous fingering in porous
media at the pore scale have mostly focused on the influence of
factors such as viscosity ratio, porous media structure (Liu and Guo,
2015; Elgahawy and Azaiez, 2021), and chemical reactions (Lei and
Luo, 2019; 2021), ignoring the effect of the gravity field.However, the
interplay between the viscosity ratio and the gravity determines the
interfacial instabilities (Jiao and Hötzl, 2004; Jiao and Maxworthy,
2008; Zeeshan Mohiuddin and Stokes, 2013). The viscosity ratio
and the gravity either stabilize or destabilize the interface. The
instabilities of the miscible displacement interface in porous media
are determined by the angle of fluid flow relative to the direction of
gravity and the viscosity ratio.
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FIGURE 2
Evolution of concentration field without considering gravity field: (A) t = 0.125; (B) t = 0.750; (C) t = 1.375; and (D) t = 2.000.

In this study, we use the lattice Boltzmann method to simulate
viscous fingering in an inclined porous medium under miscible
conditions. The complicated coupling between fluid flow, mass
transfer, and pore structure is investigated. The effects of the
inclination angle, viscosity ratio, and the structure of the porous
media on displacement efficiency are also discussed.

2 Governing equations

In this study, the grayscale image of the porous medium is
obtained by using computed tomography (CT) scanning technology,
and then the two components of the porous medium skeleton
and porous medium pores in the grayscale image are represented
by different gray values, to obtain a digital porous medium. The
definition of the porosity of the porous medium is

φ =
Vpore

Vtotal
, (1)

where Vpore represents the volume occupied by the pores, and Vtotal
is the total volume of the porous medium.

We then simulate the displacement between two fluids in the
two-dimensional porous medium of length L and width W, with
gravity acting in the vertical direction, as shown in Figure 1. The
porous medium is inclined at an angle θ to the horizontal, the x and
y-axes are taken along and perpendicular to the porous medium,
respectively.Theporosity of the porousmedium isφ = 0.865. At first,
the displaced fluid (fluid 2) with the kinematic viscosity ν2 occupies
the porous medium, and then the displacing fluid (fluid 1) with
the kinematic viscosity ν1 is injected from the left boundary, the
average fluid velocity along the x direction is maintained constant
and equal to uin. The upper and lower boundaries of the system
are no-slip and no-flux boundaries. Meanwhile, the solid skeleton
is impermeable. Therefore, no-slip and no-flux boundaries are also
adopted at the fluid-solid interface. At the outlet boundary, the
Neumann boundary condition is used.

Assuming that the two fluids are incompressible, the Boussinesq
approximation can be adopted. The mixture density ρ and viscosity
μ are assumed to be

ρ = ρ2 (1− βCC) , (2)

μ (C) = μ2e
−RC, (3)

where C ∈ [0,1] is the mixture concentration, which represents the
volume fraction of the displacing fluid; ρ2 is the density of the
displaced fluid, βC is the solute expansion coefficient; μ2 is the
viscosity of the displaced fluid, R = ln (M) is the natural logarithm
of the viscosity ratio (Tan and Homsy, 1986; Kuang et al., 2003),
M = μ2/μ1 is the viscosity ratio of the displacing and displaced
fluid. It is assumed that the fluids’ diffusivity, D, is constant and
independent of concentration.

The governing equations in this study include the continuity
andNavier-Stokes equations, and the convection-diffusion equation
for the concentration of the displacing fluid. The dimensionless
governing equations can be written as follows:

∂U
∂X
+ ∂V
∂Y
= 0, (4)

∂U
∂t
+U∂U

∂X
+V∂U

∂Y
= − ∂P

∂X
+ ∂
∂X
[ν (C) ∂U

∂X
]

+ ∂
∂Y
[ν (C) ∂U

∂Y
] + Ra

Sc
(C−C0) sin θ, (5)

∂V
∂t
+U∂V

∂X
+V∂V

∂Y
= − ∂P

∂Y
+ ∂
∂X
[ν (C) ∂V

∂X
]

+ ∂
∂Y
[ν (C) ∂V

∂Y
] + Ra

Sc
(C−C0)cos θ, (6)

∂C
∂t
+U∂C

∂X
+V∂C

∂Y
= 1
Sc
(∂

2C
∂X2 +

∂2C
∂Y2 ). (7)

The dimensionless parameters in Eqs 4–7 are defined as follows,

X = x
x∗
,Y =

y
y∗
,x∗ = y∗ = L∗, (8)

U = u
u∗
,V = v

u∗
, t = τ

t∗
,P =

p
p∗
, (9)

Ra =
gβCΔCL

∗3

ν2
D,Sc =

ν2
D
, (10)

where u, v represent the velocity component in x and y directions,
respectively; L∗ is the characteristic length, where L∗ is the width
of the porous medium W; τ and p denote time and pressure;
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FIGURE 3
Evolution of concentration field at four different inclination angles: (A) t = 0.125; (B) t = 0.750; (C) t = 1.375; and (D) t = 2.000.

FIGURE 4
Evolution of displacement efficiency at different inclination angles, (A–C) represent the concentration fields when the displacing fluid front flows to the
porous medium’s outlet at θ = 90°, 60°, and 30°, respectively.
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FIGURE 5
Displacement efficiencies at different inclination angles at
t = 0.750,1.375, and 2.000.

u∗ = ν2/W, t∗ =W2/ν2, p∗ = ρ(ν2/W)2; X and Y are dimensionless
horizontal and vertical coordinates, respectively; U and V are
dimensionless velocity components along X and Y directions,
respectively; t and P are the dimensionless time and pressure;
ν2 is the kinematic viscosity of the displaced fluid; ν(C) = e−RC

is the dimensionless kinematic viscosity of mixture; Ra is the
concentration Rayleigh number, Sc is the Schmidt number;C0 = 0.5,
g is the gravitational acceleration, and ΔC = 1 is the concentration
difference.

3 Lattice Boltzmann method

In this study, the lattice Boltzmann Method (LBM) is employed
to solve the governing equations. Two distribution functions are
used to simulate the velocity field and the concentration field,
respectively.

The velocity field is described by the following evolution
equation:

fi (x + ciδt, t+ δt) − fi (x, t) =Ωi (x, t) + δtF i, i = 0,1,…,q− 1,
(11)

where fi(x, t) is the distribution function for particles at position x
and time twith discrete velocity ci, δt is the time step, q is the number
of discrete velocities, and Ωi(x, t) is the discrete collision operator,
and Fi accounts for the body force F.

In LBM, the most widely used collision model is the single-
relaxation-time or Bhatnagar-Gross-Krook (BGK)model. However,
it has been shown that the BGK model has some shortcomings in
pore-scale simulations, such as the unphysical viscosity-dependent
permeability. On the other hand, the Multiple-Relaxtion-Time
(MRT) model (Heyhat et al., 2020) can effectively solve the problem
by introducing different relaxation times (Lallemand andLuo, 2000).
Furthermore, the MRT model can also enhance the numerical
stability, which is particularly useful for the present study where the

viscosity ratio of the two fluids is large. Therefore, we will use the
MRT model in the present study.

The collision operator in the MRT model can be expressed as:

Ω (x, t) = −M−1S [m (x, t) −meq (x, t)] , (12)

where m and m(eq) are the moment and corresponding equilibria
in moment space, respectively, and M is a q× q transformation
matrix that maps the distribution functions to the moments’ space,
m =M ⋅ f, S = diag(s0, s1,… , sq−1) is a diagonal matrix of relaxation
rates. In this work, we consider two-dimensional problems and use
the two-dimensional nine-velocity (D2Q9)modelwhere the discrete
velocities are defined by

ci =
{{{{
{{{{
{

(0,0) , i = 0,

(1,0)c, (0,1)c, (−1,0)c, (0,−1)c, i = 1 ∼ 4,

(1,1)c, (−1,1)c, (−1,−1)c, (1,−1)c, i = 5 ∼ 8,

(13)

where c = δx/δt, with δx being lattice spacing. In the present work,
c = 1. The transformation matrixM is defined as follows:

M =

[[[[[[[[[[[[[[[[[[[[[[[

[

1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1

]]]]]]]]]]]]]]]]]]]]]]]

]

. (14)

The corresponding discrete velocity moments of the distribution
function are

m = ( ρ,e,ε, jx,qx, jy,qy,pxx,pxy)
T, (15)

where T represents the transpose operator, ρ is the fluid density,
e and ɛ are related to the total energy and the energy square, jx
and jy are components of the momentum, i.e., jx = ρux, jy = ρuy, qx
and qy are the x and y components of the energy flux, pxx and pxy
are related to the symmetric and traceless components of the stress
tensor, respectively. For an incompressible fluid, the density of the
fluid is approximately uniform and is denoted by ρ0, the density
fluctuation is δρ, thus ρ = ρ0 + δρ. The corresponding equilibrium
expressions of the moments are given by

m(eq) = (ρ,−2ρ+ 3ρ0u
2,ρ− 3ρ0u

2,ρ0ux,−ρ0ux,ρ0uy,−ρ0uy,ρ0u
2
x − ρ0u

2
y,ρ0uxuy)

T,
(16)

and the relaxation matrix corresponding to the nine moments is

S = diag(sρ, se, sε, sj, sq, sj, sq, sν, sν) . (17)

It should be noted that the fluid density and momentum are
conserved during the collision process so that the relaxation rates
corresponding to these moments, sρ and sj, can take arbitrary
values. The other relaxation rates are given by se = sɛ = sν = 1/τν and
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FIGURE 6
Concentration fields at different viscosity ratios at t = 1.125: (A) M = 1.0; (B) M = 2.72; (C) M = 7.39; (D) M = 20.09; (E) M = 54.6; (F) M = 79.84; and (G) M
= 100.0.

FIGURE 7
(A) Evolution of displacement efficiency at different viscosity ratios, and (B) the fitting curve of the displacement efficiency at t = 2.5.

sq = 8(2− sν)/(8− sν) (Pan et al., 2006), where τν is determined by
the dimensionless kinematic viscosity ν(C),

ν (C) = 1
3
(τν −

1
2
)δt. (18)

The body force is defined as follows:

F =M−1(I − 1
2
S)MF̄, (19)

where

F = (F0,F1,…,F8)
T,F = (F0,F1,…,F8)

T, (20)

and

Fi = ωi[
ci ⋅ F
c2s
+
uF:(cici − c2s I)

c4s
]. (21)

In the moment space, the body force F̂ can be derived using
Eq. 21 and the transformation matrixM

F̂ =MF = (I − 1
2
S)MF, (22)

where

MF̄ = [0,6u ⋅ F,−6u ⋅ F,Fx,−Fx,Fy,−Fy,2(uxFx − uyFy) ,uxFy − uyFx]
T.
(23)

The fluid density and velocity can be obtained through the
distribution function:

ρ =
8

∑
i=0

fi, ρ0u =
8

∑
i=0

ci fi +
δt
2
F. (24)

The concentration field is described by the lattice kinetic scheme
(Inamuro, 2002), the evolution equation is given as:

gi (x + ciδt, t+ δt) = g
(eq)
i (x, t) , i = 0,1,…,8, (25)

where gi (x, t) accounts for the concentration C, and the discrete
velocity set is the same as that used in the above MRT model
for the velocity field; The equilibrium distribution function g(eq)i is
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FIGURE 8
Variation of the average concentration in the x-direction at different viscosity ratios: (A) M = 1.0; (B) M = 20.09; (C) M = 54.6; and (D) M = 100.0.

defined by

g(eq)i = ωiC(1+
ci ⋅ u
c2s
)+ωiAδt(ci ⋅∇C) , (26)

where the weight coefficients are ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36,
c2s = c

2/3, and the parameter A is related to the Schmidt number,

1
Sc
= c2s (

1
2
−A)δt. (27)

The concentration is defined by the distribution function gi,

C (x, t) =
8

∑
i=0

g (x, t) . (28)

The concentration gradient in Eq. 26 can be obtained from
the first-order moment of the non-equilibrium function at the
given point,

−c2s δt∇C =∑
i
ci [gi − g

(eq)
i ] , (29)

and the final result is

∇C =
∑

i
cigi −Cu

c2s (A− 1)δt
. (30)

Implementing boundary conditions is a fundamental problem in
LBM (Lou et al., 2018). Since the fluid’s concentration and velocity
are known at the inlet of the porous media, the non-equilibrium

extrapolation scheme (Guo et al., 2002) is applied. The no-slip
boundary condition is realized by the halfway bounce-back scheme
(Ladd, 1994). It can be shown that if the relaxation rate τq is chosen
as sq = 8(2− sν)/(8− sν) in the MRT model, the no-slip boundary
condition can be realized accurately and spurious slip can be avoided
(Pan et al., 2006). For the no-flux boundary condition, a similar
bounce-back scheme is used (Wang et al., 2013). For the Neumann
boundary condition at the outlet, the corresponding boundary
condition scheme for the lattice Boltzmann method is given in
Ref Lou et al. (2013).

The above LBMwas previously proposed in Ref Liu et al. (2016)
for solving Eqs 4–7. It has been validated that the above model
has second-order accuracy in space, is insensitive to relaxation
parameters, and is very stable at high Péclet number and large
viscosity ratio compared with the lattice BGK model. As such, the
model can accurately simulate the fluid flow and diffusion in porous
media at high Péclet number and large viscosity ratio.

4 Results and discussion

We now use the LBMmentioned above to numerically simulate
the miscible displacement in an inclined porous medium at the pore
scale. The governing equations and boundary conditions for this
problem are described in Sec. 2. The lattice size is 1,600× 400. The
robustness of our results has been tested successfully with longer
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FIGURE 9
Variation of the mean velocity in the x-direction at different viscosity ratios: (A) M = 1.0; (B) M = 20.09; (C) M = 54.6; and (D) M = 100.0.

FIGURE 10
Concentration fields at t = 0.50: (A) M = 1.0; (B) M = 0.368; (C) M = 0.135; and (D) M = 0.0497.

andwider lattices (from 800× 200 to 3,200× 800), while keeping the
same characteristic dimensionless numbers. The parameters are set
as follows: Ra = 106, Sc = 80, andM = 54.6.

The temporal evolution of a dimensionless measure of the
concentration of the displacing fluid “1” is plotted in Figure 2 to
start the presentation of our results. The selected parameter values
are typical of a situation in which a less viscous fluid displaces a
more viscous fluid; in this case, one would expect the flow to be

destabilized due to viscous contrasts and porous medium structure.
As can be seen in Figure 2, at t = 0.125, the displacing fluid has
just entered the porous medium and the fluid-fluid interface is
clear. Then, the displacing fluid finds a path of least resistance, and
the miscible displacement of fluid 2 by fluid 1 is accompanied by
the development of instabilities, these manifest themselves via the
formation of fingering structures. At t = 0.750 and 1.375, instabilities
of the branching phenomena also arise from the structure of the
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FIGURE 11
Porous media with porosities of (A) 0.763 and (B) 0.805, respectively.

TABLE 1 Porosity and permeability of porous media.

Porosity (φ) Kxx (μm
2) Kxy (μm

2) Kyx (μm
2) Kyy (μm

2)

0.763 1.908 × 10−4 2.162 × 10−4 2.162 × 10−4 1.509 × 10−4

0.805 2.017 × 10−4 2.032 × 10−4 2.032 × 10−4 1.915 × 10−4

0.865 2.771 × 10−4 3.559 × 10−4 3.559 × 10−4 3.827 × 10−4

FIGURE 12
Concentration fields at different inclination angles at t = 2.000: (A) φ = 0.763; (B) φ = 0.805.

porous medium. At the latter stages of the flow (t = 2.000), it can be
seen that a distinct “dominant band” forms, and fingerings develop
along this band in the porous medium.

4.1 Effects of inclination angle

The inclination angle significantly influences the development
of viscous fingering and plays a crucial role in the miscible
displacement process. We then focus on the effects of inclination
angle on the displacement process, with the inclination angle
ranging from θ = 0°–90°.

The miscible displacement considering the gravity is
subsequently simulated. Figure 3 depicts the evolution of the
concentration field for θ = 0°, 30°, 60°, and 90°, respectively.
Figure 3A shows that the buoyancy effect appears early in
the displacement process (t = 0.125). Compared to the cases
of θ = 60° and 90°, the displacing fluid is impacted by the
buoyancy and concentrated in the upper part of the porous
medium the cases of θ = 0° and 30°. This effect is particularly
noticeable at t = 0.750, 1.375 and 2.000. On the other hand,
comparing Figures 2, 3, it can be observed that gravity has
a substantial effect on miscible displacement behavior in
porous media.
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FIGURE 13
Displacement efficiencies at different inclination angles at t = 2.000.

With the increase of time, the displacing fluid penetrates the
displaced fluid in the form of fingerings. Figure 3B demonstrates
“tip-splitting” (TS) and “side branching” (SB) phenomena in the
front and middle of fingerings, respectively. At t = 1.375, weaker
fingerings combine with stronger ones, resulting in the “tip-fusion”
(TF) phenomenon (Meng and Guo, 2016). When t = 2.000, the
displacement front is approaching the outlet, and it can be observed
that the sweep range of the displacing fluid is larger at θ = 60° and 90°
than at θ = 0° and 30°. Comparing 2 and 3, it can also be observed
that displacement is faster when considering gravity. As shown in
Figure 3, gradually increasing θ from 0° to 90° results in more rapid
displacement.

To quantitatively analyze the effects of inclination angle on
displacement, Figure 4 shows the displacement efficiency at different
inclination angles. The displacement efficiency is defined as,

η =
V0.05 (t)
V0
, (31)

where V0.05 represents the volume occupied by the displacement
fluid with C ≥ 0.05 in the porous medium at dimensionless time t,
and V0 represents the total volume of the fluid.

Figure 4 shows the evolution of displacement efficiency at
different inclination angles. It is clearly seen that the displacement
efficiency progressively increases with time, and notably, a larger
inclination angle corresponds to a higher displacement efficiency.
However, when the inclination angle θ is equal to 60° and 90°, the
difference in displacement efficiency is negligible. In Figure 4, points
A (at t = 2.125), B (at t = 2.25), and C (at t = 2.375) represent the
inflection points where the displacing fluid reaches the outlet at
different angles; This is because the larger the θ, the greater the
buoyancy force in the x direction and the faster the arrival at the
outlet. As a result, increasing the inclination angle not only enhances
the displacement efficiency but also shortens the time it takes for the
displacing fluid to exit the outlet.

Figure 5 presents how displacement efficiency changes at times
t = 0.750, 1.375, and 2.000 with varying inclination angles. The
displacement efficiency can be divided into two zones as the

inclination angle changes. In region I (θ = 0°–50°, displacement
efficiency improves with the inclination angle. As the angle
increases, the buoyancy force decreases in the y-direction and
increases in the x-direction, making it easier for the displacing fluid
to move forward and boosting efficiency. In region II (θ = 50°–90°,
increasing the inclination angle does not impact the displacement
efficiency, and the displacement efficiency tends to remain steady.

4.2 Effects of viscosity ratio

This section investigates the effects of the viscosity ratio
(M) on the displacement process, with the inclination angle
fixed at θ = 60° and other parameters set as follows: Ra = 106,
Sc = 80. Initially, the cases of M ≥ 1 are studied. Figure 6
presents the concentration distribution evolution for seven
different viscosity ratios, with subfigures (a)-(g) corresponding
to M = 1.0,2.72,7.39,20.09,54.6,79.84, and 100.0, respectively. It
is observed that with the increase in the viscosity ratio, the effect
of viscous fingering becomes more noticeable. Beyond a certain
point, increasing the viscosity ratio has a minor impact on the
morphology of fingering (for example: M = 54.6, M = 79.84, and
M = 100.0). As the viscosity ratio increases, so does the differential
in viscosity between the displacing and displaced fluids, resulting
in more dramatic finger stretching in the displacement direction.
Simultaneously, the force component in the x-direction on the
displacing fluid increases, enhancing the buoyancy effect. This
permits the displacing fluid to reach the porous medium’s outlet
more quickly, resulting in longer and finer fingering forms.

The subsequent analysis focuses on displacement efficiency for
certain viscosity ratios. Figure 7A shows thatwhen the viscosity ratio
increases, the displacement rate accelerates. When M = 1.0, there
is no viscosity difference between the two fluids. In this case, the
displacing fluid flows stably in the direction of displacement, with
minimal influence from buoyancy, and is significantly affected by
the permeability of the porous medium, resulting in the slowest
displacement rate and the longest time for the leading edge to reach
the outlet. Conversely, atM = 100.0, the flow characteristics display
considerable fingering phenomena and are significantly influenced
by buoyancy, resulting in the fastest displacement and the shortest
time for the leading edge to reach the outlet. This indicates that an
increase in viscosity ratio significantly enhances the rate of growth
in displacement efficiency. From Figure 7B, it is observed that at
t = 2.5, the displacement efficiency noticeably increases with the
viscosity ratio. However, whenM ≥ 54.6, the change in displacement
efficiency becomes less pronounced, stabilizing at η = 0.97. This
implies the existence of a critical viscosity ratio Mcr, beyond which
the influence on the fluid flow pattern and displacement efficiency
becomes less significant. In the cases discussed in this study, the
critical viscosity ratio isMcr = 54.6.

Figure 8 illustrates the evolution of the average concentration
in the x-direction at different viscosity ratios. The average
concentration in the x-direction is defined as follows:

Cx =
1
L
∫
L

0
Cdx. (32)

Figure 9 shows the evolution of the mean velocity in the x-
direction at different viscosity ratios. As illustrated in Figure 8A
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and Figure 9A, when M = 1.0, the average concentration curve is
concentrated in the lower part of the porous medium, and the
average concentration change is slow, while the mean velocity
curve change is not significant. As the viscosity ratio increases,
when M = 54.6 and 100, it can be observed that the lateral average
concentration curve gradually shifts towards the center. This is
because the viscosity ratio increases and the instability of the
viscous fingering becomes more obvious. As shown in Figure 7,
the sweep range of the viscous fingering is also wider, causing the
average concentration to shift towards the center. At this point, the
lateral average velocity displays a concentration tendency toward the
center, suggesting that the velocity and concentration fields interact
and coincide with one another. It can also be shown that there
is essentially no change in the average velocity and concentration
curves between M = 54.6 and 100, confirming that increasing the
viscosity ratio has little effect on the concentration and velocity
distribution of the displacement fluid.

The discussion is also extended to the cases where the viscosity
ratio M ≤ 1.0, with four distinct viscosity ratios selected and
parameter settings consistent with the previous discussion. As
shown in Figure 10, it is observed that when M < 1.0, there
are no significant fingering instabilities. Furthermore, as the
viscosity ratio decreases, the displacement rate slows, and the
fingering instability eventually fades, resulting in a “plug flow”
state. This is because when M < 1.0, the viscosity of the displacing
fluid is much higher than that of the displaced fluid, leading
to increased resistance to displacement, and reduced instability
phenomenon.

4.3 Effects of porous medium structure

The above conclusions are based on the porous medium
structure shown in Figure 1. To verify the generality of the preceding
conclusions, we then select two different porous medium structures
with different porosities for numerical simulation of miscible
displacement. Choose the same porous medium for CT scanning,
collect grayscale images of other parts, and use binary image
processing to get two porous media with porosity of 0.763 and
0.805, as shown in Figure 11. It can be observed from Figures 1,
11 that the heterogeneity of the porous media in this study is not
significant.

Another fundamental property of porous media is permeability,
which describes the difficulty of fluid flow in a porous medium and
can be expressed as a second-order tensor, K,

K = [

[

Kxx Kxy

Kyx Kyy

]

]
. (33)

Table 1 shows the porosity and permeability of the three porous
media discussed in this study. The data in Table 1 show that
the permeability differences in various directions of the porous
media structure are very tiny, indicating that anisotropy is not
obvious. It can also be observed that as the porosity decreases, the
corresponding permeability decreases.

Figure 12 shows the concentration fields at different inclination
angles at t = 2.0. The parameters are consistent with Sec. 4.1. It
can be seen that although the structure of the porous medium

has altered, the shape of the displacement fluid is similar to that
described in Sec. 4.1. When the inclination angle is small (θ = 0°
and 30°), the component force in the y-direction is larger, causing
the displacing fluid to float upwards and flow along the upper wall.
When the inclination angle is large (θ = 60° and 90°), the force in
the x-direction increases, leading to rapid displacement along the
x-direction.

Figure 13 shows that under two different porous media
structures, the change in displacement efficiency with increasing
inclination angle can also be divided into two regions, namely,
Region I and Region II. In Region I, as the inclination angle
increases, the displacement efficiency increases; In Region II, the
displacement efficiency remains relatively stable. This conclusion is
consistent with the previous one.This indicates that the conclusions
of the previous study are still applicable in porous media structures
with low heterogeneity and anisotropy, indicating that the research
findings are universal.

5 Conclusion

In this paper, we have studied the displacement process of
miscible fluids in porous media at the pore scale while taking
gravity into account by using a LBM. The study investigated
the temporal distribution of fluid concentration fields in porous
media under gravitational influences. Gravity’s impact on the
displacement process was explored by comparing it to cases
with no gravitational influence. Additionally, the impact of
inclination angle (θ) and viscosity ratio (M) on interface stability
and displacement efficiency was investigated. The conclusions
are as follows.

1) As the inclination angle increases, the viscous fingering
instability in porous media becomes more apparent. The
displacement efficiency is divided into two regions when the
inclination angle increases. One region is when the inclination
angle ranges from 0° to 50°. At this time, as the inclination
angle increases, so does the displacement efficiency. In the
other region, the inclination angle ranges from 50° to 90°, and
as the inclination angle increases, the displacement efficiency
remains relatively stable.

2) When the inclination angle is fixed (selected as θ = 60° in this
study), an increase in the viscosity ratio (M) results in more
pronounced fingering phenomena. The larger the viscosity
ratio, the faster the viscous fingerings, gradually improving
the displacement efficiency. There exists a critical viscosity
ratio (Mcr) that stabilizes the displacement efficiency near the
critical point. When (M < 1.0), the resistance to displacement
increases, resulting in a “plug flow” state.

3) For porous media with less visible heterogeneity and
anisotropy, the trend of displacement efficiency changing with
inclination angle is consistent, indicating the universality of
the above conclusions.
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