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This paper presents a novel approach for detecting high-impedance faults (HIF) in
distribution systems that uses the Hilbert transform. Our approach is based on
determining the instantaneous frequency of signals and detecting deviations
from a reference frequency. Our technique is very sensitive to fault fluctuations
because it makes use of the Hilbert transform’s ability to capture dynamic signal
properties like phase and frequency alterations. This sensitivity enables the
extraction of unique features that identify fault signals, providing critical
insights into fault detection and location. Notably, our method is appropriate
for the analysis of non-stationary signals, which are typical in power systems
where signal attributes vary fast during fault conditions. Furthermore, ourmethod
resolves deviations by comparing them to a predefined range and displaying
essential features such as basic frequency, RMS (Root Mean Square), Crest Factor,
Minimum and Maximum Deviations, and Maximum Current Amplitude. These
values offer unique insights into the present signal’s qualities, which aids in defect
detection and diagnostics, particularly in HIF settings. Our proposed technique
detects high-impedance flaws by evaluating deviations from the nominal
frequency, even in environments with weaker features and variable surface
conditions. To improve our system’s robustness and usefulness, we
recommend performing additional study on adaptive thresholding algorithms
and real-time implementation choices. Future research areas could involve
investigating the integration of machine learning algorithms for automatic
fault categorization and localization, which would enhance the capabilities of
distribution system fault detection approaches.
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1 Introduction

1.1 Literature review

Ensuring the safe and reliable operation of modern power systems is of utmost
importance, and one key aspect is the protection of the power system. To achieve this,
electrical utilities have adopted various techniques to minimize line outages caused by short
circuits. The focus has been on detecting and categorizing faults to reduce disruptions in both
transmission and distribution systems ((Gogula and Edward, 2023; Ravi and Kumar, 2023)).
Among the challenges encountered in this quest for reliability is the occurrence of High-
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Impedance Faults (HIFs) in distributor feeder networks. HIFs arise
when energized conductors come into contact with high-resistance
surfaces such as tree limbs, sand, and asphalt. HIFs have uneven,
intermittent, and nonlinear arcing features, with fault currents
ranging from 0 to 75A in grounded systems (Sedighi et al., 2005;
Wang et al., 2018). If not removed promptly, HIFs can lead to severe
consequences, including the destruction of conductor insulation, the
occurrence of phase-to-phase faults, and risks to personal safety.
Despite their significance, HIFs are often underestimated,
constituting 5%–20% of total faults, although this percentage
might be higher in reality. The conventional overcurrent relays
commonly used for fault detection may fail to identify HIFs due
to their lower current magnitude. This failure can result in cascading
failures and potential fire hazards. This paper introduces a novel
method for the detection of high-impedance faults in distribution
systems, leveraging the capabilities of the Hilbert transform (Gogula
and Edward, 2023). In a healthy power system, the fundamental
frequency of the current waveform remains relatively stable. Changes
in this fundamental frequency can serve as an indicator of the
presence of faults or abnormal conditions. The Hilbert transform,
known for its effectiveness in signal processing applications,
particularly excels in capturing dynamic aspects of signals and
revealing intricate details in the frequency domain. The Hilbert
transform has proven to be a valuable tool in signal processing
applications, particularly for its ability to capture dynamic aspects of
signals and reveal intricate details in the frequency domain. In the
context of distribution systems, where fault conditions demand a
high level of precision in analysis, the Hilbert transform emerges as a
promising technique for HIF detection. The Hilbert transform can
accurately track changes in a signal’s fundamental frequency, which
makes it a good tool for finding high-impedance faults (HIFs) in
power systems. By analyzing the dynamic aspects of signals, the
Hilbert transform can effectively identify any abnormal conditions or
faults that may be present. Its ability to reveal intricate details in the
frequency domain further enhances its potential as a valuable tool for
precise analysis of fault conditions in distribution systems (Elkalashy
et al., 2008). The utilization of high impedance fault (HIF) detection
methods involving fundamental frequency, RMS (Root Mean
Square), Crest Factor, and minimum and maximum deviations,
along with maximum current amplitude, provides a
comprehensive approach to fault analysis in distribution systems.
Each of these parameters plays a crucial role in characterizing the
current signal, thereby enhancing the ability to detect and diagnose
HIFs. These parameters collectively provide a comprehensive
approach to fault analysis, enabling a more thorough
understanding of the fault behavior and aiding in its
identification. Adding maximum current amplitude also makes it
easier to find HIFs and makes sure that the fault detection system for
distribution systems is strong. The fundamental frequency serves as a
fundamental characteristic, representing the primary frequency
component of the signal (Nikander and Jarventausta, 2017).
Changes in the fundamental frequency can be indicative of faults,
providing an initial clue to potential issues within the distribution
system. This parameter is fundamental in establishing a baseline for
normal operating conditions against which deviations can be
assessed. By continuously monitoring the fundamental frequency,
any deviations from the baseline can be quickly identified and
analyzed. This allows for timely intervention and maintenance,

minimizing downtime and preventing potential system failures.
Additionally, the ability to detect changes in the fundamental
frequency enables proactive fault detection, ensuring a reliable
and efficient distribution system. RMS, or root mean square, is a
measure of the overall magnitude of the current waveform.
Monitoring RMS values allows for the detection of variations in
signal amplitude, which is critical in identifying anomalies associated
with HIFs. As high-impedance faults often result in subtle changes in
current magnitude, RMS analysis provides a sensitive metric for fault
detection (Doria-Garcia et al., 2020; Rahmann and Castillo, 2014).
Additionally, RMS analysis can help distinguish between normal load
fluctuations and abnormal conditions caused by HIFs. By comparing
the RMS values to established thresholds, any significant deviations
can be quickly identified and addressed, minimizing the risk of
potential system failures or outages. The Crest Factor, calculated as
the ratio of peak amplitude to RMS amplitude, further contributes to
fault detection by highlighting the peakiness of the waveform. An
increase in the Crest Factor may signify the presence of high-
frequency transients or distortions associated with fault
conditions. These high-frequency transients or distortions can
potentially cause damage to sensitive equipment or disrupt the
normal operation of the system. Therefore, monitoring and
analyzing the Crest Factor can help in identifying and mitigating
these issues before they lead to system failures or outages. Analyzing
minimum and maximum deviations provides a dynamic perspective
on frequency variations from the nominal frequency. These
deviations offer insights into the transient nature of the signal,
aiding in the identification of abrupt changes that may indicate
the presence of faults. By comparing deviations to a predefined range,
the method establishes thresholds for abnormal behavior, facilitating
fault detection. This method of analyzing deviations and establishing
thresholds for abnormal behavior is crucial to maintaining the
reliability and stability of systems (Doria-García et al., 2021;
Taheri et al., 2020). It allows for proactive measures to be taken,
such as initiating maintenance or repairs, thereby preventing
potential system failures or outages. Additionally, by continuously
monitoring frequency variations, this approach enables the
identification of emerging faults at an early stage, ensuring timely
interventions to mitigate any potential risks. Maximum current
amplitude, representing the highest peak value in the current
waveform, is a critical parameter for detecting faults with higher
magnitudes (Taheri and Hosseini, 2020; Vlahinič et al., 2021). As
HIFs often result in low fault current levels, analyzing the maximum
current amplitude ensures that the method remains effective in
identifying faults even when fault currents are comparatively
weak. By analyzing the maximum current amplitude, the
approach can accurately detect faults, regardless of their
magnitude (Baqui et al., 2011; Anand and Affijulla, 2020). This
allows for proactive measures to be taken to prevent any further
damage or disruptions in the system. Additionally, monitoring the
maximum current amplitude provides valuable insights into the
overall health and stability of the electrical network, allowing for
more efficient maintenance and troubleshooting processes. The
detection of high-impedance faults (HIFs) in power transmission
lines is a critical aspect of ensuring the reliability and stability of
electrical systems. While historically, research has predominantly
concentrated on HIF detection in distribution systems, recent years
have witnessed a shift towards addressing challenges specific to
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power transmission lines. This literature review provides an overview
of existing methodologies for HIF detection, highlighting their
strengths and limitations. Discrete wavelet transform (DWT) and
root mean square (RMS) values were employed to identify and
classify HIFs in distribution networks. However, the reliance on a
high sampling rate for detection and the omission of method
implementation during signal noise are notable drawbacks.
Another approach, presented in (Nezamzadeh-Ejieh and
Sadeghkhani, 2020), focuses on analyzing the time domain of
current waveforms using the Kullback-Leibler divergence
similarity measure. While effective in correctly identifying HIFs
based on a time-based criterion, this method has limitations in
terms of comprehensiveness. Time domain analysis is also
explored in (Bhandia et al., 2020) for HIF detection, while (Santos
et al., 2017) utilizes a transient switching method. Although the latter
exhibits suitable performance, it fails to identify the faulty phase.
Intelligent approaches incorporating DWT, fuzzy logic, and artificial
neural networks (ANN) are discussed in (Elkalashy et al., 2008;
Tonelli-Neto et al., 2017). Despite their accuracy, these methods
necessitate training with diverse simulations and may exhibit
sensitivity to noise. Specifically addressing HIF detection in DC
microgrids, (Wang et al., 2019) proposes a scheme based on
empirical mode decomposition (EMD), and (Faghihlou et al.,
2020) suggests a method relying on changes in active and reactive
power components. However, the lattermay yield varied responses in
different networks. (Sortomme et al., 2010) introduces a method
utilizing current measurement at both ends of the transmission line
and employing differential protection, but its dependency on
telecommunication platforms poses a significant limitation.
Various methods, such as correlation functions (Faridnia et al.,
2012) and mathematical morphology (Gautam and Brahma, 2013;
Kavi et al., 2018), are explored for fault detection. However, the
computational burden on relays and the requirement for specialized
equipment contribute to challenges in implementation. Traveling
waves are leveraged in (Livani and Evrenosoglu, 2014) for HIF
location, necessitating costly equipment for protection system
deployment. Several studies, including (Ghalesefidi and
Ghaffarzadeh, 2021; Faghihlou et al., 2020; Taheri and
Sedighizadeh, 2020), address HIF detection as part of power
swing investigations. However, these studies often lack an
implemented HIF model and are limited to detecting faults with
impedances below 150 Ω. In the context of this literature review, the
proposed work introduces a Hilbert transform-basedmethod forHIF
detection during power swing scenarios. The methodology aims to
address the shortcomings of previous studies by implementing an
accurate HIF model and extending the fault detection capability to
impedances above 150Ω. The proposed approach thus contributes to
advancing the state-of-the-art in HIF detection for enhanced power
system reliability.

1.2 Contribution

In addition to proposing a novel method for detecting high-
impedance faults (HIFs) in distribution systems, this work attempts
to assess the suggested approach’s robustness, particularly in noisy
situations. While the primary focus is on using the Hilbert transform
and key parameters to improve fault identification, it is critical to

assess the method’s efficacy under realistic settings in which noise
may interfere with signal analysis.

1. Analyzing Robustness in Noisy Settings: Given the importance
of noise in real-world distribution systems, we do a thorough
robustness analysis to assess the effectiveness of the technique
in different noise scenarios. We evaluate the method’s capacity
to discriminate fault signals from background noise by
injecting synthetic noise into simulated waveforms reflective
of distribution system circumstances. We measure the
method’s robustness against noise-induced uncertainty using
statistical metrics including signal-to-noise ratio (SNR) and
false positive rates.

2. Adaptive Thresholding Methods: We evaluate adaptive
thresholding methods designed for dynamic signal
settings in order to reduce the effect of noise on fault
detection accuracy. Our approach shows enhanced
sensitivity to fault signs and robustness against noise
artefacts by dynamically varying detection thresholds
based on signal properties and noise levels. We look into
methods like adaptive filtering and wavelet-based
thresholding to suppress noise interference adaptively
without sacrificing fault detection capabilities.

3. Validation via Experimental Research: We verify the
robustness of our approach not only via (Figures 1, 2)
simulation-based assessments but also by conducting
experimental research on actual distribution systems. We
collect empirical evidence of our fault detection algorithm’s
performance under various noise situations by deploying
sensor nodes that are outfitted with it in various operational
environments. We can evaluate the method’s performance in
identifying HIFs in the presence of background noise and brief
disturbances that arise in real-world deployment settings
thanks to real-time data collecting and processing.

4. Comparison with Existing Methods: We test our approach’s
performance against existing fault detection methods in noisy
environments to establish a baseline for assessing its resilience.
We demonstrate the benefits of our strategy in terms of
robustness, sensitivity, and false alarm suppression through
comparative experiments using synthetic and real-world
datasets. We provide an understanding of the real-world
applications of noise robustness in distribution system fault
detection by methodically evaluating the advantages and
disadvantages of each strategy.

Our work goes beyond ensuring the development of a unique
fault detection technique by adding a robustness analysis in noisy
environments, guaranteeing its practical viability and reliability in
real-world deployment scenarios. We show that our approach is
effective in improving fault detection skills while reducing the
negative effects of noise interference through thorough validation
and comparative research.

2 Proposed method

The required relationships involve the calculation of the
Hilbert transform, which is used to obtain the analytic
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representation of the voltage and current signals. By applying the
Fourier transform to these analytical signals, the frequency
components can be studied, and any changes that point to
high-impedance faults can be found. The modified algorithm

incorporates these relationships to enhance fault detection
capabilities and improve overall system reliability. It talks about
ways to find high-impedance faults, such as high-impedance fault
detection, which involves looking at the maximum current

FIGURE 1
The algorithm proposed for detecting HIF and determining the faulty phase.
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amplitude RMS and crest factor of the current signal, comparing
these values with the fundamental frequency, and using the time
vector for instantaneous frequency to make fault detection
more accurate.

2.1 Sampling frequency (fs)

The sampling frequency (fs) is a crucial parameter in digital
signal processing, and it represents the number of samples taken per

FIGURE 2
The single-line diagram of the network.
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unit of time. The formula to calculate the sampling frequency is
given by:

fs � 1
Δt (1)

Where fs is the sampling frequency, Δt is the time difference
between consecutive samples.

From the Nyquist-Shannon sampling theorem states that to
accurately reconstruct a continuous signal from its samples,
the sampling rate (fs) must be at least twice the highest
frequency (fmax) present in the signal. This theorem is
crucial in digital signal processing as it ensures that no
information is lost during the sampling process. By adhering
to the Nyquist-Shannon sampling theorem, we can avoid
aliasing and accurately reproduce the original continuous
signal from its discrete samples. Mathematically, the
theorem can be expressed as:

fs ≥ 2 · fmax (2)

Where fs is the sampling frequency (samples per second or
Hertz), fmax is the highest frequency component in the original
continuous signal.

The sampling frequency (fs) is a critical parameter in digital
signal processing that characterizes the rate at which a
continuous signal is discretely sampled. This fundamental
quantity is determined by the reciprocal of the time difference
(Δt) between consecutive samples, as expressed by Eq. 1. In
practical terms, a higher sampling frequency corresponds to
more samples being taken per unit of time, ensuring a more
accurate representation of the original continuous signal. This
process of discrete sampling is essential for converting analog
signals into a digital format, facilitating their analysis and
processing by digital systems. The choice of an appropriate
sampling frequency is vital to avoid issues like aliasing, and
adhering to the Nyquist-Shannon sampling theorem ensures
that the sampling frequency is at least twice the highest
frequency component present in Eq. 2.

2.2 Nominal frequency

The “nominal frequency” is a predetermined or expected
frequency of a signal. It is often denoted as fnominal. The formula
for the nominal frequency is given by:

fnominal = Specified or Expected Frequency
This formula simply indicates that the nominal frequency is a

fixed value representing the expected frequency of a signal. It serves
as a reference or target frequency for comparison with the actual
frequency of the signal.

In the context of the code you provided, where the nominal
frequency is used for fault detection, the comparison is often done
using the following equation for detecting frequency deviations:

Frequency Deviation � instantaneous frequency – nominal frequency
∣∣∣∣ ∣∣∣∣

(3)

Where instantaneous Frequency is the calculated frequency of
the signal at a specific time, fnominal is the nominal frequency.

Eq. 3 express as quantifies the difference between the
instantaneous frequency and the nominal frequency, and
deviations exceeding a specified range may indicate a fault or
anomaly in the system.

The frequency deviation range is a parameter in a code that
defines the allowable range within which a signal’s actual frequency
can deviate from its nominal frequency without triggering a fault or
alarm. It is often denoted as Δf or frequency deviation range. The
code sets this range to 2 Hz. The frequency deviations are calculated
by taking the absolute differences between the instantaneous and
nominal frequencies at each time point. This method checks if the
absolute value of the frequency deviation at any time point exceeds
half of the range, indicating a potential fault.

Threshold low � nominal frequency –frequency deviation range

2
(4)

Threshold low � nominal frequency + frequency deviation range

2
(5)

These equations (4–14) calculate the lower and upper thresholds
for the allowable frequency deviation range. By highlighting these
thresholds on plots, you can visually assess whether the deviations
fall within acceptable limits.

The frequency deviation range is set to 2 Hz. This means that
any deviation from the nominal frequency by more than 2 Hz is
considered a fault or anomaly.

Frequency deviation> Frequnecy deviation range

2
(6)

The nominal frequency provides the expected frequency, the
frequency deviation range sets the tolerance for acceptable
deviations, and the frequency deviations are used to identify
potential faults by comparing them with the specified range. This
approach is commonly used in fault detection systems to assess the
health and stability of signals. This combination of parameters and
calculations is commonly used in fault detection systems. The
frequency deviation range sets the acceptable limits for deviations,
the frequency deviations quantify the actual deviations, and the fault
detection threshold determines when deviations are considered
significant enough to indicate a fault or anomaly in the signal.

2.3 Instantaneous frequency

The instantaneous frequency of a signal is a measure of how the
frequency of the signal changes at a specific instant in time. It is a
crucial concept in signal processing, and it is often calculated using
the phase information of the signal.

2.3.1 Analytic signal
The analytic signal A (t) of a real-valued signal y (t) is obtained

by applying the Hilbert transform. The analytic signal is a complex-
valued signal that includes both the original signal and a “shifted”
version of it in the imaginary part.

A t( ) � y t( ) + j ·H y t( )[ ] (7)
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Where j is the imaginary unit and H [y (t)] is the Hilbert
transform of y (t).

The Hilbert transform is a mathematical operation used to
obtain the analytic signal from a real-valued signal. The analytic
signal is a complex-valued signal that contains information about
both the amplitude and phase of the original signal. The Hilbert
transform is particularly useful in signal processing,
communications, and various other applications.

Given a real-valued signal y (t), the Hilbert transform is denoted
as H[y (t)].

The Hilbert transform is typically implemented in the
frequency domain by multiplying the Fourier transform of
the signal by a specific kernel. The operation is defined
as follows:

H y t( )[ ] � 1
π
∫∞

−∞
y τ( )
t − τ

dτ (8)

2.3.2 Phase of the analytic signal
The instantaneous frequency is related to the phase of the

analytic signal. The phase ϕ (t) is obtained from the complex
analytic signal.

ϕ t( ) � arctan
Im A t( )[ ]
Re A t( )[ ]( ) (9)

Where Im [A(t)] part of the imaginary and is the real part of the
analytic signal.

2.3.3 Instantaneous frequency
The instantaneous frequency f (t) is then calculated as the rate of

change of the phase with respect to time.

f t( ) � 1
2π

dϕ t( )
dt

(10)

Here, dϕ(t)
dt represents the derivative of the phase with

respect to time.
The entire process involves transforming the original signal

into an analytic signal, extracting the phase information, and
then deriving the instantaneous frequency from the phase. This
allows us to understand how the frequency of the signal changes
at each point in time, providing valuable insights into time-
varying behavior. These formulas are fundamental in signal
processing and are commonly used to analyze signals in
various applications.

2.3.4 Maximum current amplitude
The Maximum Current Amplitude (Imax) is a crucial parameter

in power system analysis, protection, and equipment design,
representing the highest instantaneous value of the current
waveform during a specific time period. Mathematically, it is
calculated as the maximum absolute value of the current (I(t)) at
any given time:

Imax � max I t( )| |( ) (11)
Here, I(t) denotes the instantaneous current, and max ((|I(t)|)

identifies the peak absolute value of the current.

The maximum current amplitude (Imax) is a crucial
parameter in power system analysis, protection, and
equipment design. It represents the highest instantaneous
value of the current waveform during a specific time period.
Factors contributing to maximum current amplitude include tree
limbs near power lines, which can lead to faults, corona
discharge, and soil resistance. The moisture content in sand
significantly impacts soil resistivity and impedance, affecting
grounding electrode performance. Sand is also used as
bedding material for underground cables, influencing their
thermal characteristics, impedance, and heat dissipation.
These factors can lead to power losses and radio frequency
interference.

2.3.5 Root mean square (RMS) current
The RMS current (Irms) is a measure of the effective or heating

value of a current waveform. It quantifies the equivalent direct
current that would produce the same heating effect as the alternating
current. The formula for calculating the RMS current is:

Irms �
������������
1
T
∫T

0
I t( )[ ]2dt

√
(12)

Where I (t) represent the instantaneous current at any given
time, T is the period of the waveform.

The RMS current is calculated by taking the square root of the
average of the squared instantaneous values over one complete
period of the waveform. Understanding the RMS value is
important because it provides a single value that characterizes the
magnitude of the current waveform, making it easier to compare and
analyze. It is commonly used in various applications, including
determining equipment ratings, evaluating the thermal impact on
components, and setting protection relay thresholds.

2.3.6 Crest factor
The Crest Factor (CF) is a measure of the shape of a waveform,

indicating how “peaky” or “flat” the waveform is. It is the ratio of the
peak value of the waveform to its RMS value. The formula for
calculating the Crest Factor is:

CF � Peak value
RMS value

(13)

Alternatively, the Crest Factor can be calculated using the peak-
to-peak value (Ipp) and the RMS value:

CF � IPP
2 · Irms

(14)

Where Peak Value is the maximum absolute value of the
waveform, RMS Value is the Root Mean Square value of the
waveform, Ipp is the peak-to-peak value of the waveform.

A higher Crest Factor indicates a peakier waveform, while a
lower Crest Factor suggests a flatter waveform. Crest Factor is
important in power system analysis, especially in applications
where the peak amplitude of the waveform is critical, such as in
sizing components to withstand transient conditions. It is also used
in audio and signal processing to characterize the dynamic range of
a signal.
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2.3.7 Minimum andmaximum frequency deviations
Frequency deviations refer to the difference between the actual

instantaneous frequency of a signal and its nominal or expected

frequency. These deviations can be calculated at each time point, and
the minimum and maximum deviations are important indicators in
assessing the stability and health of a system.

FIGURE 3
HIF faults detection by frequency at resistance 50 Ω.
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Frequency Deviation at Time t: The frequency deviation at
any given time t is calculated as the absolute difference between
the instantaneous frequency (f (t)) and the nominal
frequency (fnominal):

Frequency deviation at time t � f t( ) − fnominal

∣∣∣∣ ∣∣∣∣ (15)

Minimum Frequency Deviation (fmin): The minimum
frequency deviation is calculated as the smallest absolute
frequency difference observed over a specific time period:

fmin � min f t( ) − fnominal

∣∣∣∣ ∣∣∣∣( ) (16)

Where f (t) is the instantaneous frequency at any given time, and
fnominal is the nominal frequency.

Maximum Frequency Deviation (fmax): The maximum
frequency deviation is calculated as the largest absolute frequency
difference observed over a specific time period:

fmax � max f t( ) − fnominal

∣∣∣∣ ∣∣∣∣( ) (17)

Where f (t) is the instantaneous frequency at any given time, and
fnominal is the nominal frequency.

These Eqs 15–17 represent the minimum and maximum
deviations from the nominal frequency at different time
points, providing a quantitative measure of the frequency
variations in the system. In the context of the provided code,
these calculations help identify the range of frequency deviations
and assess the severity of deviations from the expected or
nominal frequency.

2.3.8 Fundamental frequency
The Fundamental Frequency (f0) is the lowest frequency

component of a periodic waveform. It is the frequency at which
the waveform oscillates with the greatest amplitude and repeats
most frequently. In the context of a current signal, the
fundamental frequency often corresponds to the power
system frequency. Eq. 18 for calculating the Fundamental
Frequency depends on the signal processing technique used.
From Figure 3 the sinusoidal waveform, the fundamental
frequency is simply the frequency of the sinusoid. In the
context of analyzing a complex waveform, the Fundamental
Frequency can be determined from the spectrum analysis,
such as by identifying the peak frequency in the
frequency domain.

For a sinusoidal waveform with frequency f0, the formula is
expressed as:

f0 � 1
T

(18)

Where f0 the Fundamental Frequency, T is the period of
the waveform. In power systems, the Fundamental Frequency
is often set by the design of the power grid. In power system
many regions, the power system operates at a frequency of
50 or 60 Hz. Deviations from this frequency can indicate issues
in the power system. With these Fundamental Frequency is
essential for various applications, including power quality

analysis, harmonic analysis, and fault detection in
electrical systems.

2.4 Hybrid IEEE 13 bus distribution
system operation

The proposed system combines solar, wind, battery, and fuel
cell power technologies to create a hybrid renewable energy
storage solution. This system ensures continuous energy
generation, while battery and fuel cell technologies offer
efficient storage and backup options. This approach maximizes
renewable resource utilization and reduces reliance on traditional
fossil fuels, contributing to a greener and more resilient energy
infrastructure. The system is connected to the IEEE 13 bus
distribution system for seamless integration with existing
power infrastructure. This connection allows the system to
feed any extra energy it produces back into the grid,
promoting renewable energy use and potentially reducing
consumer electricity costs. Additionally, being connected to
the grid provides a reliable backup option in case of
fluctuations or shortages in renewable energy generation.
Advanced Hilbert transform fault detection algorithms and
technologies can be implemented to quickly identify and
isolate faults, minimizing downtime and ensuring
uninterrupted power supply to consumers.

3 Results and discussion

The Hilbert transform is a mathematical tool that can be
used to analyze high-impedance faults in hybrid renewable
energy storage systems. It can be used in MATLAB
simulations to accurately detect and diagnose these faults,
ensuring smooth system operation and preventing potential
damage. The Hilbert transform can help detect frequency
analysis and abnormalities in the system’s frequency
response, providing valuable insights into the magnitude and
phase of the system’s frequency components. This Table 1
analysis can help determine the root cause of high impedance
faults, enabling timely corrective actions, minimizing
downtime, and maximizing system performance. The
MATLAB simulation can be used for frequency analysis and
identifying abnormalities in the system’s frequency response,
enabling engineers to identify fault characteristics and take
corrective action, ensuring minimal downtime and optimal
system performance.

3.1 HIF fault detection in IEEE 13 bus
distribution system

3.1.1 L-G fault detected by Hilbert transform
Power systems are susceptible to disturbances and

anomalies, such as voltage fluctuations, frequency variations,
and sudden load changes, which can lead to equipment damage,
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power outages, and system-wide failures if not managed
properly. High-impedance faults (HIFs) are particularly
challenging due to their limited fault current, which can be
close to the minimum current the power system can handle. This
can reduce power system stability and reliability. HIFs can also
cause voltage dips and flickers, disrupting the normal operation
of electrical equipment. Regular protection schemes may not
accurately detect HIFs, leading to delayed isolation. Specialized
protection devices and algorithms are needed to accurately
detect and mitigate HIFs, ensuring system stability and
reliability. Continuous monitoring and analysis of power
system parameters are essential for identifying potential HIF
events and implementing preventive measures. The Hilbert
transform is a commonly used fault detection technique in
power systems, allowing operators to quickly locate and
address faulty sections, preventing widespread disruptions,
and ensuring the smooth functioning of the electrical grid.
This Hilbert transform can detect the exact frequency and
magnitude of power system signals, allowing operators to
identify abnormalities and potential faults. By accurately
analyzing the frequency and magnitude of current, the
Hilbert transform helps in maintaining the stability and
reliability of the power system by enabling timely
interventions and preventive measures. To test how well the
suggested method works with different types of HIFs, a single-
phase HIF is first selected for evaluation. The fault is applied to
phase A, with different resistance ranges from R = 25 Ω to R =
1,200 Ω. The selected single-phase HIF is connected to a power
source, and the fault parameters are adjusted accordingly. The
evaluation process includes monitoring the voltage and current
responses of phase A to analyze the effectiveness of the suggested
method. The evaluation process also involves measuring the
fault current magnitude and duration to further assess the
performance of the selected single-phase HIF. Additionally, as
shown in Figure 4, the THD value of 11.06% indicates a
moderate level of distortion, which suggests that further
improvements may be needed to optimize the suggested
method’s effectiveness. The current amplitude and frequency
of the fault are recorded and compared to the normal operating

conditions as shown in Figure 5. Analysis of the current
waveforms identifies any anomalies or deviations brought on
by the fault. In this high-impedance fault detection process, set

TABLE 1 Comparative analysis of Electrical-based HIF detection techniques.

References Classification method Type of fault considered % accuracy

LG LL LLG LLG LLLG HIF Fault resistance
Rf (Ω)

Alsafasfeh et al. (2012) Principal component analysis √ √ √ √ X X 5–100 94.54

Mishra and Yadav (2019) DFT + fuzzy (series compensated line √ √ √ √ √ X 0.001–100 99.678

Samet et al. (2017) Improved alienation coefficients
method

√ √ √ √ √ X 0–70 92.88

Tonelli-Neto et al. (2017) WT + fuzzy-ARTMAP X X X X X √ X 97.69

Gadanayak et al. (2024) Detrended fluctuation analysis (DFA) √ X √ X X √ X 98.99

Kavi et al. (2018) Morphological fault detector
algorithm

X X X X X √ X 100

Proposed method (Hilbert Transform) √ √ √ √ √ √ (0–100) 100

FIGURE 4
MATLAB/SIMULINK model of high impedance fault.
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the constant frequency deviation at 50 Hz. When the fault
occurs, the frequency will increase above the constant
frequency deviation. This method allows for the detection of
high impedance faults by monitoring changes in frequency
deviation above the set constant frequency deviation. By
analyzing the fundamental frequency range, RMS range, crest
factor, and maximum current amplitude range, potential faults
can be identified and addressed promptly. As shown in Figure 6,
in normal conditions, the fundamental frequency range is
261.69 Hz, the RMS (root mean square) range is 14.8764 A,
the crest factor is 1.4147, the minimum and maximum
deviations are 0.00 Hz and 1.06 Hz, and the maximum
current amplitude range is 21.0462 A. Also, as shown in
Figure 7, the high impedance fault is in phase A at resistance
25 Ω. This condition will also be measured in terms of
fundamental frequency, RMS (root mean square), crest factor,
minimum and maximum deviations, and maximum current
amplitude. The high-impedance faults are at resistance 25 Ω.
The fundamental frequency range is 261.66 Hz, the RMS (root
mean square) range is 21.4294 A, the crest factor is 1.9844, the
minimum and maximum deviations are 0.02 and 214.41 Hz, and
the maximum current amplitude range is 42.5254 A.

3.1.2 L-L fault detected by Hilbert transform
High impedance faults occur when foreign objects, such as

tree limbs, sand, or soil, come into contact with power lines,
disrupting the flow of electricity. Weather conditions, such as
strong winds or heavy rain, can also increase the likelihood of
such faults. In such situations, a line-to-line high impedance

fault can occur, causing changes in current amplitude and
frequency. The Hilbert transformer can be used to analyze
high-impedance faults, identifying high-frequency
components in the power system. By applying the Hilbert
transform to current waveforms, engineers can detect and
locate faults, allowing for timely repairs and maintenance to
prevent further disruptions in electricity flow. Accurate
frequency deviation detection, as shown in Figure 7, is crucial
in identifying faults and abnormalities in the power system,
enabling prompt corrective action. The Hilbert transform can
also help analyze power quality issues and improve overall
system performance by providing valuable insights into
voltage and current waveforms. It can detect and calculate the
fundamental frequency range, RMS (root mean square), crest
factor, minimum and maximum deviations, and maximum
current amplitude range, helping engineers identify fault
characteristics and determine corrective measures. By
accurately measuring these parameters, the Hilbert transform
assists in identifying the root causes of power quality issues and
enables engineers to implement targeted solutions. Additionally,
the analysis that the Hilbert transform provides can help predict
potential system failures and reduce expensive downtime by
enabling proactive maintenance and repairs. The Hilbert
transform can detect a line-to-line high-impedance fault at
25 Ω resistance and can be used to calculate the fundamental
frequency range of 261.64 Hz. The RMS (root mean square) is
24.5017. The crest factor is 2.2624, and the minimum and
maximum deviations are 0.02 Hz and 271.69 Hz. The
maximum current amplitude range is 55.4328 A.

FIGURE 5
THD value of HIF fault current Phase A.
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The Hilbert transform is a mathematical tool used to analyze
the instantaneous amplitude and phase of a signal. By applying
the Hilbert transform to the current waveforms, it is possible to

identify high-impedance faults with varying resistance values, as
shown in Table 2. This is particularly useful in power systems,
where high-impedance faults can be challenging to detect using

FIGURE 6
HIF faults detection by frequency at normal condition.
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FIGURE 7
HIF faults detection by frequency at resistance 25Ω.
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traditional methods. The Hilbert transform allows for a more
accurate and efficient fault identification process, improving the
overall reliability and stability of the system.

4 Conclusion

In this study, we introduced a novel approach for high-
impedance fault detection in distribution systems, leveraging
the Dynamic Hilbert Transform method. Through a
comprehensive analysis of signal characteristics, our proposed
method demonstrates promising results in accurately identifying
high-impedance faults, thereby addressing a critical challenge in
power distribution systems. Our research highlighted the
limitations of existing detection methods, underscoring the need

for advanced signal analysis techniques. The Dynamic Hilbert
Transform method proved to be an effective tool in extracting
relevant information from complex signals, enabling robust fault
detection even in scenarios with varying system dynamics. The
experimental results presented in this paper showcased the
superior performance of our proposed method compared to
traditional techniques. The ability to detect high-impedance
faults promptly is crucial for preventing potential equipment
damage, minimizing downtime, and enhancing overall system
reliability. Furthermore, the adaptability of the Dynamic Hilbert
Transform to dynamic system conditions positions it as a versatile
solution for fault detection in real-world distribution networks.
The incorporation of this method into existing protective relaying
systems holds the potential to significantly improve fault detection
capabilities and contribute to the overall resilience of power

TABLE 2 HIF detection with different resistance values.

S.NO HIF
resistance(ohm)

Minimum
frequency
Deviation

Maximum
frequency
Deviation

Maximum
current

amplitude

RMS of
current

Crest
factor

Fundamental
frequency

1 25 0.02 214.41 42.5254 21.4294 1.9844 261.66

2 40 0.03 192.37 39.651 20.5554 1.929 261.66

3 65 0.06 171.76 37.1505 19.796 1.8767 261.67

4 80 0.01 117.62 32.5676 17.9189 1.8175 261.67

5 95 0.03 115.6 32.3178 17.8214 1.8134 261.67

6 110 0.02 90.5 29.1775 16.7204 1.745 261.68

7 150 0.01 79.96 27.9011 16.3255 1.7091 261.68

8 200 0.02 79.09 27.7906 16.2959 1.7054 261.68

9 350 0.01 76.2 27.4296 16.1984 1.6933 261.68

10 425 0.02 74.73 27.273 16.1691 1.6867 261.68

11 500 0.01 72.57 26.9881 16.0794 1.6784 261.68

12 650 0.01 69.26 26.7126 16.0095 1.6686 261.68

13 720 0.01 69.37 26.5941 15.9815 1.6641 261.68

14 830 0.01 68.41 26.477 15.9521 1.6598 261.68

15 950 0.01 67.77 26.3977 15.9343 1.6567 261.68

16 1,030 0.01 60.85 25.5366 15.7428 1.6221 261.68

17 1,100 0.01 44.69 23.673 15.3984 1.5374 261.68

18 1,500 0.01 44.53 23.6551 15.3956 1.5365 261.68

19 2000 0 44.38 23.6374 15.3928 1.5356 261.68

20 2,500 0.01 44.54 23.6195 15.3903 1.5347 261.68

21 3,000 0.01 44.39 23.602 15.3876 1.5338 261.68

22 3,500 0.01 44.23 23.5847 15.3849 1.533 261.68

23 4,000 0.01 44.07 23.5675 15.3822 1.5321 261.68

24 4,500 0.01 43.93 23.5504 15.3795 1.5313 261.68

25 5,000 0 43.78 23.5333 15.3769 1.5304 261.68

Frontiers in Energy Research frontiersin.org14

Gogula and Edward 10.3389/fenrg.2024.1365538

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1365538


distribution infrastructures. As we look ahead, ongoing research in
this field should explore the integration of our proposed method
into practical applications and address potential challenges in real-
world deployment. This research contributes to the ongoing efforts
to enhance the reliability and efficiency of power distribution
networks, ultimately fostering a more resilient and sustainable
energy future.
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