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In the operation of medium-voltage distribution cables, the local insulation
performance may degrade due to inherent defects, environmental influences,
and external forces, leading to consecutive self-recovering latent faults in the
cables. If not addressed promptly, these faults may escalate into permanent
failures. To address this issue, this paper analyzes the development mechanism
and characteristics of latent cable faults. A 10kV low-resistance cable latent fault
model based on the Kizilcay arc model is built in the PSCAD/EMTDC platform.
Furthermore, the paper analyzes and extracts the time-domain, frequency-
domain, and time-frequency domain features of fault current samples.
Effective fault feature vectors are constructed using multivariate analysis of
variance (MANOVA) and Principal Component Analysis (PCA). Based on the
fault feature vectors and Extreme Learning Machine (ELM), an intelligent fault
identification model for cable latent faults is developed. The initial parameters of
the ELM model are optimized using the Particle Swarm Optimization (PSO)
algorithm. Finally, the superiority of the proposed model is validated in terms
of classification accuracy, training time, and robustness compared to other
machine learning algorithms.
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1 Introduction

Power cables are commonly buried underground, and with the passage of time, factors
such as electrical, thermal, and mechanical stress gradually reduce their insulation strength,
eventually leading to permanent faults that jeopardize the safe and reliable power supply of
urban distribution networks. Operational experience with medium-voltage cables indicates
that, prior to the occurrence of permanent faults, transient and self-recovering arc
grounding faults may occur at the same location. Due to their short duration (1/4 to
four cycles) and small fault currents, traditional overcurrent protection devices with inverse
time characteristics fail to activate. In this paper, such faults are referred to as latent cable
faults. Timely detection of latent faults in medium-voltage distribution cables and
conducting targeted maintenance can effectively prevent their development into
permanent faults, thus ensuring the safe and reliable operation of the power system.

The current research approaches for identifying latent cable faults both domestically
and internationally primarily involve extracting fault features, constructing threshold
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criteria for identification, and utilizing data-driven algorithms for
recognition. Ref (Sidhu and Xu) proposed two detection algorithms,
namely, cable latent fault detection and classification rules based on
wavelet analysis, as well as the integration of fault currents and
negative sequence currents in the time domain, with the latter being
more suitable for single-phase cable latent faults. Ref (Zhou et al.)
and (Zhang et al., 2017a) analyzed the characteristics of cable
overcurrent caused by various disturbance sources, including
short circuit faults, capacitor switching and transformer reclosing,
load switching, and motor starting. They utilized feature quantities
obtained through wavelet transform decom-position to develop
overcurrent detection criteria. Furthermore, based on this
foundation, feature extraction and grey relational analysis were
employed to calculate the correlation between measured samples
and reference samples for identifying latent cable faults. Ref
(Fothergill et al., 2011) applied wavelet singularity detection and
Bayesian change point analysis to detect the current signals of cable
latent faults, extract frequency do-main feature vectors, and achieve
classification and recognition of cable latent faults using
probabilistic neural networks and support vector machines,
respectively. In ref (Mousavi and Butler-Purry), the empirical
mode decomposition (EMD) method was utilized to extract
transient features, and the ant colony algorithm and fuzzy neural
network were applied for fault classification in distribution network
cables. Ref (Faisal et al., 2012) introduced a latent fault identification
method that relies on time-domain characteristics. This method
involved obtaining the time-frequency characteristics of fault
currents and voltages through S-transform analysis and
subsequently detecting latent faults. Ref (Mousavi and Butler-
Purry, 2009) proposed a latent fault detection and classification
method based on a rule-oriented support vector ma-chine.
Addressing the challenge of distinguishing load transients from
latent faults, Ref (Mousavi et al., 2003) presented a methodology
that employed wavelet packet analysis for extracting waveform
features. This approach integrated three signal processing
techniques, namely, principal component analysis, linear
discriminant analysis, and feature subset classification, in
conjunction with the k-nearest neighbor algorithm for fault type
identification. Ref (Sidhu and Xu, 2010) introduced two detection
algorithms rooted in wavelet analysis and time-domain fault current
characteristics. These algorithms established latent fault detection
rules and thresholds, enabling the identification and classification of
latent faults. Notably, only a limited number of studies have
ventured into modeling latent faults. Ref (Mousavi and Butler-
Purry, 2010) harnessed self-organizing mapping (SOM)
technology for numerical modeling of latent faults. During the
modeling process, specific energy features in the wavelet domain
were obtained and employed. Ref (Zhang et al., 2017b) adopted the
Kizilcay arc model to simulate cable latent faults but did not account
for the influence of latent faults on the model.

However, whether it is machine learning algorithms or the more
widely used deep learning approaches in recent years, they are
fundamentally data-driven algorithms. Data-driven algorithms,
especially deep learning algorithms, have higher requirements for
the scale and quality of samples. They excessively rely on samples,
and when the sample size is insufficient or the quality is poor, they
often struggle to achieve desirable results.

In summary, this paper establishes a cable latent fault model
based on the Kizilcay arc model in the PSCAD/EMTDC platform,
which effectively characterizes the features of cable latent faults. By
conducting batch simulations to obtain fault phase current samples,
various analyses including time-frequency, frequency-domain, and
time-frequency domain are performed to extract multi-dimensional
and multi-domain fault features, constructing initial feature vectors.
Multivariate analysis of variance is utilized to select features,
retaining effective features and constructing feature vectors.
Principal Component Analysis is employed to process the feature
vectors, significantly reducing the dimensionality while retaining the
maximum amount of effective information from the original
features. An intelligent diagnosis model based on Extreme
Learning Machine (ELM) is established, and the Particle Swarm
Optimization (PSO) algorithm is introduced to optimize its
generalization capability. Case study results demonstrate that the
cable latent fault identification model based on Extreme Learning
Machine outperforms other machine learning algorithms in terms of
fault recognition performance.

2 Modeling of latent faults in cables
based on arc models

2.1 Modeling of latent faults based on the
Kizilcay arc model

Latent faults in cables are often characterized by low energy and
short duration intermittent arc faults. Therefore, this paper employs
the Kizilcay arc model (Kizilcay and Pniok, 2007), (Idarraga et al.) to
represent latent faults in cables. The Kizilcay arc model, based on the
energy balance theory and control theory, provides a concise and
accurate representation of arc fault characteristics, and it has been
widely applied in recent research (Wang et al., 2021). This model
con-siders the arc ignition process and assumes a constant length for
the main arc while the length of the secondary arc linearly
increases over time.

The mathematical expression of the Kizilcay arc model is
as follows:

dg t( )
dt

� 1
τ

G − g t( )( ) (1)

where τ is the time constant, G is the arc static equivalent
conductance, which can be understood as the arc conductance
value when the current remains stable for a long time under
external conditions. It is a function of the arc forward current if
and the static arc voltage ust(t), as shown in Eq. 2. g is the arc
instantaneous conductance and is related to the arc instantaneous
resistance according to the quantity relationship de-scribed in Eq. 3.

G t( ) � if t( )
ust t( ) (2)

Rarc t( ) � 1
g t( ) (3)

The static arc voltage ust(t) satisfies:

ust t( ) � u0 + r0 if t( )∣∣∣∣ ∣∣∣∣ (4)
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where u0 is the characteristic voltage of the arc, and r0 is the
characteristic resistance of the arc.

Substituting Eqs 2–4 into Eq. 1, the complete formulation of the
Kizilcay dynamic arc model can be obtained.

dg t( )
dt

� 1
τ

if t( )∣∣∣∣ ∣∣∣∣
u0 + r0 if t( )∣∣∣∣ ∣∣∣∣ − g t( )( ) (5)

As mentioned earlier, cable latent faults are often developed
from water trees and electrical trees. Using only the arc model is
insufficient to accurately characterize the characteristics of
latent faults. Therefore, the unburned portions of the water
tree and electrical tree channels are equivalently represented as
constant resistances, which are connected in series with the arc
model to provide a better description of latent faults. The
equivalent model of cable latent faults is illustrated in the
following figure.

As shown in Figure 1, the latent fault of medium-voltage
distribution cables is considered as a series connection of the arc
resistance Rarc and the equivalent resistance R0 of the defect channel.

Therefore, the model of cable latent faults can be expressed
as follows:

uf t( ) � if t( ) R0 + Rarc t( )( ) (6)

Where uf is the voltage of the latent fault in the cable, and if is the
current of the latent fault.

2.2 Modeling of latent cable faults based
on PSCAD

This paper establishes a typical low-resistance grounded
medium-voltage cable distribution system, as shown in Figure 2,
using the Bergeron cable model in the PSCAD platform. The power
supply voltage is 110 kV, which is stepped down to 10 kV through a
distribution transformer, and connected to three cable feeders. The
specific cable parameters are provided in Table 1.

3 Multi-dimensional feature analysis of
faults in medium-voltage cables

3.1 Time-domain feature extraction

Time-domain feature statistics include dimensional and
dimensionless features, which describe fault characteristics from
different perspectives and enable fault classification. In this study, a
total of nine time-domain feature statistics were extracted, including
five dimensional features and four dimensionless features, as listed
in Table 2.

The aforementioned nine statistical features form the time-
domain feature vector:

Ct � Ct1, Ct2, Ct3, Ct4, Ct5, Ct6, Ct7, Ct8, Ct9[ ] (7)

3.2 Frequency -domain feature extraction

The fault phase current signal is subjected to spectral analysis to
obtain the frequency components of the signal, thereby extracting
the frequency-domain features. In this paper, a total of four
frequency-domain features are extracted, including centroid
frequency, average frequency, root mean square frequency, and
frequency standard deviation. The specific meanings of each
feature are listed in Table 3.

The aforementioned nine statistical features form the time-
domain feature vector:

CF � CF1, CF2, CF3, CF4[ ] (8)

3.3 Time-frequency domain feature
extraction based on stationary
wavelet transform

The stationary wavelet transform, employing the “zero-
padding” method during signal decomposition and

FIGURE 1
Schematic diagram of equivalent model of cable latent fault.

FIGURE 2
Schematic diagram of 10 kV cable distribution system.
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reconstruction, exhibits translation invariance, ensuring that the
decomposed approximation and detail coefficients at each level
have the same length as the original signal. (Wang et al., 2021).
This preserves the transient features of the original signal to the
maximum extent. Based on this, in this paper, time-frequency
domain feature extraction of cable latent faults and other

transient disturbances is achieved by calculating the energy
and performing statistical analysis on the wavelet coefficients
obtained through the stationary wavelet transform (Li, 2021; Wu
and Wang, 2022).

The formulas for obtaining the low-frequency approximation
coefficients aj,n and high-frequency detail coefficients dj,n at
each level through the stationary wavelet transform are as follows:

dj,n � ∑
i

g i − 2n( )aj−1,i
aj,n � ∑

i

h i − 2n( )aj−1,i
⎧⎪⎪⎨⎪⎪⎩ (9)

TABLE 1 Cable parameters.

Conductor
radius R0/m

Insulation
radius R1/m

Armour
radius R2/m

Shell
radius
R3/m

Conductor
resistivity ρ/Ω

Relative
permeability μ

Relative
permittivity ε

0.020 0.040 0.044 0.048 1.724e-8 1.2 2.7

TABLE 2 Time-domain feature.

Characteristics Meaning Calculation

Ct1 Peak-to-peak value Ct1 � max(xi) − min(xi)

Ct2 Rectified Average
Ct2 � 1

N∑N
i�1
|xi |

Ct3 Variance
Ct3 � 1

N∑N
i�1
(xi − x

−)2

Ct4 Standard deviation
Ct4 �


1
N∑N
i�1
(xi − x

−)2
√

Ct5 Root mean square (RMS) value

Ct5 �

1
N∑N

i�1
x2i

√√
Ct6 Skewness

Ct6 �
∑N
i�1

[(xi−x−)3]
(N−1)(T4)3

Ct7 Kurtosis

Ct7 �
∑N
i�1

[(xi−x−)4]
(N−1)(T4)4

Ct8 Peak factor Ct8 � max |xi |
Ct5

Ct9 Form factor Ct9 � Ct5/Ct2

TABLE 3 Frequency-domain feature.

Characteristics Meaning Calculation

CF1 Centroid frequency

CF1 �
∑K
k�1

s(k)f(k)∑K
k�1

s(k)

CF2 Average frequency
CF2 � 1

n∑K
k�1

f(k)

CF3 Root mean square
frequency

CF3 �

∑K
k�1

f2(k)s(k)∑K
k�1

s(k)

√√√
CF4 Frequency standard

deviation
CF4 �

∑K
k�1

(f(k)−Fc )2s(k)∑K
k�1

s(k)

√√√

TABLE 4 Frequency -domain feature.

Characteristics Meaning Calculation

Cw1 Energy
Cw1 � ∑N

i�1
s2ij

Cw2 Energy entropy
Cw2 � −∑N

i�1

s2ij
Ej
log2(

s2ij
Ej
)

Cw3 Information entropy
Cw3 � −∑N

i�1
s2ij log2 s

2
ij
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In the equations, i is the sample point index within the window, j
denotes the level of wavelet coefficients, and n represents the
discretization level of the wavelet function.

For the jth level wavelet coefficients sj = [s1j, s2j, . . . sNj] obtained
from the stationary wavelet transform, three feature statistics are
constructed: energy, energy entropy, and information entropy. The
specific meanings of each feature are listed in Table 4.

The above three features constitute the time-frequency domain
feature vector.

Cw � Cw1, Cw2, Cw3[ ] (10)

Taking the A-phase current of each fault type as an example, the
9-dimensional time-domain feature vector Cti is calculated as
described earlier. The 4-dimensional frequency-domain feature
vector CFi is obtained by performing spectral analysis on Cti. The
A-phase current is then subjected to 3-level stationary wavelet
transform using the dB4 mother wavelet. Each level’s subbands
are divided into five equal intervals of 0.02s, corresponding to the
power frequency period. Within each interval, three feature values
are computed, resulting in a total of 60-dimensional time-frequency
feature vector Cwi By combining the feature vectors from the three
domains, a 73-dimensional feature vector [Cti, CFi, Cwi] is

constructed for each fault sample. This process is repeated for
each fault type, resulting in a fault feature matrix of size (number
of fault samples) × 73 for each class of faults.

4 Validation and optimization of
fault features

4.1 Feature statistical analysis based on
multivariate analysis of variance

Multivariate analysis of variance (MANOVA) is a statistical
theory and method for studying the relationships between multiple
independent variables and multiple de-pendent variables. It is
applicable when the independent variables simultaneously in-
fluence two or more dependent variables. MANOVA is used to
analyze whether there are significant differences in the means of
these dependent variables when the independent variables are at
different levels (Wu and Wang, 2022). Furthermore, to specifically
analyze the significance levels of each dependent variable, univariate
analysis of variance (ANOVA) needs to be conducted for each
dependent variable. In univariate ANOVA, the significance of the
differences between independent variables and a specific dependent

TABLE 5 Parameter table of 21-dimensional effective features.

Characteristics F-statistics p

Ct1 200.79 4.44343e-5

Ct2 175.18 1.27355e-4

Ct3 57.07 5.61522e-3

Ct4 174.92 1.45584e-6

Ct5 176.45 6.59797e-7

Ct6 155.3 1.48556e-3

Ct7 215.43 1.80453e-4

Ct8 219.14 2.86655e-4

Ct9 224.37 2.15367e-5

CF1 218.15 4.69379e--5

CF2 190.39 4.37507e-4

CF3 220.43 1.51552e-5

CF4 219.49 2.41903e-5

Cw1(12) 157.73 4.47376e-3

Cw3(12) 182.54 2.12152e-4

Cw1(13) 108.76 4.91673e-4

Cw1(15) 83.25 1.55562e-4

Cw1(22) 158.76 2.69755e-3

Cw2(31) 76.82 3.95527e-4

Cw3(32) 191.97 1.99504e-5

Cw1(34) 51.18 2.75793e-3

Cw1(12) represents the energy feature of the second time segment in the first-level subband, and similarly, Cw2(31) represents the energy entropy feature of the first time segment in the third-level

subband.
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variable is evaluated using the output parameters p and the test
statistic F. Typically, if the F value is large and p < the significance
level (usually set at 0.05), the significance level of that dependent
variable is considered significant (Liu et al., 2022).

The 73-dimensional features were subjected to individual one-
way analysis of variance (ANOVA), resulting in the identification of
21 significant features. The corresponding p-values and F-values for
each feature are presented in Table 5.

4.2 Feature vector dimensionality reduction
optimization based on principal
component analysis

Principal Component Analysis (PCA) aims to minimize
information loss by per-forming an orthogonal transformation
on a set of potentially correlated variables, resulting in a new set
of linearly independent variables called principal components. The
fundamental idea behind PCA is to represent the amount of
information contained in each principal component using their
respective variances. A higher variance indicates a greater amount of
information contained in the corresponding principal component.
The basic steps of PCA involve standardizing the original data,
computing the correlation matrix, calculating the eigenvalues and
eigenvectors, and determining the variance contribution. Finally, the
selection of principal components is made based on these
considerations (Huckemann et al., 2010).

The variance of the principal components is an important
criterion for selecting the principal components (Huang et al.,
2021). The variance contribution rate and cumulative variance
contribution rate of the ith principal component are defined by
Eqs 11, 12 respectively. The variance contribution rate represents the
extent to which the principal component reflects the original sample
information, with a higher contribution rate indicating a greater
reflection of sample information.

λi/∑M
k�1

λk (11)

∑i
k�1

λk/∑M
k�1

λk (12)

The 21-dimensional features selected through multivariate
analysis of variance were subjected to principal component
analysis (PCA) for dimensionality reduction. By considering
eigenvalues greater than one and achieving a cumulative

TABLE 6 Weight results of each component.

Name Variance contribution rate Cumulative variance contribution rate Weight (%)

Principal component 1 0.496 0.496 49.59

Principal component 2 0.269 0.764 26.85

Principal component 3 0.108 0.873 10.84

Principal component 4 0.07 0.943 7

Principal component 5 0.015 0.958 1.51

FIGURE 3
The number of eigenvalues and cumulative variance contribution
rate of PCA.

FIGURE 4
Network structure of ELM.
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contribution rate of 95%, PCA reduced the feature vectors to five
dimensions. The original 21-dimensional feature vectors were
replaced by the feature vectors composed of the first five
principal components, significantly reducing the dimensionality
while retaining the effective information from the original
features to the maximum extent. The weights of each principal
component and the cumulative variance contribution rate are shown
in Table 6 and Figure 3, respectively.

5 A cable latent fault identification
model based on extreme
learning machine

5.1 Extreme learning machine algorithm

Extreme Learning Machine (ELM) is a machine learning
algorithm used for training Single Hidden Layer Feedforward
Neural Networks (SLFNs) (Qian et al., 2023). Its basic principles
are as follows:

Given input samples {(xi,ti),i = 1,2, . . . ,N}, where N represents
the number of samples, xi = { xi1, xi2, . . . , xim}

T and ti = { ti1, ti2, . . . ,
tim}

T denote the input vector and corresponding sample label of the
ith sample, respectively (Liu et al., 2023). For a single hidden layer
feedforward neural network with L hidden nodes, its network
structure is shown in the Figure 4.

5.2 Particle Swarm Optimization-based
model for identification of latent cable faults

Particle Swarm Optimization (PSO) algorithm is a population-
based intelligent evolutionary computation method that simulates
the foraging behavior of birds (Wang P. et al., 2023). It utilizes the
collaborative behavior of a bird swarm to achieve optimal
population search. In this study, the PSO algorithm is employed
to optimize the random initial parameters of the ELMmodel (Wang
D. et al., 2023; Gao, 2023).

The basic steps of the PSO algorithm are as follows:

1. Initialization of particle population: A set of particles is
randomly generated, and the initial velocities v0 and
positions x0 of each particle are randomized

2. Computation of fitness values for each particle: The fitness
value of each particle is calculated. Additionally, the individual
best (Pbest) and global best (Gbest) values are computed and
recorded along with the corresponding particle positions.

3. Iterative updates: The velocities and positions of each particle
are updated ac-cording to Eqs 13, 14. After each update,
the fitness value is recalculated, and the updated particle
fitness value is compared with the fitness value at
the historical best position to determine the optimal
fitness value.

Vid
k+1 � wVid

k + C1rand1 Pid
k −Xid

k( ) + C2rand2 Pgd
k −Xid

k( )
(13)

Xid
k+1 � Xid

k + Vid
k+1 (14)

Thus, this paper presents a data-driven latent fault identification
model based on ELM (Extreme Learning Machine). The overall
training process of the model is illustrated in Figure 5.

6 Case study

6.1 Classification results of cable latent faults
based on optimized ELM algorithm

The five types of faults described earlier correspond to their
respective fault labels, which need to be converted into vector labels
when training the ELM model, as shown in Table 7.

After applying principal component analysis (PCA) to the
extracted multi-dimensional fault features, the dimension was
reduced to 5. Consequently, the ELM model was configured with
five input layer nodes and five output layer nodes. The hidden layer
activation function was set to the Sigmoid function, and the number
of hidden layer nodes was determined as 11. For the output vector,
the softmax function was used as the activation function to
normalize it, ensuring that each output element in the vector is
between 0 and 1. The values represent the probability of the input
data be-longing to each fault type. In the PSO optimization
algorithm, the learning factors c1 and c2 were both set to 1.5,
and the number of iterations was set to 1,000. The optimization
results are shown in Figure 6. Themodel training reached its optimal
state when the number of iterations reached 815. Initially, due to the
random initialization of weights and thresholds in the ELM model,
the error was large. However, as the training progressed, the fitness
function rapidly decreased.

Figure 7 presents the confusion matrix of the ELM model for
fault classification on the training and testing sets, with classification
accuracies of 91.02% and 88.87%, respectively. These results
demonstrate that the proposed data-driven ELM-based cable
latent fault identification model exhibits good classification
performance. Although the overall classification accuracy is
satisfactory, it can be observed from the classification results that
the data-driven model for medium-voltage cable latent fault
identification tends to misclassify serious faults such as constant
impedance grounding faults as cable latent faults or transient
disturbances. This limitation implies that the safety of the
model’s output results cannot be fully guaranteed, which is an
inherent drawback of data-driven algorithms.

6.2 Comparison of machine learning
algorithm performance

To validate the effectiveness of the proposed cable incipient fault
identification method based on the ELM model, it was compared
with the SVM classification model optimized by ten-fold cross-
validation and the KNN model.

Similarly, for each type of fault mentioned earlier, 1,200 sets of
samples were randomly selected, with 80% of samples used for
training and the remaining 20% used for testing. The fault
classification based on SVM was implemented using the libSVM
software package, while the KNN algorithm was implemented using
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the MATLAB KNN function. The classification accuracies of the
three models are shown in Table 8.

From the accuracy values in Table 8, it can be observed that all
three classification models achieve classification accuracies above
85% on the test set, validating the effectiveness of the extracted and
optimized feature vectors proposed in this study. Furthermore, the
ELM model demonstrates higher overall classification accuracy on

FIGURE 5
Construction process of fault identification model based on data-driven.

TABLE 7 Fault type and its corresponding vector label.

Types of faults Vector label

Semi-periodic latent cable faults (1,0,0,0,0)

Multi-periodic latent cable faults (0,1,0,0,0)

Constant impedance grounding faults (0,0,1,0,0)

Capacitor switching disturbances (0,0,0,1,0)

Load transient disturbances (0,0,0,0,1)

FIGURE 6
Fitness curve of ELM model.

Frontiers in Energy Research frontiersin.org08

Wang et al. 10.3389/fenrg.2024.1364528

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1364528


the test set compared to the SVM and KNN-based classification
models. Additionally, due to the absence of hidden layer parameter
updates, the ELM model exhibits significantly lower training time
compared to the SVM and KNN models.

6.3 Noise resistance analysis

To simulate real-world field data, Gaussian white noise with
signal-to-noise ratios (SNRs) of 40dB, 30dB, and 20dB was added to

the raw data of each fault type to evaluate the model’s noise
resistance. Figure 8 shows the current signal of the half-wave
cable incipient fault with 30dB Gaussian white noise added.

Table 9 presents the accuracy of the three classification models
after adding Gaussian white noise with three different signal-to-
noise ratios. As observed from the table, the accuracy of all three
classification models decreases with decreasing signal-to-noise ratio.
This can be attributed to two main factors. Firstly, a lower signal-to-
noise ratio indicates a higher level of noise contamination, resulting
in more severe distortion of the original signal waveform and

FIGURE 7
Confusion matrix of classification results on training set and test set.

TABLE 8 Comparison of fault classification models based on ELM, SVM and KNN.

Model name Training set accuracy (%) Testing set accuracy (%)

ELM model 91.02 88.87

SVM model 83.33 86.67

KNN model 80.62 87.5

FIGURE 8
Cable latent fault current waveform after adding white noise.
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subsequently masking the under-lying features. Secondly, the
transient processes of the five fault types already exhibit relatively
small differences, and the introduction of noise further reduces the
distinguishability among them, leading to a decrease in the
discriminative power of the extracted features.

As shown in Table 9, among the three classification models,
KNN exhibits the largest decrease in accuracy, with its accuracy
dropping below 75% at a signal-to-noise ratio of 20dB. SVM shows a
relatively slower decline in classification accuracy, with its accuracy
only falling below 80% under the influence of 20dB signal-to-noise
ratio. Although ELM also experiences a decrease in accuracy, its
classification performance re-mains superior to the other two neural
network models under the same level of noise interference,
consistently maintaining an accuracy above 80%.

Considering this evaluation metric, the PSO-optimized ELM
model demonstrates good identification performance for cable
latent faults even in the presence of signal noise interference.

7 Conclusion

This paper utilizes arc simulation to investigate latent faults in
medium-voltage distribution cables. Based on the Kizilcay arc model
and utilizing fault samples obtained through batch simulations in
PSCAD, the study conducts time-frequency, frequency-domain, and
time-frequency domain analyses to extract multi-dimensional and
multi-domain fault features. Subsequently, multivariate analysis of
variance and Principal Component Analysis are employed to optimize
the features. Finally, an intelligent diagnosis model for latent faults in
medium-voltage distribution cable networks is established based on
Extreme Learning Machine (ELM). The following conclusions are
drawn from the analysis and simulation experiments.

(1) The series connection of constant resistors using the Kizilcay arc
model effectively simulates the characteristics of latent faults in
medium-voltage distribution networks, providing favorable
sample conditions for model training.

(2) The optimization and selection of initial feature vectors using
multivariate analysis of variance and Principal Component
Analysis improve the correlation between features, eliminate
redundant information, and reduce the workload of model
training and learning.

(3) Particle Swarm Optimization is utilized to optimize the
random initial parameters of the ELM model, reducing the
number of iterations required for model solution and
improving the fitting capability of the model.

(4) Experimental results demonstrate that the Extreme Learning
Machine model established in this paper outperforms SVM and
KNNmodels in terms of classification accuracy. Additionally, to
simulate actual field data, Gaussian white noise with signal-to-
noise ratios of 40dB, 30dB, and 20dB is added to original fault
samples to compare the robustness of the three models. The
results show that the classification accuracy of the ELMmodel is
consistently higher than that of the SVM and KNN models,
confirming the robustness of the fault identification model
based on Extreme Learning Machine established in this paper.

Next steps will involve researching fault location on the basis of
latent fault identification in cables, aiming to reduce fault repair time
and enhance the safety and stability of distribution
network operation.
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