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The low carbon park islanded microgrid faces operational challenges due to the
high variability and uncertainty of distributed renewable energy sources. These
sources cause severe random disturbances that impair the frequency control
performance and increase the regulation cost of the islanded microgrid,
jeopardizing its safety and stability. This paper presents a data-driven
intelligent load frequency control (DDI-LFC) method to address this problem.
The method replaces the conventional LFC controller with an intelligent agent
based on a deep reinforcement learning algorithm. To adapt to the complex
islanded microgrid environment and achieve adaptive multi-objective optimal
frequency control, this paper proposes the quantum-inspired maximum entropy
actor-critic (QIS-MEAC) algorithm, which incorporates the quantum-inspired
principle and the maximum entropy exploration strategy into the actor-critic
algorithm. The algorithm transforms the experience into a quantum state and
leverages the quantum features to improve the deep reinforcement learning’s
experience replay mechanism, enhancing the data efficiency and robustness of
the algorithm and thus the quality of DDI-LFC. The validation on the Yongxing
Island isolated microgrid model of China Southern Grid (CSG) demonstrates that
the proposed method utilizes the frequency regulation potential of distributed
generation, and reduces the frequency deviation and generation cost.
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1 Introduction

Distributed power supply has strong randomness and weak controllability, and its
output mode is highly intermittent. Moreover, the load demand-side response is uncertain
and the grid interconnection factors are sudden. These all affect the balance of supply and
demand and the quality of power in the power system, leading to various problems for
industrial and agricultural production and daily life. They cause economic losses and may
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even endanger the safe operation of the power grid. Frequency is an
important measure of power quality. As one of the key indicators
of power quality, frequency can directly reflect the balance between
the load power on the demand side and the generator’s power
generation in the power system. Therefore, maintaining the
frequency stability is a feasible way to ensure the dynamic
stability of the system under strong random disturbances. LFC
1 is a kind of ultra-short-term frequency regulation technology.
The LFC controller uses closed-loop feedback control to adjust the
output power of the LFC unit according to a certain control
strategy. It senses a series of state indicators such as frequency,
area control error (ACE), contact line exchange power, and output
power of the unit. This achieves the dynamic balance of the power
generation and the load power, and then keeps the grid frequency
at the specified value and the contact line exchange power at the
planned value. Thus, LFC control technology has been widely used
in power system operation control. However, the traditional
centralised LFC system (Li et al., 2020; Sun et al., 2023) always
prioritises the optimal control performance of its own region, and
the information synergy between regions is low. It is hard to meet
the control performance demand of a high proportion of large-
capacity new energy grid-connected mode with the traditional
centralised AGC as a vital means of grid scheduling. Moreover, the
control performance of LFC largely depends on the control
strategy 4, while the traditional LFC control strategy 5 is no
longer adequate to cope with the regulation and control tasks
under the trend of large-scale new energy grid-connectedness and
the stochastic fluctuation of uncertain loads on the customer side
(Ferrario et al., 2021; Li et al., 2022). Therefore, from the
perspective of distributed LFC, it is of great significance to seek
a class of optimal LFC control strategies for large-scale grid
integration of new energy sources based on modern control
theory and intelligent optimization methods. These strategies
can meet the control performance and operation requirements
of power grids under strong stochastic perturbations in the new
type of power systems. The traditional methods include two types:
the centralised hierarchical LFC strategy and the fully distributed
LFC strategy.

1.1 Centralized hierarchical LFC strategy

Some notable examples of this strategy include Model Predictive
Control (MPC) (Zheng et al., 2012), Adaptive Control (AC) (Wen
et al., 2015), Learning-Based Control (LBC) (Qadrdan et al., 2017),
and Adaptive Proportional-Integral (PI) Control (El-Fergany and
El-Hameed, 2017). Zheng et al. (Zheng et al., 2012) introduced a
Distributed Model Predictive Control (DMPC) strategy that relies
on the mutual coordination of global performance optimization
metrics. Wen et al. (Wen et al., 2015) proposed a Composite
Adaptive Centralized Load Frequency Control (CALFC) strategy
for regulating the frequency of source-net-load systems, addressing
the challenge of source-load cooperative frequency regulation. Qu
et al. (Qadrdan et al., 2017) developed a Data-Driven Centralized
Load Frequency Control (DLCFC) method, treating load frequency
control as a stochastic dynamic decision-making problem for
source-load cooperative frequency regulation. Qadrdan et al. (El-
Fergany and El-Hameed, 2017) designed an LFC method based on

the “Social Spider” Genetic Optimization Algorithm to tackle the
tuning of PI parameters in microgrids.

However, these methods do not adequately consider load
modeling or the time series dependence of random disturbances
from sources like wind power and photovoltaic systems.
Furthermore, their impact on the system’s frequency control
performance is relatively limited.

Centralized LFC control offers the advantage of reflecting the
entire network’s state, but it also comes with drawbacks. Firstly, the
controller and power distributor employ distinct algorithms for
control and optimization, resulting in independence and differing
objectives, potentially compromising frequency control
performance. Secondly, concentrated communication within the
microgrid dispatch center can lead to inconsistencies and delays
in frequency control due to communication overload, and may even
trigger frequency collapse in some instances. Lastly, centralized LFC
control makes it challenging to consider the consistent performance
of regulation service providers in the performance-based regulation
market across different regions, potentially leading to providers
prioritizing local units over those in other areas and grid operators.

1.2 Fully distributed LFC strategy

Research on fully distributed Load Frequency Control (LFC)
structures primarily centers on the multi-agent control framework.
This framework comprises agent layers that analyze and process
received information, determine suitable control strategies, and
cooperate with other agent layers to ensure seamless LFC
operation. The prevailing methods in this context are multi-agent
collaborative consistency and stochastic consistency methods.

Li et al. (Qing et al., 2015) introduced a Collaborative Consistent
Q-Learning (CCQL) algorithm that leverages a distributed power
dispatch model to swiftly and optimally dispatch power commands
for distributed LFC control, even in scenarios with high
communication demands among units. Xi et al. (Xi et al., 2016b)
proposed a Wolf-Pack Hunting Strategy (WPHS) to handle
topological changes arising from power constraints. Wang et al.
(Wang and Wang, 2019) devised a discrete-time robust frequency
controller for islanded microgrids, capable of achieving frequency
restoration and precise active power dispatch through an iterative
learning mechanism. Lou et al. (Lou et al., 2020) aimed to reduce the
operational costs of isolated microgrids by considering the active
output costs. They implemented a distributed LFC control strategy
based on the consistency approach, leading to an optimal LFC
strategy that benefits both global and self-reliance aspects
through effective communication among various units. This
approach facilitates coordination between controllers and
distributors, akin to centralized LFC, while ensuring smooth
frequency control and minimizing conflicts of interest among
different units. However, it relies heavily on communication
among units and areas, making it less suitable for multi-area
islanded microgrids.

Reinforcement Learning (RL) is a machine learning technique
(Yu et al., 2011; Wiering and Otterlo, 2012) that operates without
precise knowledge of the model. It offers the advantages of self-
learning and dynamic stochastic optimization. RL does not rely on
predefined systematic knowledge but continually adapts and
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optimizes strategies by interacting with the environment and
learning through trial and error. This allows RL to find optimal
solutions for sequential problems. RL-based control algorithms excel
in decision-making, self-learning, and self-optimization, primarily
due to the relatively straightforward design of reward functions. As
the Load Frequency Control (LFC) process follows a Markov
Decision Process (MDP), RL based on MDP can enhance LFC
control strategies by crafting suitable reward functions to translate
contextual information into appropriate control signals. It also aids
in selecting control signals for optimal sequential decision-making
iterations, improving aspects such as data processing, feature
expression, model generalization, intelligence, and sensitivity of
the LFC controller.

This paper explores optimal LFC control strategies for new
energy grid integration using RL algorithms, focusing on multi-
region collaboration and addressing issues arising from the high
proportion of large-capacity new energy sources, which introduce
strong random disturbances. This approach aims to enhance the
compatibility between new energy sources and the power system,
ultimately promoting the development of the new power system. RL
is a pivotal topic in Artificial Intelligence, with Imthias et al.
(Ahamed et al., 2002) being among the first to apply it to power
system LFC. RL is favored for its high control real-time capabilities
and robustness, as it responds primarily to the evaluation of the
current control effect. It has found extensive use in ensuring the safe
and stable control of power systems.

In addition to RL, classical machine learning algorithms have
been widely adopted in Automatic Generation Control (AGC)
strategies. Yinsha et al. (Yinsha et al., 2019) introduced a multi-
agent RL game model based on MDP, capable of handling single-
task multi-decision game problems, which enhances agent
intelligence and system robustness. Sause et al. (Sause, 2013)
proposed an algorithm combining Q-learning and SARSA time
variance within the collaborative reinforcement learning
framework of “Next Available Agent,” effectively addressing
resource competition among multiple agents in a virtual
environment. This improves agents’ exploration abilities in both
static and dynamic environments. An algorithm integrating deep
deterministic policy gradients and preferred experience replay is
presented in (Ye et al., 2019), rapidly acquiring environmental
feedback in a multi-dimensional continuous state-action space.
Yin et al. (Yin et al., 2018) introduced an algorithm based on
Double Q Learning (DQL) to mitigate the positive Q bias issue
in Q learning algorithms through underestimation of the maximum
expected value.

Ensemble learning, a specialized type of machine learning
algorithm that enhances decision-making accuracy through
collective decision-making, is less commonly applied in AGC.
However, Munos et al. (Munos et al., 2016) introduced an
Ensemble Bootstrapping for Q-Learning algorithm, which
combines Q-learning within ensemble learning to correct the
positive Q-value bias problem in Q-learning algorithms. This
algorithm addresses high variance and Q-value deviation in the
Q-learning iteration process, achieving effective control.

The methodologies employed for value function estimation in
reinforcement learning algorithms are fundamentally divided into
two distinct categories, predicated on the alignment between the
target policy (the policy under evaluation) and the behavior policy

(the policy enacted by the intelligent agent during environmental
interaction). These categories are identified as in-policy and off-
policy algorithms. In-policy algorithms undertake the evaluation of
the target policy through the utilization of sample data directly
derived from the target policy itself, a process typically exemplified
by the Sarsa algorithm. Conversely, off-policy algorithms engage in
the assessment of the target policy via sample data procured from
the behavior policy, a method commonly exemplified by the
Q-learning algorithm. Within the context of real-world
engineering applications, in-policy algorithms may encounter
challenges in efficiently generating requisite sample data or may
incur elevated operational costs, which can severely restrict their
applicability in complex decision-making scenarios. Off-policy
algorithms emerge as a solution to these constraints, offering
broad utility in practical Load Frequency Control (LFC)
engineering projects. Nevertheless, these algorithms are not
without their limitations, primarily due to their reduced
robustness and the discrepancies in data distribution between the
sample data utilized for target policy evaluation and that required for
the off-policy algorithm’s evaluation process. Such disparities can
lead to phenomena known as “overestimation” or
“underestimation” of action values, which adversely affect the
decision-making precision and convergence efficiency of off-
policy algorithms. This issue represents a substantial impediment
to the broader application of off-policy reinforcement learning
algorithms, especially in the domain of frequency control for
islanded microgrids.

In the contemporary landscape of science and technology, where
interdisciplinary integration is increasingly becoming a norm, the
borrowing and application of concepts from the natural world to
information processing technologies are gaining momentum.
Among these integrations, the incorporation of quantum physics
principles into information processing technologies stands out,
promising substantial performance improvements. The
amalgamation of quantum physics with artificial intelligence
algorithms, in particular, has shown to yield significant
enhancement effects. The introduction of quantum characteristics
into the frameworks of reinforcement learning algorithms, especially
within the deep reinforcement learning experience replay
mechanism, has attracted considerable academic interest. By
integrating quantum features, the robustness of reinforcement
learning algorithms can be significantly improved, offering a
promising avenue for enhancing algorithmic performance in
complex applications such as LFC in islanded microgrids. This
innovative approach demonstrates the potential to mitigate the
challenges posed by traditional off-policy algorithms, thereby
advancing the field of reinforcement learning and its application
in critical engineering solutions.

This paper introduces the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm, which incorporates
quantum-inspired principles and the maximum entropy exploration
strategy into the original actor-critic algorithm. It transforms
experiences into a quantum state and utilizes quantum properties
to enhance the experience replay mechanism in deep reinforcement
learning. Consequently, this enhancement improves the algorithm’s
data efficiency and robustness, leading to an overall enhancement in
the quality of Data-Driven Intelligent Load Frequency Control
(DDI-LFC).
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Building upon this algorithm, we have developed a Data-
Driven Intelligent Load Frequency Control (DDI-LFC)
method. This method replaces the conventional LFC
controller with an intelligent agent based on a deep
reinforcement learning algorithm. This agent is capable of
handling the complex environment of isolated island
microgrids and achieving adaptive multi-objective optimal
frequency control.

Verification using the South Grid Yongxing Island isolated
island microgrid model demonstrates the effectiveness of
the proposed method. It fully leverages the frequency
regulation capabilities of distributed power sources and
energy storage, resulting in minimized frequency deviation
and generation costs.

The innovations in this paper can be summarized as follows:

1) This paper introduces a novel approach known as Data-Driven
Intelligent Load Frequency Control (DDI-LFC) to tackle the
problem at hand. Instead of the traditional LFC controller, this
method employs an intelligent agent built upon a deep
reinforcement learning algorithm.

2) Furthermore, this paper puts forward the Quantum-Inspired
Maximum Entropy Actor-Critic (QIS-MEAC) algorithm,
which seamlessly integrates quantum-inspired principles
and the maximum entropy exploration strategy into the
actor-critic algorithm.

Section 2 provides an in-depth description of the islanded
microgrid system model. In Section 3, we present a novel
method, presenting its comprehensive framework. Section 4 is
dedicated to conducting case studies that assess the effectiveness
of the proposed approach. Finally, in Section 5, we conclude the
paper by summarizing key insights and discussing the primary
research findings.

2 Model for island microgrid

2.1 Microgrids and distributed
power sources

An islanded microgrid is a small-scale system that generates and
distributes power using various distributed sources, storage devices,
converters, loads, and monitoring and protection devices.
Microgrids can operate autonomously and independently, with
self-control, protection and management functions. The purpose
of microgrid is to enable the flexible and efficient use of distributed
sources and to address the challenge of connecting a large number
and variety of distributed sources to the grid. Microgrid can utilize
renewable energy and cogeneration, among other forms of energy, to
enhance energy efficiency and power reliability, to lower grid losses
and pollution emissions, and to facilitate the transition to smart grid.
Photovoltaic, wind, internal combustion engines, fuel cells, and
storage devices are some of the common distributed sources in
microgrids. A quick and effective control strategy is needed to
ensure the safe and stable operation of the microgrid, by
maintaining the balance of voltage, frequency and power. The
transfer function of an islanded microgrid is shown in Figure 1.

2.2.1 Photovoltaic systems
To model the electrical behavior and power production of the

PV power generation system, the mathematical model incorporates
the PV array, the MPPT controller, the DC-DC converter, and other
components. The following equations express the mathematical
model of the PV array: Details as Eq. 1.

I � Iph − IS e
q V+IRs( )

AkT − 1( ) − V + IRS

Rp
(1)

where I is the PV array output current, V is the PV array output
voltage, Iph is the photogenerated current, IS is the reverse saturation
current, q is the electron charge, A is the diode quality factor, k is the
Boltzmann’s constant, T is the cell temperature, RS is the series
resistor, Rp is the parallel resistor.

2.2.2 Wind power systems
The mathematical model of the wind power system includes

wind turbine, wind wheel, generator, inverter etc. to simulate the
mechanical and electrical characteristics of the wind power system.
The mathematical model of the wind turbine can be represented by
the following equations. Details as Eq. 2.

Pw � 1
2
ρACp λ, β( )v3w (2)

where Pw is the wind turbine output power, ρ is the air density, A is
the swept area of the wind turbine, Cp is the wind turbine power
coefficient, λ is the wind turbine rotational speed ratio, β is the wind
turbine blade inclination angle, vw is the wind speed.

2.2.3 Fuel cells
The mathematical model of a fuel cell includes electrochemical

reactions, thermodynamics, hydrodynamics, mass transfer, heat
transfer, etc. to simulate variables such as voltage, current,
temperature, concentration, etc. of the fuel cell. The

FIGURE 1
Model for Island microgrid.
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mathematical model of a fuel cell can be represented by the following
equations. Details as Eq. 3.

Vfc � E0 − ηa − ηc − ηohm (3)

Where Vfc is the fuel cell output voltage, E0 is the fuel cell open
circuit voltage, ηa is the anode polarisation loss, ηc is the cathode
polarization loss and ηohm is the ohmic loss.

2.2.4 Micro gas turbine modelling
Conventional power generators used in microgrids are generally

microfuel generators. Compared with diesel generators, these
generators have cleaner emissions and lower operation and
maintenance costs, so they are mostly used for daily power
supply. According to the analysis of (Xi et al., 2016b), the
frequency control model of microfuel generator can be
represented by the model in Figure 1 Details as Eqs. 4, 5.

CMT,OM � ∑T
t�1
kMT,OMPMT t( ) (4)

CMT,fuel � CMTΔt
1

LHV
∑T
t�1

PMT t( )
ηMT

(5)

where CMT is the maintenance cost of the power consumption, the
value of CMT,fuel is the unit price of MT fuel gas, LHV is the low
calorific value of natural gas, and PMT is the operating
efficiency of MT.

2.2.5 Diesel generators
Sag control is a technique that enables diesel generators to keep

their frequency and voltage output stable. With sag control, each
unit can adjust its power output to the voltage sag, without requiring
any communication or coordination with other units. With sag
control, each unit can adjust its power output to the voltage sag,
without requiring any communication or coordination with other
units. This enhances the reliability and flexibility of the distributed
generation system. Details as Eqs. 6, 7.

CDG,OM � ∑T
t�1
kDG,OMPDG t( ) (6)

CDG,fuel � α + β∑T
t�1
PDG t( ) + γ∑T

t�1
P2
DG t( ) (7)

where CDG,OM is the cost of the DG, kDG,OM is the DG maintenance
factor; PDG is the fuel cost of the DG, and α, β, and γ are the fuel cost
coefficients.

2.2.6 Electrochemical energy storage devices
Energy storage device: the mathematical model of the energy

storage device includes charge/discharge characteristics, energy
management system, voltage control, etc. to simulate the charge/
discharge process and power output of the energy storage device.
The mathematical model of the energy storage device can be
represented by the following equations. Details as Eqs. 8–10.

E � Pch − Pdis (8)
SOC � E

Emax
(9)

Vbat � Eoc − Rint Ibat (10)
where E is the energy change rate of the energy storage device, Pch is
the charging power of the energy storage device, Pdis is the
discharging power of the energy storage device, SOC is the state
of charge of the energy storage device, Emax is the maximum energy
of the energy storage device, Vbat is the output voltage of the energy
storage device, Eoc is the open-circuit voltage of the energy storage
device, Rint is the internal resistance of the energy storage device, Ibat
is the output current of the energy storage device.

2.2 Objective functions and constraints

The traditional LFCmethod formicrogrids only focuses on reducing
the frequency error of the isolatedmicrogrid, without taking the cost into
account. This paper presents a DD-LFC method that achieves both
objectives: minimising the frequency variation and the power generation
cost of the units. The DD- LFC method employs an integrated multi-
objective optimization, such that the frequency error of the isolated
microgrid is reduced to aminimum. LFCmethod employs an integrated
multi-objective optimization, such that the sum of the absolute values of
the frequency variation and the power generation cost is minimized. The
constraints are shown below. Details as Eqs. 11, 12.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (11)

∑n
i�1
ΔPin

i � ΔPorder−∑

ΔPorder−∑*ΔPin
i ≥ 0

ΔPi
min ≤ΔPin

i ≤ΔPi
max

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(12)

where ΔPorder-∑ is the total command, ΔPimax and ΔPimin are the
limits of the ith unit, ΔPirate is the ramp rate of the ith unit, and ΔPiin
is the command of the ith unit.

3 Training for proposed method

3.1 MDP modelling of DDI-LFCs

RL aims to determine the optimal policy for a Markov Decision
Process (MDP) where an agent engages in continuous exploration.
The policy function, denoted as π, maps the state space (S) to the
action space (A). The optimal policy is the one that maximizes the
cumulative reward.

In the context of microgrid Load Frequency Control (LFC),
Markov Decision Process modeling involves the utilization of MDP,
a mathematical framework, to characterize and optimize load
dispatch and frequency stabilization problems within microgrids.
MDP serves as a discrete-time stochastic control process that models
decision-making in situations with uncertainty and partial control.
It comprises four key components: the state space, action space, state
transition probability, and reward function.

The primary objective of modeling using MDP is to identify an
optimal strategy for the microgrid. This strategy is essentially a
mapping function from the state space to the action space, designed
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to maximize or minimize the cumulative rewards over the long term
for the microgrid. The cumulative reward Gt from time t is defined
as. Details as Eq. 13.

Gt � ∑n
i�0
γirt+i � rt + γrt+1 + γ2rt+2 +/γnrt+n (13)

where λ is the discount factor, which value lower than 1 is typically
used to avoid the endless accumulation of expected rewards that
causes the learning process to diverge. The distributor employs the
PROP allocation method to guarantee the reasonableness of the
power distribution for each unit.

3.1.1 Action space
The agent generates the total command that determines the

unit’s output. The only variable that the agent can control is its
action, which accounts for 10% of this command. The only variable
that the agent can control is its action, which accounts for 10% of
this command. Details as Eq. 14.

ΔPorder−∑/10[ ] (14)

where ΔPorder−∑ is the total command.

3.1.2 State space
The microgrid system has two state variables: the frequency

error and its integral. The frequency error measures the difference
between the actual and the target frequency of the microgrid, while
the integral accumulates the error over time. The frequency error
measures the difference between the actual and the target frequency
of the microgrid, while the integral accumulates the error over time.
The output variable is the total power generated by the distributed
energy sources in the microgrid. Details as Eq. 15.

Δf ∫t

0
Δfdt ΔPtotal

G[ ] (15)

where ΔPtotal
G is the total output.

3.1.3 Reward functions
The controller aims to reduce both the frequency variation and

the production cost. To encourage the agent to find the best policy, a
penalty for control actions is included in the reward function. The
reward function is defined as follows. Details as Eqs. 16, 17.

r � −μ2 Δf
∣∣∣∣ ∣∣∣∣ + μ3∑n

i�1
Ci (16)

T � 0 Δf
∣∣∣∣ ∣∣∣∣< 0.01HZ

−3 Δf
∣∣∣∣ ∣∣∣∣≥ 0.01HZ

{ (17)

where r is the reward and A is the punishment function.

3.2 Quantum-inspired QIS-MEAC
algorithm framework

3.2.1 QIS-MEAC foundation framework
This paper proposes a novel experience replay mechanism for

quantum-inspired deep reinforcement learning algorithms, which

leverages some quantum properties and applies them to
reinforcement learning. The aim of this improvement is to offer
a natural and user-friendly experience replay method that
transforms experiences into quantized representations that
correspond to their importance and sampling priority, thereby
altering their likelihood of being sampled.

Current deep reinforcement learning algorithms still have some
room for improvement in terms of data utilization efficiency,
reference adjustment complexity, and computational cost,
especially as the reinforcement learning application scenarios
become more complex and dynamic, making the interaction with
the environment very expensive. Therefore, the demand for data
utilization efficiency and robustness of the algorithms is also
increasing. By incorporating quantum properties into the
experience replay mechanism of deep reinforcement learning, we
can achieve better results with less effort in practical control tasks.
The DDI-LFC method proposed in this paper improves the
experience replay mechanism of deep reinforcement learning by
using quantum properties, which enables it to effectively learn more
samples and prior knowledge, thus enhancing its robustness and
allowing the LFC to perform better under various complex load
disturbances and achieve multi-objective optimal control.

Figure 2 above illustrates the experience replay process of the
quantum-inspired deep reinforcement learning algorithm, and
Figure 2 shows its overall structure. In each training iteration
cycle, the agent interacts with the environment and reads the
required state and reward information at step t, and then
generates a state transition et based on its chosen actions. This
state transition is first transformed into a quantum state
representation, or more precisely, a mathematical expression of
the kth qubit in the quantum integrated system, where k is the
index of the qubit in the cache pool. Next, the qubit undergoes a
quantum preparation operation and becomes a quantum in a
superposed state. Then, by observation, the quantum state
representation of the experience collapses into either an
acceptance or a rejection state, with a probability that reflects its
importance, and a small data batch is drawn from the accepted
experience and fed into the neural network for training. Moreover,
after each training, the extracted experience is returned to the
experience pool and converted back into the quantized
representation of the experience. This conversion process
involves a combination of two kinds of western operations:
quantum preparation operation and quantum depreciation
operation. The quantum preparation operation adjusts the
probability amplitude of the quantized representation of the
experience to match its TD-error, and the quantum depreciation
operation considers the number of times the experience is replayed,
and adding the replay frequency of the experience will diversify the
sampled experience, so as to make the experience replay more
balanced. The whole process repeats until the algorithm stops,
and the following sections will explain the operations in more detail.

The QIS-MEAC algorithm aims to maximize both the
cumulative reward and the entropy. Entropy quantifies the
uncertainty of stochastic strategies, and in deep reinforcement
learning, higher entropy implies more diverse and exploratory
strategies. Therefore, the QIS-MEAC algorithm has a greater
ability to explore. The following is the optimal policy function of
the QIS-MEAC algorithm with entropy. Details as Eq. 18.
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π* � argmaxπs st,at( )τπ ∑T
t�0
γt r st, at( ) + αH π ·| st( )( )( ) | s0 � s⎡⎣ ⎤⎦

H π at | st( )( ) � −∑
st

π at | st( )log π at | st( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(18)

where π* denotes the optimal policy function, st denotes the t
momentary state, at denotes the t momentary action, τπ denotes
the distributional trajectory under the policy π, r is the reward, γ

denotes the discount factor, H denotes the entropy, and α is the
parameter used to determine the degree of importance of
the entropy.

3.2.2 Quantitative representation of experience
In quantum theory, a quantum can be realised by a two-level

electron, a rotating system or a photon. For a two-level electron, |0>
can represent the ground state and, in contrast, |1> the excited
state. For a rotating system, |0> can represent accelerated rotation,

FIGURE 2
Experience pool quantum operations.

FIGURE 3
Experience pool quantum operations.
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while |1> represents decelerated rotation. For a photon, |0> is
considered as a quantum system, and its two eigenstates |0> and
|1> represent the acceptance or rejection of the empirical quantum
bit, respectively. In order to better demonstrate the empirical
quantum bit and its eigenstates, their details are shown in Figure 3.

Throughout the learning process, the agent continuously tries to
interact with the environment, and this learning process can be
modelled as a Markov decision process. For each time step t, the
state of the agent can be written as st, at which the agent chooses an
action at according to the action strategy and a specific exploration
strategy, and after the action, it moves to the next state st+1, and
obtains a reward rt from the environment. Eventually, the four
elements together make up a state transfer, and are put into the
experience cache pool after being assigned with the new index k. The
state transfer process is converted into a state transfer process by
converting it into an experience cache. By converting this state
transfer process into a quantum representation, we define
acceptance and rejection of a state transfer as two eigenstates.
The state transfer is then considered as a quantum bit.

Since the quantised expression of the kth experience in the
experience pool is of the form |ψ(k) > , the state of the experience
cache pool consisting of M experience quantum bits can be
expressed as a tensor product of M quantum subsystems of the
form. Details as Eq. 19.

ψtotal
∣∣∣∣ 〉 � ψ 1( )∣∣∣∣ 〉 ⊗ ψ 2( )∣∣∣∣ 〉 ⊗ . . . ψ M( )∣∣∣∣ 〉 (19)

3.3.3 Replay mechanisms for quantized
experiences

The following page shows the pseudo-code for an integrated
quantum-inspired deep reinforcement learning algorithm. At each
time step, the agent produces a state transition by interacting with
the environment. Since a new state transition does not have
associated TD-errors, we assign it the TD-error with the highest
priority in the experience pool, whichmeans giving it a higher replay
priority. This ensures that every new experience will be sampled at
least once with the highest priority. This experience is then
transformed into a quantum bit. A quantum preparation
operation that uses Grover iteration as the fundamental
operation is applied to the quantum representation of the
experience in the uniform state until it reaches the final state.
When the experience pool is full, the state transition is sampled
with a probability amplitude that is proportional to the probability
amplitude of its quantum representation, and the chosen
experiences form a small data batch that is fed into the neural
network for training. For those chosen experiences, when they are
returned to the experience pool and prepared as uniform states
again, their corresponding quantum representations are also subject
to a quantum preparation operation to adjust to the new priority of
the experience, and a quantum depreciation operation to adapt to
the change in the number of times the experience is replayed. This
operation is repeated until the algorithm converges.

An experience pool is established in deep reinforcement learning
to store the experience data that are utilized to train and adjust the
neural network parameters of an agent. The agent interacts with the
environment once more under the direction of the neural network
with the new parameters after training it with a small amount of

data, and simultaneously produces new empirical data. Hence, the
data in the experience pool have to be renewed and replaced
periodically to attain better training outcomes. For this purpose,
the experience pool has a fixed size, and when the pool is full (as
shown by k>M in the algorithm’s pseudo-code) and new experience
data are created, the oldest experience is removed to accommodate
the new experience (as shown by k reset to 1 in the pseudo-code of
the algorithm). Moreover, the neural network parameters are only
updated after the experience pool is full, which corresponds to after
LF is set to True in the pseudo-code.

4 Experiment and case studies

This paper validates the proposed algorithm in the LFCmodel of
an isolated island microgrid on Yongxing Island. This refers to a
smart energy system consisting of diesel power generation,
photovoltaic power generation, and energy storage, built on
Yongxing Island, the largest island among the South China Sea
islands. This system can be connected to or disconnected from the
main power grid as needed. The size and parameters of the
microgrid on Yongxing Island are as follows. The microgrid has
a total installed capacity of 1.5 MW, including 1 MW from the diesel
generator, 500 kW from the photovoltaic power generation, and
200 kWh from the energy storage system. The microgrid can achieve
100 per cent priority use of clean energy sources such as
photovoltaic, and it can also flexibly access a variety of energy
sources in the future, such as wave energy and portable power. The
completion of this microgrid increases the power supply capacity of
Yongxing Island by eight times, making the power supply stability of
the isolated island comparable to that of a city. In this paper, we also
perform simulations and tests on the DDI-LFC that employs the
QIS-MEAC algorithm and compare it with other control algorithms,
such as DDI-LFC based on SQL algorithm (Li et al., 2021), DDI-LFC
based on SAC algorithm (Xi et al., 2016), DDI-LFC based on PPO
algorithm (Xi et al., 2016b), DDI-LFC based on TRPO algorithm (Xi
et al., 2021), DDI-LFC based on MPC algorithm Xi et al., 2021),
DDI-LFC based on Fuzzy-FOPI algorithm (Xi et al., 2021), TS-
fuzzy-PI (Xi et al., 2022), PSO-PI (Li and Zhou, 2024), and GA-PI
(Li and Zhou, 2023). To run the simulation models and methods
that we present in this paper, we use a computer with 2 CPUs of
2.10 GHz Intel Xeon Platinum processor and 16 GB of RAM. The
simulation software package that we use is MATALB/Simulink
version 9.8.0 (R2020 a).

4.1 Case 1: step disturbance

As displayed in Table 1, the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm outperforms the
other algorithms significantly, resulting in a substantial reduction
in frequency deviation ranging from 9.65% to 75.55% and a decrease
in generation cost ranging from 0.0004% to 0.012%. The microgrid’s
frequency response and diesel generator’s output power are both
affected by various control methods.

The simulation outcomes unequivocally highlight QIS-MEAC
as the leading performer among the four intelligent algorithms, with
soft Q-learning following closely. This can be attributed to the fact
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that both QIS-MEAC and soft Q-learning possess the capability of
maximum entropy exploration. This enables them to dynamically
adjust the learning pace, continuously update the function table
through shared experiences, and determine the relative weight of
each region. Consequently, each control region can adapt its control
strategy effectively, enhancing control flexibility.

Unlike soft Q-learning, QIS-MEAC doesn’t require averaging
strategy evaluations. Instead, it can directly make decisions based on
dynamic joint trajectories and historical state-action pairs.
Additionally, it exhibits strong adaptability to the learner’s
instantaneous learning rate, leading to improved coordinated
Load Frequency Control (LFC). QIS-MEAC demonstrates
remarkable adaptability and superior control performance under
varying system operating conditions, thereby confirming the
algorithm’s effectiveness and scalability.

RL offers advantages over many methods due to its
straightforward and universally applicable parameter settings.
Nevertheless, the application of RL theory encounters new
challenges. Firstly, for large-scale tasks, determining an optimal
common exploration goal for the reinforcement learning of multiple
individual intelligences becomes complex. Secondly, each
intelligence must record the behaviors of other intelligences
(leading to reduced stability) to interact with them and attain
joint behaviors, consequently slowing down the convergence
speed of various methods. In light of these issues, multi-
intelligence reinforcement learning techniques with collective
characteristics have emerged and gained widespread adoption.
The core concern of reinforcement learning is how to solve
dynamic tasks in real-time using intelligent entities’ exploration
techniques in dynamic planning and temporal difference methods.
The Quantum-Inspired Maximum Entropy Actor-Critic (QIS-
MEAC) proposed in this paper is innovative and efficient, thanks
to its precise independent self-optimization capabilities.

In Figure 4A below, the illustration demonstrates how the total
power output of the unit effectively manages load variations,
including scenic and square wave fluctuations. The active output
curve of the LFC unit exhibits overshooting to counteract the effects
of random power fluctuations. Figure 4B presents the output

regulation curves for different LFC unit types. As shown in the
figure, when the load increases, smaller hydro and micro-gas units
with lower regulation costs are preferred for increasing output.
Conversely, when the load decreases, biomass and diesel units
with higher regulation costs are prioritized to reduce output,
leading to improved frequency control. The LFC output
allocation adheres to the equal micro-increment rate principle,
ensuring that the final active output of each unit aligns with the
economic allocation principle. Other Deep Reinforcement Learning
(DRL) algorithms face challenges in producing satisfactory curves
due to the lack of performance enhancement techniques.
Furthermore, model-based control algorithms encounter
difficulties in demonstrating effective control capabilities due to
their heavy reliance on models.

New energy units offer distinct advantages, including rapid start
and stop capabilities, high climb rates, and extensive regulation
ranges compared to diesel units. They play a pivotal role in the
system, taking on most of the output tasks to address power grid
load fluctuations. The controller’s online optimization results
highlight the smoother and more stable regulation process
achieved by the proposed method. This ensures that unit outputs
quickly stabilize under new operational conditions, enabling optimal
collaboration in response to sudden load changes in the
power system.

4.2 Case 2: step disturbance and renewable
disturbance

This study presents a smart distribution network model that
integrates various new energy sources, including Electric Vehicles
(EVs), Wind Power (WP), Small Hydro (SH), Micro-Gas Turbines
(MGTs), Fuel Cells (FCs), Solar Power (SP), and Biomass Power
(BP). The model is employed to assess the control effectiveness of
Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC)
in a highly stochastic environment.

Electric vehicles, wind power, and solar power are considered as
stochastic load disturbances due to their significant uncertainty in

TABLE 1 Statistical results for Case 1.

Algorithm Average frequency deviation (Hz) Power generation costs ($)

|Δf |avg Ctotal

QIS-MEAC 0.01150 7,253.07

SQL 0.01261 7,253.88

SAC 0.01988 7,253.98

PPO 0.01329 7,253.82

TRPO 0.01568 7,253.57

MPC 0.01369 7,253.82

Fuzzy-FOPI 0.01396 7,253.82

TS- fuzzy-PI 0.01577 7,253.57

PSO-PI 0.01655 7,253.48

GA-PI 0.02019 7,253.10
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output. Consequently, they are excluded from the Load-Frequency
Control (LFC) analysis. The output of the wind turbine is
determined by simulating stochastic wind speed, using finite
bandwidth white noise as input. The solar power model derives
its output from the simulated variations in sunlight intensity
throughout the day.

To comprehensively investigate the intricate effects of random
load variations within a power system experiencing uncertain large-
scale integration of new energy sources, we introduce random white
noise load disturbances into the smart distribution network model.
Our objective is to evaluate the performance of Quantum-Inspired
Maximum Entropy Actor-Critic (QIS-MEAC) under challenging
random perturbations.

We utilize 24 h of random white noise disturbance as the
evaluation criterion to gauge QIS-MEAC’s long-term
performance in the face of significant random load disturbances.

QIS-MEAC demonstrates remarkable accuracy and rapid
responsiveness in tracking these random disturbances. The
statistical results of the simulation experiments are presented in
Table 2, where the generation cost represents the total regulation
cost of all generating units over 24 h.

The distribution network data reveals that the frequency
deviation in other algorithms is 1.12–1.71 times higher than that
in the QIS-MEAC algorithm, while the QIS-MEAC algorithm
reduces the generation cost by 0.067%–0.085%. Analysis of
control performance metrics underscores QIS-MEAC’s superior
economy, adaptability, coordination, and optimization control
performance compared to other intelligent algorithms.

Furthermore, we conducted tests involving various disturbance
types, including step waves, square waves, and random waves. The
experimental outcomes demonstrate that Multi-Intelligence Actor-
Critic exhibits strong convergence performance and high learning
efficiency. Notably, in a random environment, it displays
exceptional adaptability by effectively suppressing random
disturbances and enhancing dynamic control performance in
interconnected grid environments. It establishes a balanced
relationship between the output power of different unit types and
the load demand across a 24-h period. Consequently, it ensures that
the total power output of the units accurately tracks load variations,
achieving complementary and synergistic optimal operation among
multiple energy sources in each time period.

5 Conclusion

The manuscript delineates the development and
implementation of a Data-Driven Intelligent Load Frequency
Control (DDI-LFC) strategy, aimed at facilitating adaptive, multi-
objective optimal frequency regulation through the application of a
Quantum-Inspired Maximum Entropy Actor-Critic (QIS-MEAC)
algorithm. The salient contributions of this research are articulated
as follows:

1) Integration Challenges of Distributed Energy Resources: The
manuscript identifies the complexity introduced into islanded
microgrid operations by the large-scale integration of
distributed, renewable energy sources. These sources exhibit
high degrees of randomness and intermittency, resulting in
severe random perturbations that compromise the frequency
control performance and elevate regulation costs, thereby
posing significant challenges to the system’s safety and
stability. In response, the DDI-LFC method is introduced,
replacing traditional Load Frequency Control (LFC)
mechanisms with a deep reinforcement learning algorithm-
based agent, aimed at enhancing frequency regulation amidst
these challenges.

2) Quantum-Inspired Algorithmic Enhancement: To navigate
the intricate environment of the islanded microgrid and
achieve adaptive, multi-objective optimal frequency control,
the research proposes the Quantum-Inspired Maximum
Entropy Actor-Critic (QIS-MEAC) algorithm. This
innovative algorithm integrates quantum-inspired principles
and a maximum entropy exploration strategy with the
conventional actor-critic algorithm framework. By

FIGURE 4
Results for case 1. (A) Frequency deviation. (B) Total
regulated output.
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transforming experiences into quantum states and exploiting
quantum properties, the algorithm significantly enhances the
efficiency and robustness of data utilization within the deep
reinforcement learning experience replay mechanism, thereby
augmenting the effectiveness of the DDI-LFC approach.

3) Empirical Validation and Impact: The efficacy of the proposed
DDI-LFC method is empirically validated using the Yongxing
Island isolated microgrid model within the South China Grid.
Results demonstrate the method’s proficiency in leveraging the
frequency regulation capabilities of distributed power sources and
energy storage systems. Consequently, it substantially mitigates
frequency deviations and reduces generation costs, underscoring
the potential of the DDI-LFC strategy to improve the operational
reliability and economic efficiency of islanded microgrids.

Through these contributions, the manuscript not only addresses
critical challenges associated with the integration of renewable
energy sources into microgrids but also showcases the potential
of quantum-inspired algorithms in enhancing the landscape of
intelligent load frequency control.
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TABLE 2 Data of case 2.

Control algorithms Average frequency error (Hz) Generation cost ($)

|Δf |avg Ctotal

QIS-MEAC 0.029923 18,704.22

SQL 0.035237 18,719.8

SAC 0.048217 18,720.18

PPO 0.033610 18,719.42

TRPO 0.039404 18,718.66

MPC 0.034195 18,719.06

Fuzzy-FOPI 0.035101 18,718.52

TS- fuzzy-PI 0.040360 18,718.12

PSO-PI 0.041450 18,718.28

GA-PI 0.051276 18,716.76
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