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Developing photovoltaic (PV) and wind power is one of the most efficient
approaches to reduce carbon emissions. Accumulating the PV and wind
energy resources at different geographical locations can minimize total power
output variance as injected into the power systems. To some extent, a low degree
of the variance amplitude of the renewable resources can reduce the
requirement of in-depth regulation and dispatch for the fossil fuel-based
thermal power plants. Such an issue can alternatively reduce carbon
emissions. Thus, the correlation problem by minimizing the variance of total
PV and wind power plays a vital role in power system planning and operation.
However, the synergistic effect of power output correlation is mainly considered
on the generation side, and it is often neglected for the correlation relationship
between the power grid components. To address this problem, this paper
proposes a correlation coefficient analysis method for the power grid, which
can quantify the relationship between energy storage and the probabilistic power
flow (PPF) of the grid. Subsequently, to accelerate the mapping efficiency of
power correlation coefficients, a novel deep neural network (DNN) optimized by
multi-task learning and attention mechanism (MA-DNN) is developed to predict
power flow fluctuations. Finally, the simulation results show that in IEEE 9-bus
and IEEE14-bus systems, the strong correlation grouping percentage between
the power correlation coefficients and power flow fluctuations reached 92% and
51%, respectively. The percentages of groups indicating weak correlation are 4%
and 38%. In themodified IEEE 23-bus system, the computational accuracy of MA-
DNN is improved by 37.35% compared to the PPF based on Latin hypercube
sampling. Additionally, the MA-DNN regression prediction model exhibits a
substantial improvement in assessing power flow fluctuations in the power
grid, achieving a speed enhancement of 758.85 times compared to the
conventional probability power flow algorithms. These findings provide the
rapid selection of the grid access point with the minimum power flow
fluctuations.
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1 Introduction

The global greenhouse effect has become a barrier to the world
economic and social development. To reduce excessive exploitation
and usage of fossil energy, a lot of countries highly prize renewable
energy resources such as wind and solar energy. Due to their
inexhaustible resource characteristics and zero-emission
characteristics, promoting renewable energy development in
power generation is crucial to achieve carbon neutrality
(Stéphanie Bouckaert et al., 2021; Li W. et al., 2022). However,
with the increasing permeability of the intermittent and uncertain
renewable energy resources, real-time balancing between power
generation and consumption becomes more difficult, and thus
poses challenges to the safe and stable operation of the power
system. Furthermore, renewable energy generation is strongly
dependent on unpredictable climatic conditions (Guo et al.,
2023). In fact, one of the most feasible ways to overcome these
difficulties is to accumulate renewable energy sources over a broad
spatial-temporal scale (Mazzeo et al., 2021; Ren et al., 2023). The
superposition of renewable energy with weak correlation will enable
the total power output more smooth (Schindler et al., 2021).

A lot of scientific literature is devoted to the complementarity
between renewable energy resources. Taking advantage of the
complementarity first needs to establish a reasonable power
synergistic evaluation index (Guezgouz et al., 2021; Soukissian
et al., 2021; Costoya et al., 2023). By using annual share of
electricity supply droughts and coefficient of variation, Jung and
Schindler assessed the synergistic interactions among wind energy
resources in various regions (Jung and Schindler, 2022). Using the
fluctuation coefficient as an evaluation metric can distinguish the
strength of complementarity. However, it is unable to address
situations where multiple peaks exist in the power curve.
Therefore, Huang et al. formulated complementary metrics for
assessing the time and magnitude based on the probability of
renewable energy power meeting load requirements and the
frequency of insufficient energy supply occurrences (Huang et al.,
2022). Meanwhile, Nyenah et al. exploited the Pearson correlation
coefficient to describe the complementarity under different
operating conditions of the system (Nyenah et al., 2022).
However, the above studies made many assumptions to attain
the linear correlation coefficient. To avoid the limits of the linear
correlation, Li et al. adopted the Kendall’s rank correlation
coefficient to characterize the complementary characteristics (Li
et al., 2023). Nevertheless, the statistical properties of renewable
energy resources show they do not entirely meet the Gaussian
distribution. Guezgouz et al. applied the Spearman correlation
coefficient to study the relationship as a function of the spatial
distribution distance (Guezgouz et al., 2021). In this regard, the
above studies only discuss the smoothing effect of the renewable
resource side, and thus fail to extend the scope of the power
correlation evaluation to the power grid side.

It is crucial to explore the impact of power correlation related to
the system operating stability and security (Zhang et al., 2023).
Correspondingly, the power correlation is highly dependent on
uncertain power flow analysis as well as the complementarity
analysis. For probabilistic power flow (PPF) models, Monte Carlo
simulation is the benchmark method due to its operation features,
which repeats the sampling from the input samples domain. It is

noteworthy that the terminate criterion of repeated sampling is often
used as a parameter to be optimized for the algorithm improvement
(Kim and Hur, 2021). Rezaeian-Marjani et al. proposed a PPF
algorithm based on Latin hypercube sampling (LHS) and
Cholesky decomposition, aiming to represent the statistical
information of random variables with a smaller sample size
(Rezaeian-Marjani et al., 2022). Although the Monte Carlo
Simulation (MCS) can consider the correlation between input
variables, its computational burden becomes more prominent
with an increase in the uncertain variables (Ma et al., 2023). To
address this problem, Zheng et al. employed an unscented
transformation (UT) method to study the operation optimization
problem for renewable energy sources and plug-in electric vehicles
(Zeng et al., 2021). In fact, the spherical boundary radii of all
weighted points in the UT method may expand with the
increasing spatial dimension of the state variables in the power
grid. This leads to low accuracy of the first two moments about the
dependent variable. In summary, the accuracy and computational
efficiency of the aforementioned probability power flow algorithms
are affected by the complexity of the power grid topology and the
increase in the dimensions of random variables.

On the other hand, it is of particular interesting to exploit
wide-area spatiotemporal complementary effect of interconnected
regional power grids with high penetration of renewable energy
resources (Li J. L. et al., 2022). However, we will face challenges in
computational efforts of the PPF-based correlation analysis,
especially for large-scale wide-area power grids. To this end, it
is essential to find the inherent law between the power correlations
related to the PPF of the transmission grid. Correspondingly, more
generalized regression algorithms were presented in some
literature. By using sequential grid search, Pannakkong et al.
optimized the hyperparameters of artificial neural networks
(ANN) to enhance the precision of the model’s regression
predictions (Pannakkong et al., 2022). Compared with the
conventional ANN with one hidden layer, Amasyali et al. found
that higher accuracy can be achieved by using the Deep Neural
Networks (DNN) with deeper architectures at the same sample size
(Amasyali and El-Gohary, 2021). Alcantara et al. employed the
DNN algorithm based on the hypernetworks method, enabling the
attainment of prediction intervals with optimal coverage width for
solar and wind energy (Alcantara et al., 2022). Parizad and
Hatziadoniu adopted the random search algorithm to confine
the search range of hyperparameters within a local region.
Subsequently, the grid search algorithm is utilized to screen for
the optimal hyperparameters of the DNN (Parizad and
Hatziadoniu, 2022). Even though DNN has good performance
in various fields, whether hyperparameters such as the number of
neurons in each layer and learning rate can be set reasonably will
affect the output accuracy of the regression model.

In this paper, depending on the PPF, a deep learning-based
wide-area correlation analysis methodology is proposed,
implemented, and verified. The main contributions of this paper
are threefold as follows:

1) A scheme of reducing active power fluctuation based on grid-
side power correlation coefficients is proposed. Moreover, the
effectiveness of the proposed scheme is verified in IEEE 9-bus
system and the IEEE 14-bus system.
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2) The nonlinear correlation coefficients for quantifying
power flow fluctuations in the power grid are proposed.
Furthermore, machine learning algorithms are employed to
validate and analyze the existence of feature associations
between the power correlation coefficients and power flow
fluctuations in the grid.

3) The DNNmodel, combined multi-task learning with attention
mechanism (MA-DNN) is proposed. This model establishes
the mapping between power correlation coefficients and power
flow fluctuations. In the modified IEEE 23-bus, a comparison
with various PPF algorithms indicates that our proposed
model can efficiently and accurately evaluate power flow
fluctuations in the power grid.

The remainder of this paper is organized as follows: Section 2
introduces the modeling approach of power correlation coefficients.
Section 3 proposes theMA-DNNmodel to accelerate the assessment
process of power flow fluctuations in the grid. Feature analysis and
the proposed model performance are validated based on the three
types of IEEE power grids in Section 4. Finally, the conclusions of
this work are outlined in Section 5.

2 Power correlation analysis of power
grid with energy storage

In this section, a method for analyzing the operating features of
AC/VSC-HVDC hybrid power grids considering the uncertainty
and complementarity of renewable energy resources is described in
Supplementary Material SA. On this basis, establishing the
quantitative index of power correlation for the power grid. To
clearly illustrate the relationships between the modeling sections
of this paper, a logical block diagram is drawn, as shown in Figure 1,

where “Eqs A1–A8” denotes the formula A1–A8 in Supplementary
Material SA.

As a balancing node for the entire power grid, an energy storage
station can absorb imbalanced power fromdifferent lines throughout the
operational cycle of the power grid. It enables an assessment of the
responsiveness of an energy storage station to power flow fluctuations in
different locations by studying the correlation between energy storage
output power and the power variation trend of other branches. Based on
this, it can serve as a criterion for selecting the optimal access point of
renewable energy and the optimal interconnection point of the regional
grid. Therefore, this paper proposes the power correlation coefficient to
analyze the influencemechanismof power correlation from the grid side.

2.1 Power correlation coefficient
considering numerical value

This paper defines the correlation coefficient between the active
power of the energy storage power station and the active power
flowing through the bus as the power correlation coefficient. In the
case where power correlation coefficients consider the numerical
values of power Cval

GS, both the storage power and branch power in
Eq. 2 are taken in absolute values.

Cval
GS � C val

B1L1 / C val
B1Lm / C val

B1LM[ ] (1)

Cval
B1Lk � ∑v

l�1
RXl − �RX( ) RYl − �RY( )[ ]

/ 






















∑v
l�1

RXl − �RX( )2∑v
l�1

RYl − �RY( )2√√
(2)

where Cval
B1Lm is the Spearman correlation coefficient between the

active power of the energy storage and the branch Lm, M is the

FIGURE 1
Logical block diagram of modeling.
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number of branches in the power grid. RXl and RYl represent the
ranks of the energy storage output power and branch power after
sorting, �RX and �RY represent the average ranks.

2.2 Power correlation coefficient
considering power flow direction

In the power grid, branches are connected to different buses at
both ends. The direction of the power flow changes with the power
fluctuation on the source and load sides. This paper sets the power
flowing into the bus as positive and the power flowing out of the bus
as negative. In the analysis process of power correlation coefficients,
there is a difference in the correlation coefficients presented by
branch power when considering changes in positive and negative
signs compared to the case of only considering numerical variables.
To accurately characterize the correlation between branch power,
Eqs 3, 4 are established, considering the power direction in the
power correlation coefficients.

Cout
GS � C out

B1L1 / C out
B1Lm / C out

B1LM[ ] (3)
Cin

GS � C in
B1L1 / C in

B1Lm / C in
B1LM[ ] (4)

where Cout
GS is the correlation coefficient between the output power of

energy storage and the branch power flowing out of the bus, Cin
GS is

the correlation coefficient between the output power of energy
storage and the branch power flowing into the bus. For example,
if the branch power Lm does not represent the power flowing out of
the bus, C out

B1Lm is set to 0.

3 Accelerated method for power flow
fluctuations assessment in the
power grid

The previous section has established power correlation
coefficients, which can provide a data foundation for the
establishment of MA-DNN model to evaluate power flow
fluctuations. In this section, the single factor and multi-factor
feature analysis methods are used to evaluate whether there exists
a mapping relationship between power correlation coefficients and
power flow fluctuations. Furthermore, we propose the MA-DNN
model to enhance the computational accuracy and efficiency of
regression prediction between power correlation coefficients and
power flow fluctuations. The specific modeling process is as follows:

3.1 Definition of input and output data

Firstly, we defined the input data set and output data set:

XBN
C � Cval

GS,C
out
GS ,C

in
GS,C

mean
GS{ } (5)

The input dataset XC comprises a set of power correlation
coefficients XBN

C between the energy storage output power and
the branch power flow through bus BN. It includes four features,
with each correlation coefficient considered as input data. The first
three sets of features Cval

GS, C
out
GS , and Cin

GS are obtained from Eqs 1–5.
To enhance the generalization capability of the model by enriching

the input data, we created a fourth enhanced feature set by taking the
mean of the first three feature sets, resulting in six additional features
Cmean
GS . In addition, the correlation coefficients corresponding to the

branch power not connected to the bus BN are all filled with zeros to
ensure that the dimensions of each input data are equal. The
modified IEEE 23-bus system is used as the case topology, as
shown in Figure 2. The output data can be formed by:

YP � YB1
P , YB2

P , ..., YBN
P{ } (6)

YBN
P � ∑ΔPBN

L (7)
ΔPBN

L � Paf
L1 − Pbf

L1 , . . . , P
af
LM − Pbf

LM{ } (8)

where YP is the output dataset,N is the total number of buses in
region 2 in Figure 2, Paf

LM represents the standard deviation of active
power on branch LM after the interconnection of region 1 and
region 2 in Figure 2. Pbf

LM represents the standard deviation of active
power for branch LM before interconnection between region 1 and
region 2, YBN

P represents reduced power flow fluctuations in the
entire power grid. In other words, it is the sum of the set ΔPBN

L of
reduced power flow fluctuations for each branch in Figure 2. To
facilitate the description, the “reduced power flow fluctuation” is
referred to as “power flow fluctuation” in the subsequent content. In
summary, the core objective of our proposedMA-DNN is to achieve
a rapid mapping from XBN

C to YBN
P , denoted as Eq. 9:

YBN
P � MA − DNN XBN

C( ) (9)

3.2 Configuration of experimental data

We simulate 420 sets of data in the corresponding power grid
topology, with each data set having a dimension of 13 × 69. For the
scientific rigor of the experiments, we randomly divide the data into
training, and test sets in a ratio of 10:3. The training set is used for
model construction, and the test set for independently evaluating the
model’s performance.

3.3 Analysis of feature correlation

When exploring the relationship between power correlation
coefficients (referred to as “features”) and power flow
fluctuations, the experiment is divided into two parts: single-
factor analysis and multi-factor analysis.

For single-factor analysis, we employ the Spearman correlation
coefficient to calculate the correlation of each feature with power
flow fluctuations (including the sum), along with the results of
significance tests. Specifically, absolute Spearman correlation
coefficients greater than 0.4 are considered strongly correlated,
and p-values less than 0.05 are deemed statistically significant.
Additionally, to provide a more intuitive representation of the
relationship between features and power flow fluctuations, we
categorize all features into three groups based on the following
criteria: 1) Strongly correlated - situations with the absolute value of
Spearman correlation coefficients greater than 0.4 and p-values less
than 0.05; 2) Weakly correlated - situations with the absolute value
of Spearman correlation coefficients greater than 0.2 and less than
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0.4, and p-values less than 0.05; 3) Not correlated—situations not
meeting the above two conditions.

For multi-factor analysis, we employ the XGBoost algorithm to
construct mappings between features and the fluctuations in each
active power (including the sum) to explore relationships among
multiple variables. The XGBoost algorithm is a machine learning
algorithm designed based on Taylor expansion, using an ensemble
of weak classifiers to build a strong decision maker, demonstrating
good generalization ability and accuracy (Chen and Guestrin, 2016).
In our hypothesis, if modeling input features can yield high-
precision prediction results, it indicates their association. Finally,
the importance of each feature is characterized by counting its
occurrences in the regression decision tree.

3.4 MA-DNN model-based accurate and
accelerated solution method

DNN with deeply hidden layer structures can mine complex
nonlinear relationships between variables, which are widely
applicable to solving regression problems (Ifaei et al., 2017; Yang
et al., 2021). It is worth noting that the key to achieving a high-
precision mapping from input data to output data lies in how to
design an appropriate deep learning network structure.

For the MA-DNN, it is primarily composed of three fully
connected layers. Additionally, the first two fully connected
layers include batch normalization and activation functions. As
the data propagates between the fully connected layers, its
dimension is reduced to half of the output dimension of the
previous layer. Additionally, two optimizations were applied to
the DNN:

1) Our first innovation is attention mechanism. After inputting
the data into the model, a channel attention mechanism was

employed to further enhance the input data (Hu et al., 2018).
Its formula is as follows:

scale XBN
C( ) � XBN

C · sigmoid W2 · LeakyReLU W1 · XBN
C( )( ) (10)

In the above formula, the input data is coupled through a weight
matrix W1, and the dimension is reduced to half of the original.
After passing through the activation function LeakyReLU(·),
dimension restoration is performed through the weight matrix
W2. Furthermore, the function sigmoid(·) is applied to compress
the restored data to the range of 0–1, and then it is weighted with the
original data. The introduction of the attention mechanism enables
the model to spontaneously focus on input nodes that are most
relevant to the prediction target.

2) Our second innovation is multi-task learning mechanism. The
advantage of multi-task learning lies in leveraging the
correlation between tasks, introducing inductive bias to
prevent the network from getting stuck in a local optimum
when dealing with a single task, and achieving a collective
improvement in predictive performance across multiple tasks
(Zhang and Yang, 2018). In this study, we first choose MSE as
the loss function to minimize the distance between the
predicted values Y′

P and the actual values YP , as shown in
Eq. 11:

MSE YP,Y
′
P( ) � 1

2K
∑K
k�1

Yk
P − Yk

P′
���� ����2 (11)

For the multiple tasks that the model aims to predict, we
initially set YP as the primary prediction target, and the
corresponding model output values are denoted as Y′

P.
Simultaneously, the model also predicts ΔPBN

L , and its
corresponding model output values are denoted as ΔPBN

L ′. The
inclusion of the secondary prediction target ΔPBN

L enables the

FIGURE 2
Topology diagram of the modified IEEE 23-bus system.
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representations in the model to perceive not only power flow
fluctuations in the overall power grid, but also power flow
fluctuations in various branches. This further enhances the
accuracy of model in predicting YP. In addition, the losses
incurred by the model in predicting YP and ΔPBN

L are denoted
as Loss1 and Loss2. During the training process, the model’s loss is
the average of the sum of Loss1 and Loss2, written as Eqs 12–14:

Loss1 � MSE ΔPBN
L ′ − ΔPBN

L( ) (12)
Loss2 � MSE Y′

P − YP( ) (13)

Lossmulti−task � 1
2

Loss1 + Loss2( ) (14)

Moreover, we introduce a learning rate decay mechanism to
further enhance the model’s generalization ability. The model
diagram of MA-DNN is shown in Figure 3.

3.5 Experimental environment

In terms of software selection, MATLAB 2018b is used as the
development environment for power flow analysis. Additionally, the
hybrid AC/DC power flow algorithm is improved based on the
MATPOWER 7.0 algorithm package (Zimmerman et al., 2011).

All deep learning models are implemented in Python 3.7.3 with
Numpy (version ≥1.16.4), SciPy (version ≥1.3.0), Matplotlib
(version ≥3.1.1), Scikit-Learn (version ≥1.10.1), Statsmodels
(version ≥0.12.2), XGBoost (version = 2.0.3) and Pandas

(version ≥0.25.0). All models are trained in python package
named Pytorch (version = 2.0) with one Graphics Processing
Unit of NVIDIA TITAN RTX (24G).

4 Verification and discussion

In this section, the influence of the power correlation coefficients
on the state variables for the power grid is analyzed firstly. Then, a
characteristic analysis is performed between power correlation
coefficients and the fluctuation of active power to determine the
degree of association. On this basis, a DNN regression model of
correlation coefficients and power flow fluctuations is established.
Eventually, the prediction accuracy and computational efficiency of
the modified DNN model based on multi-task learning and
attention mechanisms are evaluated.

4.1 Effects of power correlation on power
grid operation

To simulate the grid operation characteristics considering renewable
energy integration, the IEEE 9-bus topology embedded with the wind
and the photovoltaic (PV) farms is selected as the test model, as shown
in Figure 4. The grid capacity reference value is 100MVA, and the base
voltage is 345 kV. The installed capacity of wind and PV farms
connecting to buses 2 and 3 are 400MW, which can avoid
additional interference factors caused by the different capacity ratios.

FIGURE 3
The structure block diagram of MA-DNN.
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By increasing the correlation between wind and PV output
power from −0.5 to 0.9, the effect of raising source-end power
correlation on grid state variables can be observed in Figure 5. “std”
represents the standard deviation of the values. “Ps” and “Qs”

represent the active and reactive power of the energy storage
power station. “P” and “Q” denote the active and reactive power
of each branch. “Va” and “Vm” represent the voltage phase angle
and voltage amplitude of the bus.

FIGURE 4
Grid topology for the test case.

FIGURE 5
The influence degree of source-end power correlation on power grid state variables.
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As shown in Figure 5, in the process of power correlation
enhancement, the power standard deviation of the energy storage
bus is slightly more affected than that of the branches. It is
necessary to ensure that the statistical characteristics of
meteorological data can be inherited when constructing
different power correlation scenarios. Hence, the active power
standard deviation of branches 4 and 7, which are the source-end
power transmission lines, is close to 0, so the change rate of the
power standard deviation of the branch is reduced. With the
increase of source-end power correlation, the standard deviation
of active power from the energy storage station and branches
have the most apparent gain effect, reaching 23.88% and 20.50%.
In addition, the standard deviation of voltage amplitudes, which
is least affected by the enhancing correlation, accounts for 10.75%
of the variation. Therefore, the following contents revolve around
the influence of power correlation coefficients on active power
fluctuations.

In the correlation analysis process depicted in Figure 5, the
consideration is limited to the impact arising from changes in
source-side power correlation, overlooking the power correlation
among each branch within the power grid. As a result, the
response level of the energy storage station to power flow
fluctuations in other branches cannot be obtained. Furthermore,
this would result in the system being unable to effectively mitigate
the active power fluctuations. The impact of grid-side power
correlation coefficients on active power fluctuations can be found
in Supplementary Material SB. To quantify the correlation between
the output power of the energy storage power station and the power
flow in other lines, this paper proposes the power correlation
coefficient. Simultaneously, the active power fluctuations generated
from the connection of an individual renewable energy power station
to the bus is taken as a metric to assess its impact on the grid.

To evaluate whether the power correlation coefficients can
characterize the correlation between energy storage output power
and other branches, Figure 6 conducts a characteristic analysis of the

power correlation coefficients and power flow fluctuations in IEEE
9-bus system.

In Figure 6, the horizontal axis labeled “L1-L9” represents power
flow fluctuations in the respective branches, while “SUM” denotes
power flow fluctuations across the entire power grid. The vertical
axis, where “PO” and “PI” respectively represent the branch power
considering the outflowing and inflowing directions to the bus. “PN”
denoting the numerical value of branch power flowing through the
bus, is measured in absolute values of branch power. “ESS” denotes
output power of the energy storage station. For example, “ESS-PO-
L3” represents the correlation coefficient between the energy storage
output power and the branch power L3 in the outflowing direction
of the bus.

In Figure 6A, when the absolute value of the correlation coefficient
is greater than 0.4, it indicates a significant correlation between the
power correlation coefficients and power flow fluctuations. In
Figure 6B, p-value less than 0.05 represents that the correlation
analysis of features is statistically significant. There are characteristic
correlations between the power correlation coefficients and power flow
fluctuations by observing the distribution diagram of correlation
coefficients and p-values. Notably, L2, L3, L5, L6, L8, and
L9 exhibit a higher level of significant correlation. The exclusion of
L4 and L7 is attributed to the fact that they represent branches
associated with wind power and PV output power, respectively.
The output power of both is solely dependent on meteorological
factors and is unrelated to power grid fluctuations.

During the feature analysis process, it is found that the power
correlation coefficients exhibit the highest correlation with the
power flow fluctuations of L2 and L9, reaching 0.82 and 0.80,
respectively. This is because branches L2 and L9 are the main
transmission routes for power exchange by energy storage
stations. When new fluctuating sources are integrated into the
grid, the energy storage station responds to power disturbances
by switching between the charging and discharging states, leading to
an increase in the number of power reversals in branches L2 and L9.

FIGURE 6
Relevance analysis (A) and significance analysis (B) between power correlation coefficients and power flow fluctuations in IEEE 9-bus system.
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Therefore, the power correlation coefficients of the energy storage
station exhibit the highest correlation with the power fluctuations
of L2 and L9.

To observe the characteristic analysis results of the power
correlation coefficients, we categorize the feature analysis objects
into strong correlation and weak correlation groups based on the
partitioning rules provided in Section 3.3. Table 1 exhibits the
proportion of feature groups. In IEEE 9-bus system, strongly
correlated features constitute the majority, reaching 92% in
proportion. Hence, using the power correlation coefficients can
effectively capture power flow fluctuations in the entire grid.

4.2 Further correlation analysis of multi
factor and large-scale grid

To assess the correlation between the power correlation
coefficients and power flow fluctuations in diverse power grid
topologies, the IEEE 14-bus system is chosen as the analytical
case, as illustrated in Figure 7. The setting of the power grid
baseline values is consistent with Figure 4. The installed
capacities for wind farms and PV power stations are both
configured at 200 MW.

For single-factor analysis, we employed the Spearman
correlation coefficient to calculate the correlation of each
feature with power flow fluctuations along with the results of
significance tests, as shown in Figure 8. It is noteworthy that the

significance level of the correlation coefficient and the range of
p-values with statistical significance are set to be consistent with
Figure 6. The meanings of the horizontal and vertical axes in
Figure 8 are the same as in Figure 6. From Figure 8, except for
L1 and L14, it exhibits more pronounced correlation between the
power correlation coefficients and the power flow fluctuations in
other branches.

In Figure 8, it can be noted that the power correlation
coefficients exhibit the highest correlation with the power
fluctuations of branches L9 and L15, both exceeding 0.60. The
main reason is that the load is primarily distributed from B9 to
B13 in the IEEE 14-bus system. L9 and L15, as branches connecting
dense load distribution areas, are responsible for transmitting a
significant amount of unbalanced power in the power grid.
Therefore, the power correlation coefficients of the energy
storage station exhibit the highest degree of correlation
with L9 and L15.

Additionally, to provide a more intuitive representation of the
relationship between features and power flow fluctuations, we
categorize all features into strong correlation and weak
correlation groups. It is worth noting that the partitioning rules
for these two feature groups are the same as those in Table 1.
According to the statistical results, the proportion of strongly
correlated groups reaches 51%, while the proportion of weakly
correlated groups is 38%.

In contrast to single-feature analysis, only the relationship
between individual power correlation coefficients and power flow

TABLE 1 The characteristic analysis results of the power correlation coefficients.

Group Spearman correlation coefficient ρ p-value The proportion of feature correlation degree (%)

Strong correlation |ρ|≥ 0.4 <0.05 92

Weak correlation 0.2< |ρ|< 0.4 <0.05 4

FIGURE 7
Topology diagram of IEEE 14-bus system.
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fluctuations is considered. Multi-factor feature analysis can verify
whether all features are mapped to power flow fluctuations. It is
assumed that if the power correlation coefficients can accurately

predict power flow fluctuations with high precision, which
demonstrates the existence of a causal relationship between them.
As shown in Figure 9, the regression results of active power

FIGURE 8
Relevance analysis (A) and significance analysis (B) of power correlation coefficients in IEEE 14-bus system.

FIGURE 9
The regression prediction results of multi-factor analysis.
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fluctuation in branches based on the power correlation coefficients
are very close to the actual values (MSE is equal to 7).

In the multi-factor feature analysis process in Figure 9, it can
be observed that the regression prediction difficulty of power
fluctuations for branches L1, L2, and L5 based on the power
correlation coefficient of energy storage is the highest. This is
because they are the main interconnection lines for external
connections, used to transmit the unbalanced power absorbed
by the energy storage station. As the number of disturbance
sources integrated into the grid increases, it becomes more
challenging to capture the power fluctuation regularity of
these branches.

Figure 10 extracts the top ten influential power correlation
coefficients during the regression prediction process. The
importance of each feature was characterized by counting its
occurrences in the regression decision tree. It is evident that the
correlation coefficients between energy storage output power and
active power in L17, L18, L19, and L20 are the most important
features. This is because these branches are in dense load regions in
IEEE 14-bus system. When the renewable energy source is
integrated into the grid, the unbalanced power fluctuations
around the load buses become more frequent, which are
absorbed by the energy storage station.

4.3 Performance analysis of MA-DNN
model-based solution method

In Sections 4.1, 4.2, a verification analysis was conducted on
the causal relationship between the power correlation coefficients
and power flow fluctuations in the independent IEEE 9-bus and

IEEE 14-bus systems. The results indicate a significant
correlation between them. To explore the possibility of
establishing a mapping relationship between the correlation
coefficients and power flow fluctuations in a more complex
grid structure, we consider the IEEE 23-bus system, formed by
the interconnection of IEEE 9-bus and IEEE 14-bus systems, as
illustrated in Figure 11. Differing from the analysis cases of
independent power grids, the power flow fluctuations refer to
the subtraction of the active power standard deviations from two
independent power grids after interconnection and before
interconnection. The complexity of the patterns in power flow
fluctuations in this scenario is much greater than the scenario of
connecting a single renewable energy power station.

In this section, the regression prediction for power flow
fluctuations is performed based on the MA-DNN model, using
the power correlation coefficients. Distinguishing from the
traditional power grid analysis methods based on the PPF, this
section aims at enhancing the computational efficiency of power
flow fluctuations in the grid through the regression prediction
models. Subsequently, with an efficient and accurate mapping
approach, the MA-DNN model provides data support for the
selection of interconnection schemes of regional power grids with
the minimum power flow fluctuation.

To validate the performance of the proposed method, it is
necessary to select typical power flow algorithms for comparative
analysis. When performing power flow analysis containing
renewable energy power stations, it is essential to consider the
correlation between random variables. This approach can
improve the computational accuracy of the grid analysis results.
Currently, methods for handling non-linear relationships between
random variables mainly include Nataf transformation (Nataf),

FIGURE 10
The importance ranking of features in multi-factor analysis.
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LHS, and UT methods. Therefore, we select these methods as
contrast groups for evaluating the model’s performance, as
shown in Table 2. Nataf is a calculation method based on the
MCS method (with 8000 samples) and is typically used as a
benchmark for the most accurate calculation results.

From Table 2, the MA-DNN model takes 5.93 × 10−4 s to
perform a single power fluctuation assessment, exhibiting a
computational efficiency improvement of 758.85 times and
438.45 times compared to the LHS and the UT algorithms.
Meanwhile, compared to the LHS and UT algorithms, the
computational accuracy of the MA-DNN model is improved by
37.35% and 16.80%, respectively. Therefore, the MA-DNN model
proposed in this manuscript can efficiently and accurately evaluate
the active power fluctuations of the power grid.

To evaluate the roles of various modules in the proposed
algorithm, ablation experiments are performed, and the results
are shown in Table 3. It is noted that the detailed impact of
different parameters on the model is recorded in Supplementary
Material SC. Compared to the DNNmethod, the MA-DNNmethod
has reduced the MSE by 15.25%. This is because the MA-DNN

model adopts an attention mechanism, allowing the regression
model to automatically focus on more important data.
Meanwhile, with the introduction of a multi-task learning
mechanism in the MA-DNN model, it ensures that the model
can avoid being trapped in the extremum of a single task by
training on multiple tasks. Consequently, this enables the weights
closer to the global optimum, enhancing the regression prediction
accuracy of the MA-DNN model.

Additionally, considering the advantages of the MA-DNN
regression prediction model in the efficiency of assessing power

FIGURE 11
Schematic diagram of the regional power grid interconnection.

TABLE 2 Performance comparison of the proposed algorithm.

Analysis method Computational accuracy Computational efficiency

Average error % Max error % Time/s

Conventional method PPF based on Nataf 1.73 4.48 45.72

PPF based on LHS 4.90 7.32 0.45

PPF based on UT 3.69 8.73 0.26

Deep learning MA-DNN 3.07 6.59 5.93 × 10−4

TABLE 3 Ablation experiment of the models.

Regression method MAE MSE R2

DNN 1.4072 4.3073 0.9673

DNN based on attention mechanism 1.3656 4.0157 0.9695

DNN based on multi-task learning mechanism 1.3381 3.7360 0.9716

MA-DNN 1.3295 3.6505 0.9723
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flow fluctuations in the power grid, it can rapidly select the optimal
interconnection points based on the power correlation coefficients
before interconnection, minimizing the power flow fluctuations
after interconnection.

By comparing with actual values, the probability of MA-DNN
model selecting the optimal interconnection scheme among the
420 sets of data is 94.05%, while the probability of obtaining the
suboptimal interconnection scheme is 5.95%. The power flow
fluctuation in the suboptimal interconnection scheme is only
5.01% higher than that in the optimal scheme.

To evaluate the performance of the proposed model in
various power grid topologies, the AC interconnection
topology depicted in Figure 11 is replaced with the VSC back-
to-back interconnection topology. Figure 12 provides a
comparative analysis of the computed results for the power
flow fluctuations based on the MA-DNN regression prediction
model in both AC interconnection and VSC
interconnection scenarios.

In Figure 12, the closer the predicted value of the MA-DNN
model is to the Ground truth, the higher the regression
prediction accuracy of the MA-DNN model is. In the AC
interconnection scenario, the medians of MA-DNN predicted
results and Ground Truth are −36.46 (Range: 80.74 to −0.01)
and −37.35 (Range: −80.10 to 0.79), respectively. The values of
both are very close. This phenomenon also exists in the VSC
interconnection scenario, with medians of −93.74 (Range:
−135.90 to −65.34) and −93.70 (Range: −133.35 to −64.45),
respectively. It can be observed that even if the
interconnection topology is replaced by the VSC back-to-back
structure, the MA-DNN model can still predict power
fluctuations with high accuracy.

5 Conclusion

To efficiently and accurately assess the power flow fluctuation in
the power grid, this paper proposes a deep learning-based
correlation analysis methodology for the PPF considering
renewable energy and energy storage. From the perspectives of
single-factor and multi-factor correlation, this methodology first
gives the Spearman correlation coefficient and XGBoost, which can
be employed for feature analysis in different power grid topologies.
Based on this analysis, the MA-DNN regression prediction model is
developed to establish a mapping relationship between the
correlation coefficients and power flow fluctuations in the power
grids with AC or VSC interconnections.

1) A scheme based on grid-side power correlation coefficients to
reduce active power fluctuations caused by renewable energy
integration has been presented. The results show that in IEEE
9-bus system and IEEE 14-bus system, compared with the
source-side power correlation coefficients, considering the
grid-side power correlation coefficients can effectively
reduce the impact of renewable energy grid connection on
the active power fluctuation of the grid, which is reduced by
13.21% and 13.22% respectively.

2) The proposed nonlinear correlation coefficients can effectively
reflect the power flow fluctuations, specially for the energy
storage outputs in the grid. The effectiveness of this approach
is verified in the IEEE 9-bus system, and the simulation results
reveal that the proportion of strongly correlated features of the
power flow reaches 92%, while the proportion of weakly
correlated features is 4%. Furthermore, this approach is also
verified in the IEEE 14-bus system, which presents the

FIGURE 12
Computational accuracy of regression prediction model in different scenarios. The numerical values in the Figure: median (minimum maximum).
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proportion of 51% for the strongly correlated features, and
38% for the weakly correlated features.

3) The MA-DNN model which can efficiently and accurately
evaluate power flow fluctuations is proposed. Compared with
the LHS and UTmethods, the computational accuracy of MA-
DNN is increased by 37.35% and 16.80%, respectively. In the
ablation experiment, the MSE for the regression prediction
based on the MA-DNN model is reduced by 15.25%, when
compared to the DNN model. Regarding the computational
efficiency, compared to the LHS and UT methods, the MA-
DNN computational speed increases by 758.85 times and
438.45 times, respectively.

In terms of limitations, the generalization ability of the proposed
model under different power grid structures needs further
verification and improvement. Meanwhile, the synergistic effects
among multiple energy storage stations on the same bus are not
considered in this paper, leaving room for improvement in the
modeling of energy storage stations. In future research, we will
explore quantitative characterization methods for the collaborative
operation characteristics among energy storage stations and conduct
structural optimization based on the MA-DNN model to enhance
the predictive performance of the model across multiple scenarios.

This paper establishes an efficient and accurate mappingmethod
between the power correlation coefficients and power flow
fluctuations. Based on this, this paper contributes to rapidly
identifying the power grid access points, so that minimal power
flow fluctuations in the grid can be achieved. This work also
contributes to reducing the demand for flexible power sources
such as thermal power generation units in the grid.
Simultaneously, the rapid regression prediction model proposed
in this paper can provide data support for the formulation of power
grid planning and operation schemes.
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