Skip to main content

ORIGINAL RESEARCH article

Front. Energy Res.
Sec. Sustainable Energy Systems
Volume 12 - 2024 | doi: 10.3389/fenrg.2024.1365538
This article is part of the Research Topic Distributed Learning, Optimization, and Control Methods for Future Power Grids, Volume II View all 9 articles

Advanced Signal Analysis for High-Impedance Fault Detection in Distribution Systems: A Dynamic Hilbert Transform Method

Provisionally accepted
  • VIT University, Vellore, Tamil Nadu, India

The final, formatted version of the article will be published soon.

    This paper presents a novel approach for detecting high-impedance faults (HIF) in distribution systems that uses the Hilbert transform. Our approach is based on determining the instantaneous frequency of signals and detecting deviations from a reference frequency. Our technique is very sensitive to fault fluctuations because it makes use of the Hilbert transform's ability to capture dynamic signal properties like phase and frequency alterations. This sensitivity enables the extraction of unique features that identify fault signals, providing critical insights into fault detection and location. Notably, our method is appropriate for the analysis of non-stationary signals, which are typical in power systems where signal attributes vary fast during fault conditions. Furthermore, our method resolves deviations by comparing them to a predefined range and displaying essential features such as basic frequency, RMS (Root Mean Square), Crest Factor, Minimum and Maximum Deviations, and Maximum Current Amplitude. These values offer unique insights into the present signal's qualities, which aids in defect detection and diagnostics, particularly in HIF settings. Our proposed technique detects high-impedance flaws by evaluating deviations from the nominal frequency, even in environments with weaker features and variable surface conditions. To improve our system's robustness and usefulness, we recommend performing additional study on adaptive thresholding algorithms and real-time implementation choices. Future research areas could involve investigating the integration of machine learning algorithms for automatic fault categorization and localization, which would enhance the capabilities of distribution system fault detection approaches..

    Keywords: High-impedance fault (HIF)1, Hilbert Transform2, Signal Analysis3, RMS (Root Mean Square)4, Crest Factor5, Frequency Deviation Analysis6

    Received: 17 Apr 2024; Accepted: 01 Jul 2024.

    Copyright: © 2024 Gogula and Jeyaraj. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Belwin Edward Jeyaraj, VIT University, Vellore, 632 014, Tamil Nadu, India

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.