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Deep learning anomaly detection
in AI-powered intelligent power
distribution systems

Jing Duan*

State Grid Information and Telecommunication Co., of SEPC, TaiYuan, China

Introduction: Intelligent power distribution systems are vital in the modern
power industry, tasked with managing power distribution efficiently. These
systems, however, encounter challenges in anomaly detection, hampered by
the complexity of data and limitations in model generalization.

Methods: This study developed a Transformer-GAN model that combines
Transformer architectures with GAN technology, efficiently processing complex
data and enhancing anomaly detection. This model’s self-attention and
generative capabilities allow for superior adaptability and robustness against
dynamic data patterns and unknown anomalies.

Results: The Transformer-GANmodel demonstrated remarkable efficacy across
multiple datasets, significantly outperforming traditional anomaly detection
methods. Key highlights include achieving up to 95.18% accuracy and notably
high recall and F1 scores across diverse power distribution scenarios. Its
exceptional performance is further underscored by achieving the highest AUC
of 96.64%, evidencing its superior ability to discern between normal and
anomalous patterns, thereby reinforcing the model’s advantage in enhancing
the security and stability of smart power systems.

Discussion: The success of the Transformer-GAN model not only boosts
the stability and security of smart power distribution systems but also finds
potential applications in industrial automation and the Internet of Things. This
research signifies a pivotal step in integrating artificial intelligence into the power
sector, promising to advance the reliability and intelligent evolution of future
power systems.

KEYWORDS

intelligent power distribution system, deep learning, abnormal detection, time series
data, transformer-GAN

1 Introduction

In today’s energy field, smart power distribution systems, as a key component of
power grid modernization, shoulder the important task of achieving efficient and reliable
power supply Zhang et al. (2022a). With growing energy demands and rapid technological
advances, the complexity of these systems is increasing. In this context, anomaly detection
has become one of the core issues to ensure the stable operation of the system. Anomaly
detection refers to identifying deviations from normal operating patterns in power systems
Karkhaneh and Ozgoli (2022). These anomalies may be caused by equipment failure,
operational errors, or external factors such as natural disasters Calvo-Bascones et al. (2023).
Although anomaly detection is critical to prevent power outages and maintain system
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FIGURE 1
The network architecture of Transformer-GAN. Dashed connections represent the transfer of information flow or data flow.

integrity, implementing it in smart power distribution systems
presents many challenges. These challenges include the high
dimensionality of the data, complex system dynamics, and the
diversity of abnormal patterns.

Deep learning, as a powerful machine learning tool, has
been widely used in anomaly detection research in smart power
distribution systems Xiong et al. (2022). Deep learning algorithms
are able to process large amounts of data and extract complex
features from it, whichmakes themparticularly suitable for handling
the high dimensionality and complexity of power system data
de Oliveira and Bollen (2023). In addition, time series prediction
technology is particularly important in the field of anomaly
detection in smart power distribution systems.This is because power
system data are essentially time series data, with characteristics and
anomaly patterns evolving over time Cascone et al. (2023). Time
series forecasting allows researchers to not only identify current
anomalies, but also predict possible anomalies in the future, thereby
taking steps in advance to prevent potential failures or disruptions
Xia et al. (2022). This plays a vital role in ensuring system reliability
and efficiency. By analyzing and predicting time series data through
deep learning models, researchers can more accurately identify and
respond to abnormal states in the power system, thus promoting
the development of smart power distribution systems to a higher
level Ahmad et al. (2022); Zhao et al. (2022). In this article, we
will explore in detail anomaly detection methods in smart power
distribution systems, especially the application of deep learning and
time series forecasting, and discuss how these techniques can help
solve current challenges.

In recent years, many researchers havemade significant progress
in the field of anomaly detection in smart power distribution
systems. For example, researchers have proposed a model based

FIGURE 2
The network architecture of Transformer.

on convolutional neural networks (CNN), which can effectively
process and analyze time series data of power systems. This
method utilizes the powerful feature extraction capabilities of CNN
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FIGURE 3
The network architecture of GAN.

FIGURE 4
The model training process.

to identify abnormal patterns and demonstrates high detection
accuracy Han et al. (2022). However, the disadvantage of this
model is that it is highly dependent on the amount of data and
requires a large amount of labeled data for training, which may
be difficult to achieve in practical applications. In addition, a well-
known team proposed a model based on long short-term memory
network (LSTM) specifically for prediction and anomaly detection
of dynamic changes in power systems Lee et al. (2022). The LSTM
model is widely adopted due to its advantages in processing time
series data. This work has achieved some success in predicting

future power loads, but its main limitation lies in the model’s
performance in handling nonlinear complex data that needs to
be improved. In addition, scholars in related fields have adopted
anomaly detection methods based on autoencoders. Autoencoders
are able to effectively identify anomalies by learning the normal
patterns of data by reconstructing the input data Radaideh et al.
(2022). This research performed well on some benchmark dataset,
but its limitation lies in its limited ability to detect novel or unseen
anomaly patterns and may not effectively address all potential
anomalies in the power system. Finally, some scholars have proposed
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FIGURE 5
The data detection process of the model.

an ensemble learning method that combines multiple different
machine learning models to improve the accuracy and robustness
of anomaly detection Roy and Debbarma (2022). Their method
improves the overall performance by fusing the advantages of
different models. However, the main disadvantage of this method
is that it has high computational complexity and requires a large
amount of computing resources, which may limit its application in
resource-limited environments. Although the above research has
made certain progress in the field of anomaly detection in smart
power distribution systems, each method has its limitations. These
studies provide us with valuable experience and enlightenment,
and point out the direction of future research, which is the need to
develop detection models that are more efficient, more accurate,
and have better adaptability to different types of anomalies
Chen et al. (2022).

Based on the shortcomings of the above work, we proposed
the Transformer-GAN network, which combines the powerful
characteristics of the Transformer architecture and the generative
adversarial network (GAN) to solve the challenges in the field
of anomaly detection in smart power distribution systems. The
Transformer module plays a key role in encoding and feature
extraction to better capture long-term dependencies in time
series data through a self-attention mechanism Zhang G. et al.
(2022). At the same time, the introduction of the generative
adversarial network module helps improve anomaly detection
performance. The generator learns the distribution of data and
generates normal patterns, and the discriminator improves the
accuracy and generalization ability of anomaly detection Ge et al.
(2022); Tian et al. (2022). Our model can not only identify current
abnormal conditions, but also predict possible future abnormalities,
providing support for timely intervention measures to ensure the
stability and reliability of the power system. By fully leveraging
the advantages of Transformer and GAN, we provide powerful
tools for the modernization of power systems to meet the growing
energy demand and promote the further development of smart
power distribution systems. Figure 1 shows the network architecture
of Transformer-GAN. The left part is the training stage of the
model. First, the sliding window mechanism is used to divide

the input multi-dimensional time series into multiple sequence
subsets. Then, train the built Transformer-GAN model. After the
model training is completed, it enters the anomaly detection stage
on the right, where the generator obtains the reconstruction loss
based on the difference between the reconstructed sample and
the actual sample. At the same time, the trained discriminator
calculates the discriminant loss based on the generated sample data.
Finally, both losses are combined to detect potential anomalies in
the data.

Transformer-GAN is a comprehensive and efficient solution,
especially suitable for anomaly detection in power distribution
systems. Our model not only solves several key limitations of
existing technology, but also provides new directions and ideas for
future research. Through this model, we expect to make greater
contributions to the stability and security of the power system.
Below, we highlight three key contributions of this paper:

• We successfully combined Transformer with Generative
Adversarial Network (GAN) and innovatively proposed
the Transformer-GAN model. The Transformer module
utilizes the self-attention mechanism to better capture long-
term dependencies in time series data, and the Generative
Adversarial Network module improves anomaly detection
performance.Through this combination, we effectively improve
the model’s recognition accuracy of abnormal states of the
power system, especially the performance when processing
large-scale and complex data.
• We introduced an adaptive learning mechanism into the
model, which significantly improved the model’s adaptability
to new abnormal patterns. This mechanism enables the
model to self-adjust according to real-time changes in power
system operating data, thereby more effectively identifying and
predicting unknown or rare abnormal patterns. This is crucial
to cope with dynamic changes and emerging new faults in
the power system, improving the overall stability and safety of
the system.
• Our proposed Transformer-GAN network provides a powerful
tool for themodernization of power systems. As energy demand
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FIGURE 6
Comparison of model performance across various datasets.

continues to grow, smart power distribution systems are facing
more complex and efficientmanagement challenges. Ourmodel
is not only able to effectively process complex time series data,
but also accurately identifies abnormal patterns, improving
the stability and reliability of the system. By predicting
possible anomalies in advance, our model supports timely
intervention in system operation, thereby reducing potential
failures and disruptions.These characteristics will help promote
the further development of smart power distribution systems
and provide more reliable and efficient solutions for future
energy management.

2 Related work

2.1 Research on smart grid based on deep
learning time series

Deep learning-basedmethods for time series analysis havemade
significant research advancements in the context of smart grids. For
instance, the utilization of Long Short-Term Memory networks
(LSTMs) for electricity load forecasting has yielded highly accurate
load predictions, facilitating real-time grid management Lin et al.
(2022). However, this approach has limitations, primarily in its
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reliance on large-scale annotated data, which can be challenging
to obtain. Additionally, the model’s generalization performance
is influenced by data quality and timeliness. Furthermore,
deep learning time series models find application in detecting
faults in electrical equipment, such as Convolutional Neural
Networks (CNNs) employed to identify abnormal states in power
transformers, enhancing equipment reliabilityThomas et al. (2023).
Nonetheless, these models necessitate substantial sensor data from
the equipment and the maintenance of data quality and sensor
accuracy, potentially increasing maintenance costs. Deep learning
time series methods can also be employed for anomaly detection in
power grids, for example, using autoencoders to identify abnormal
operations within the power system, contributing to grid security
Li and Jung (2023). However, autoencoders require a significant
amount of normal operation data for training and may not be
sensitive enough to detect novel or rare anomaly patterns.

2.2 Research on anomaly detection in
smart grid based on GAN network

GAN can be used to identify fraud in the power system. For
example, by using GAN on power transaction data for anomaly
detection, it can help prevent market fraud Hilal et al. (2022).
However, the GAN method is very sensitive to the quality and
distribution assumptions of the data. If the data quality is not
high or the distribution is complex, it may lead to a decrease
in model performance. In addition, GAN can also be applied to
the detection of malicious attacks in power systems. For example,
GAN can be used to detect network intrusions on data from
power communication networks, which improves the security of the
power grid Dairi et al. (2023). However, the GAN model has poor
interpretability and is difficult to explain why a certain anomaly
or attack was detected, which may limit its application in actual
operation and maintenance.

3 Method

Our research is based on deep learning and generative
adversarial network (GAN) technology and aims to solve the
anomaly detection problem in smart power distribution systems.
Our proposed model is called Transformer-GAN network, which
integrates the functions of Transformer and GAN to improve the
accuracy, generalization ability and efficiency of anomaly detection.
Taken together, the combination of Transformer andGAN enhances
the accuracy, generalization ability and robustness of the anomaly
detection model, and has a positive impact on the security and
stability of smart power distribution systems.

The Transformer part is mainly responsible for processing
time series data of the power system. The reason we chose
Transformer is that it can more accurately identify time series
anomaly patterns in power systems, especially while maintaining
efficient performance when processing large-scale and complex
data. The GAN part is used to enhance the model’s ability to
detect new or unseen abnormal patterns. By training the generator
network to imitate the normal operating mode of the power system,
and training the discriminator network to distinguish between real
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FIGURE 7
Comparison of model performance across various datasets.

and generated data, our model can learn deeper data distribution
characteristics. This helps improve the model’s adaptability and
robustness to unknown anomalies, especially when data samples
are scarce or imbalanced. Figure 1 illustrates the overall flow of
our network.

The construction process of our model includes the following
key steps: Data preprocessing: First, the time series data of the power
system are preprocessed, including data cleaning, normalization
and feature extraction. This helps reduce data noise and extract
important feature information. Transformer part: We designed a
Transformer network, which includes a multi-layer self-attention
mechanism (Self-Attention) and a feedforward neural network.This
part is used to capture long-term and short-term dependencies in
time series data and improve the accuracy of anomaly detection.
GAN part: We built a generative adversarial network, including a
generator and a discriminator. The generator network is trained
to generate synthetic data that is similar to the power system’s
normal operating data, while the discriminator network is trained
to distinguish between real and synthetic data. The goal of this
part is to enhance the anomaly detection performance of the
model. Adaptive learning mechanism: Our model incorporates an
adaptive learning mechanism to dynamically adjust its parameters
based on the characteristics of the input data. This mechanism
allows the model to adapt to changing patterns in the data and
improve its anomaly detection performance over time.This adaptive
learning mechanism enables our model to achieve state-of-the-art

performance in anomaly detection tasks. We compute the anomaly
score in our Transformer-GAN model using a combination of
the discriminator’s output and the reconstruction error from the
generator. The anomaly score is calculated as the weighted sum
of these two components, where the weights are learned during
training. Specifically, the anomaly score S for a given input sample x
is computed as follows (Equation 1):

S (x) = α ⋅D (x) + (1− α) ⋅E (x) (1)

Where: D(x) is the output of the discriminator, representing
the likelihood that x is a normal sample. E(x) is the reconstruction
error from the generator, indicating howwell x can be reconstructed
from the generator’s output. α is a hyperparameter that controls the
balance between the discriminator’s output and the reconstruction
error. This parameter is tuned during model training to optimize
anomaly detection performance.

Our Transformer-GAN model has important implications
for deep learning anomaly detection in smart power distribution
systems: Improved accuracy: By fusing the capabilities of
Transformer andGAN, ourmodel is able tomore accurately identify
abnormal states in the power system, thereby Improved detection
accuracy. Enhanced robustness: The introduction of the GAN part
makes the model more robust to changes in data distribution,
helping to cope with dynamic changes and emerging new faults
in the power system, and improving system security. Improved
generalization ability: Our model has good generalization ability
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FIGURE 8
Ablation experiments on the transformer module using different datasets.

and can adapt to many different types of abnormal situations,
making it more reliable in actual operations. Through this model,
we expect to make greater contributions to the stability and security
of the power system, help power systemmanagers identify and solve
abnormal problems in a timely manner, and ensure the reliability of
power supply.

3.1 Transformer model

The Transformer model is a deep learning architecture. Its
unique feature is that it completely abandons the traditional
recurrent neural network (RNN) and long short-term memory
network (LSTM) and other recursive structures, and uses the
self-attention mechanism (Self-Attention) to Process sequence
data Castangia et al. (2022). In the Transformer-GAN model, the
Transformer part is responsible for processing the time series data
of the power system. The Transformer model performs well in

processing high-dimensional, complex time series data. Its self-
attention mechanism can capture complex relationships in the data,
helping the model more accurately identify abnormal patterns in
the power system.

The network architecture of Transformer is illustrated in
Figure 2. Below, we present the primary formulas (Equations 1−6)
for Transformer:

The Scaled Dot-Product Attention mechanism is defined as:

Attention (Q,K,V) = softmax(QKT

√dk
)V (2)

Where: Q: Query matrix representing a set of query vectors. K: Key
matrix representing a set of key vectors.V: Valuematrix representing
a set of value vectors. dk: Dimension of keys.

The Multi-Head Self-Attention mechanism is defined as:

MultiHead (Q,K,V) = Concat(head1,head2,…,headh)WO (3)
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5 Where: headi = Attention(QW

Q
i ,KW

K
i ,VW

V
i ), represents the i-th

attention head. WQ
i : Weight matrix for the i-th query head. WK

i :
Weight matrix for the i-th key head.WV

i : Weight matrix for the i-th
value head.WO: Weight matrix for the output layer.

Positional Encoding is defined as:

PE (pos,2i) = sin(
pos

100002i/dmodel
) (4)

PE (pos,2i+ 1) = cos(
pos

100002i/dmodel
) (5)

Where: pos: Position in the positional encoding. i: Index of
dimension. dmodel: Model’s dimension.

The Encoder Layer is defined as:

EncoderLayer (x) =MultiHead (LayerNorm (x) +PE,LayerNorm (x)
+PE,LayerNorm (x) +PE) (6)

Where: x: Input sequence. PE: Positional encoding.
The Decoder Layer is defined as:

DecoderLayer (x,enc_output) =MultiHead (LayerNorm (x)
+PE,LayerNorm (x)
+PE,LayerNorm (x) +PE)

(7)

Where: x: Input sequence. PE: Positional encoding. enc_output:
Output from the encoder.

3.2 GAN model

Generative Adversarial Network (GAN) is a deep learning
model. Its core principle is to generate and disguise data by pitting
two neural networks against each other, a generator network and
a discriminator network Li et al. (2022). The generator’s task is to
generate data that is as realistic as possible, while the discriminator’s
task is to differentiate between real data and generator-generated
data. The two networks continuously improve their performance
through adversarial training, and the final generator can generate
fake data that is indistinguishable from real data. For our model,
the contribution of GAN is mainly reflected in the field of anomaly
detection. By introducing GAN into anomaly detection in smart
power distribution systems, we can utilize the generator to simulate
normal operating modes, while the discriminator is used to detect
abnormal behaviors in the system.The advantage of this approach is
that the generator can learn and generate characteristics of normal
operation of the power system,making itmore sensitive to abnormal
data. Compared with traditional rule-based or statistical methods,
GAN can better adapt to the complexity and diversity of data,
improving the accuracy and robustness of anomaly detection.

Figure 3 illustrates the network architecture of GAN, and
below, we provide a concise overview of its algorithmic principles
(Equations 8−12):

The Generator Loss (JG) is defined as:

JG (θG) =
1
m

m

∑
i=1

log(1−D(G(z(i)))) (8)
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Where: θG: Parameters of the generator network. m: Number
of training samples. z(i): Random noise input to the
generator. D(⋅): Discriminator’s output (probability that the
input is real).

The Discriminator Loss (JD) is defined as:

JD (θD) = −
1
m

m

∑
i=1
[log(D(x(i))) + log(1−D(G(z(i))))] (9)

Where: θD: Parameters of the discriminator network.m: Number of
training samples. x(i): Real data samples. z(i): Random noise input to
the generator.D(⋅): Discriminator’s output (probability that the input
is real).

The Generator Update Rule is given by:

θG← θG + α∇θGJG (θG) (10)

Where: θG: Parameters of the generator network. α: Learning
rate. ∇θGJG(θG): Gradient of the generator loss with respect to its
parameters.

The Discriminator Update Rule is given by:

θD← θD + α∇θDJD (θD) (11)

Where: θD: Parameters of the discriminator network. α: Learning
rate. ∇θDJD(θD): Gradient of the discriminator loss with respect to
its parameters.

The GAN Objective Function (V(D,G)) is defined as:

V (D,G) =min
G

max
D

JD (θD,θG) (12)

Where: V(D,G): Value function representing the GAN objective.
θD: Parameters of the discriminator network. θG: Parameters of
the generator network. JD(θD,θG): Discriminator loss function with
respect to both networks’ parameters.

4 Experiment

4.1 Datasets

To comprehensively validate our model, this experiment
utilizes four distinct datasets: Smart Grid, AMI, Smart Meter, and
Pecan Street. These datasets, sourced from credible and globally
recognized institutions, serve as a robust foundation for the
experimental analysis.

Smart Grid Dataset Zidi et al. (2023): This dataset is widely
used in the research and development of smart grid (Smart
Grid) technology and contains a variety of information related
to power system operation, monitoring and management. This
data set typically includes power load data, meter readings, power
quality parameters, solar and wind generation data, power price
data, and power failure and outage event information. It is used
to analyze and optimize the efficiency, reliability, sustainability
and security of power systems to support the development and
improvement of smart grids. This data can be used to develop
forecasting models, load management systems, electricity market
analysis and other applications to better meet energy demand and
reduce leakage in the power system. We utilize 2,500 samples
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FIGURE 9
Ablation experiments on the GAN module using different datasets.

for training and testing, covering a wide range of power system
operating data.

AMI (Advanced Metering Infrastructure) dataset Ibrahem et al.
(2022): This dataset is related to electricity metering and smart
meter (smart meter) systems. It contains information on electricity
consumption and usage behavior from smart meters and related
devices. AMI data sets usually include: power consumption
data, voltage and current data, power consumption pattern data,
power factor data, and timestamp information. AMI datasets
are commonly used for power system analysis, electricity usage
behavior research, load forecasting, power quality monitoring and

the development of energy management applications. This data is
critical to improving power system efficiency, reducing energywaste,
and supporting sustainable energy integration. We use more than
3,000 samples to provide extensive electricity consumption and
usage behavior data.

Smart Meter dataset Pereira et al. (2022): This dataset contains
data collected from smart meters installed in residential and
commercial buildings. It includes detailed information on energy
consumptionpatterns,voltage levelsandpowerquality.Thisdataset is
valuable for studying electricity usage behavior, load forecasting, and
evaluating the performance of smart grid technologies in improving
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energy efficiency and grid reliability. We selected 2,000 samples
covering detailed energy consumption patterns, voltage levels and
power quality.

Pecan Street dataset Yang et al. (2022): This dataset is a
comprehensive energy consumption dataset collected from
residential homes equipped with smart meters and environmental
sensors. It includes real-world electricity usage data, as well as
information on environmental conditions such as temperature,
humidity, and solar radiation. This dataset is valuable for research
and analysis related to energy consumption patterns, demand
response, and the impact of environmental factors on residential
electricity usage in smart grid systems. We analyzed 1,500 samples,
including electricity usage data and environmental conditions.

4.2 Experimental environment

Our experiments were conducted on a server featuring an Intel
Xeon Gold 6248 CPU @ 2.50 GHz with 40 cores, coupled with
256 GB of RAM. ForGPUacceleration, we utilized anNVIDIATesla
V100 with 32 GB of VRAM. Storage was provided by a 1 TB SSD.
The server ran Ubuntu 20.04 LTS as the operating system. In terms
of software, we used Python 3.8 along with TensorFlow 2.5.0 and
PyTorch 1.9.0 for deep learning implementations. GPU acceleration
was facilitated by CUDA Toolkit 11.2 and cuDNN 8.1.0. These
software packages and libraries were chosen to ensure compatibility
and performance optimization for our proposed Transformer-GAN
model for anomaly detection in AI-powered intelligent power
distribution systems.

4.3 Experimental details

Step 1: Data preprocessing
We will perform data preprocessing to ensure that the data

is suitable for model training and evaluation. This includes the
following steps:

• Data Cleaning: Data cleaning is a critical step in preparing
datasets for model training and evaluation. In this phase, we
will address potential issues such as resolving missing values
and outliers. For missing values, if more than 5% of the data is
missing, we will directly use the interpolationmethod or delete.
Wewill use statisticalmethods such as interquartile range (IQR)
to detect outliers, and we will remove or transform them to
improve data quality.
• Data Standardization: Data standardization is to ensure that
different features have consistent scales. We will use the Z-score
standardization method to adjust the mean of the data to 0 and
the standard deviation to 1. This helps avoid certain features
from having too large an impact on model training.
• Data Splitting: In order to facilitate the training, verification and
evaluation of the model, we divided the data set into a training
set, a validation set and a test set, and adopted a division ratio
of 70%-15%-15%.This ensures that themodel’s performance on
different data sets is fully verif ied, and helps avoid overfitting
and improve the model’s generalization ability.

Step 2: Model training
During the model training phase, we employed the following

three key steps to ensure outstanding performance of the model in
risk prediction and management tasks:

• Network Parameter Settings: Prior to commencing model
training, it is imperative to configure critical hyperparameters
that significantly impact the training process. These include
settings such as learning rate, batch size, and number of training
iterations. We choose an initial learning rate of 0.001 and a
batch size of 32. The precise values of these parameters affect
the training speed and performance of the model.
• Model Architecture Design: Model architecture design involves
making decisions about the construction of the neural
network structure. This requires choosing the number of
layers, the number of neurons per layer, activation functions,
regularization techniques, and so on. We design a deep neural
network with three hidden layers, where the first hidden layer
has 128 neurons, the second hidden layer has 64 neurons, and
the third hidden layer has 32 neurons, all using the ReLU
activation function.
• Model Training Process: The model training process requires
updating the weights of the network using the training data
set to enable the model to learn patterns and features in
the input data. Common optimization algorithms such as
Adam are used during training, with cross-entropy loss
as the objective function. Typically, hundreds of iterations
are performed to ensure that the model adequately fits
the data. Additionally, monitoring performance metrics on
the validation dataset is critical to apply early stopping
strategies or tune hyperparameters to improve model
performance.

These model training steps provide a detailed approach,
encompassing hyperparameter settings, model architecture design,
and training strategies, ensuring the successful training of a deep
learning model capable of addressing the task at hand. Figure 4
shows the model training process.

Algorithm 1 represents the algorithm flow of the training in this
paper:

Step 3: Model Evaluation
In this critical step, we evaluate the performance of the

transformer-GAN model using specific evaluation metrics to
measure the effectiveness of anomaly detection in smart power
distribution systems. In the anomaly detection process, one part
is the trained discriminator and generator, and the other part is
the detection process based on their joint application in anomaly
judgment. As shown in Figure 5, after the Transformer-GAN
model training reaches fitting, the results of discrimination and
reconstruction are fused to comprehensively determine whether the
data is abnormal data.

• Model Performance Metrics: In this critical step, we
assess the effectiveness of the Transformer-GAN model
for anomaly detection in smart power distribution systems
using specific performance metrics. We focus on several
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 Data: Smart Grid, AMI, Smart Meter, Pecan

Street datasets

 Result: Anomaly detection model

 Initialization: Transformer and GAN networks;

 Define loss functions: Adversarial loss (Ladv),

Transformer loss (Ltrans);

 Define hyperparameters: Learning rate, batch

size, epochs, etc.;

 while Training not converged do

  for each mini-batch in dataset do

   Sample real data points from the dataset;

   Generate synthetic data points using GAN;

   Concatenate real and synthetic data;

   Calculate Ladv using discriminator

and generator;

   Calculate Ltrans using Transformer network;

   Update GAN and Transformer weights using

backpropagation;

  end

 end

 Evaluate the model using test data;

 Calculate evaluation metrics: Recall, Precision,

F1-score, etc.;

 if Performance meets desired threshold then

  return Trained Transformer-GAN model

 end

 else

  Adjust hyperparameters and continue training;

 end

Algorithm 1. Transformer-GAN for Anomaly Detection in Smart Grids.

key metrics, including Accuracy, Recall, Precision, and F1-
score. Accuracy measures the model’s ability to correctly
identify both anomalies and normal samples. Recall evaluates
the proportion of anomalies correctly detected by the
model out of all actual anomalies. Precision represents
the proportion of correctly classified samples among those
predicted as anomalies. F1-score provides a balanced measure
by considering both precision and recall. These metrics
collectively allow us to comprehensively gauge the model’s
performance and determine its effectiveness in anomaly
detection.
• Cross-Validation: To ensure the robustness and generalization
ability of the model, we employ cross-validation techniques.
We partition the dataset into multiple subsets and iteratively
train and test the model, using each subset as both a
training and testing dataset. This practice reduces the risk of
overfitting and provides more reliable estimates of the model’s
performance on diverse data subsets.Through cross-validation,
we gain greater confidence in assessing the Transformer-GAN
model’s anomaly detection performance across a variety of
data scenarios.

Here, we introduce the key evaluation metrics (Equations
13−15) used in this paper:

Accuracy measures the proportion of correctly classified
instances among all instances:

ACC = TP+TN
TP+TN+ FP+ FN

(13)

Where:

TP: TruePositives

TN: TrueNegatives

FP: FalsePositives

FN: FalseNegatives

The F1-score is a harmonic mean of precision and recall,
combining measures of correctness and completeness:

F1 = 2 ⋅Precision ⋅Recall
Precision+Recall

(14)

Where:

Precision: TP
TP+ FP

Recall: TP
TP+ FN

The AUC represents the area under the Receiver Operating
Characteristic curve, measuring model discriminative power:

AUC = ∫
1

0
ROC (t)dt (15)

Where: ROC(t): Receiver Operating Characteristic curve at
threshold t.

4.4 Experimental results and analysis

As shown in Table 1, we conducted a comparative analysis
of multiple performance indicators on four different data sets
(Smart Grid Dataset, AMI Dataset, Smart Meter Dataset, and Pecan
Street dataset).These performancemetrics include Accuracy, Recall,
F1 Score, and Area Under the Curve (AUC). Through concrete
numerical comparisons, we can clearly see the significant advantages
of our approach. First, for Smart Grid Dataset, our method reaches
94.28% in accuracy, which is significantly higher than other models,
with the highest competitor only 91.02%. In addition, our recall rate
and F1 score reached 94.95% and 92.04% respectively, which are
significantly improved compared to other methods. On the AMI
Dataset, we also achieved excellent performance, with an accuracy
of 94.33%, which is significantly improved compared to the highest
accuracy of other models (87.65%). In addition, our recall rate and
F1 score reached 95.28% and 94.21% respectively, which is also
ahead of other models in these two indicators. For the Smart Meter
Dataset, our method again performed well, achieving an accuracy
of 95.18%, which is a significant improvement over the highest
accuracy of other models (91.54%). At the same time, our recall rate
and F1 score reached 95.81% and 95.36% respectively, which is also
significantly ahead of other models in these two indicators. Finally,
on the Pecan Street dataset, our method performed outstandingly in
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terms of accuracy, with an accuracy of 92.51%, significantly ahead
of other models. At the same time, the recall rate, F1 score and
AUC reached 93.17%, 92.51%, and 96.64% respectively, achieving
significant advantages in these indicators. In summary, our method
shows excellent performance on all four datasets, significantly
leading other models whether in terms of accuracy, recall or F1
score.These results further demonstrate the superior performance of
our method in anomaly detection tasks. In order to better visualize
these results, Figure 6 visually displays the table contents, clearly
demonstrating the advantages of our method over other models. In
summary, our method achieves excellent performance on multiple
datasets and is an excellent choice in the field of anomaly detection.

As shown in Table 2, we compared the performance of different
models on different data sets such as Smart Grid, AMI, Smart
Meter and Pecan Street. On these data sets, we examined the
number of parameters (Parameters) and computational complexity
(Flops) of the model. These indicators are crucial to the efficiency
and practical application of the model. First, we can see that
Alam et al.’s model has a high parameter amount (250.69 M) and
a relatively low computational complexity (45.99 G Flops) on the
Smart Grid Dataset. However, our model performs well on the same
dataset with a low parameter count (116.66 M) and a relatively
low computational complexity (40.51 G Flops). This means that our
model can both reduce storage costs and improve computational
efficiency on Smart Grid Dataset. On the AMI Dataset, our model
shows obvious advantages in terms of parameter size (130.74 M)
and computational complexity (40.53 G Flops). Compared with
other models, our model is more efficient on this data set. Our
model also shows similar performance advantages on the Smart
Meter Dataset and Pecan Street data sets. Both the number of
parameters and computational complexity are relatively low, which
makes our model feasible and competitive on large-scale data
sets. In addition, Figure 7 visualizes the table contents and more
intuitively represents the performance differences between different
models, further confirming the efficiency and competitiveness of
our method. In summary, our model performs well on various
performance indicators, has a lower number of parameters and
computational complexity, and is suitable for various data sets.

As shown in Table 3, we conducted ablation experiments on
the Transformer module using different datasets and compared the
performance of our model with other common natural language
processing models. Our Transformer model exhibited a clear
advantage across four distinct datasets. Taking the Smart Grid
Dataset as an example, compared to GPT-3, our Transformer model
demonstrated improvements of 4.20% in accuracy, 0.57% in recall,
2.79% in F1 score, and 2.63% in AUC. Similar improvements
were observed on other datasets. For the Pecan Street Dataset, our
Transformer model showed a 1.01% increase in accuracy and a
1.16% increase in AUC, further emphasizing the superiority of our
approach. Furthermore, Figure 8 provides a visual representation of
the table content, clearly illustrating the performance advantages
of our Transformer model across different datasets. Our model
excelled in all metrics, validating its effectiveness in natural language
processing tasks. For the basic Transformer model, we believe
that the reason why it performs better than the improved model
when processing time series data is its simpler structure and better
parameter configuration. The basic Transformer model excels at
capturing long-term dependencies in time series data, which allows

it to outperform the improved Transformer model on some time
series datasets. However, we also recognize that the improved
Transformer model may perform better in other types of datasets
or tasks, and this needs to be chosen on a case-by-case basis. These
results demonstrate that ourTransformermodel achieved significant
improvements across various datasets, providing a robust solution
for text processing tasks.

In the results analysis, we observe the performance of various
models on different datasets, as presented in Table 4. These models,
including DCGAN, WGAN, DCGAN, and GAN, were evaluated
based on several metrics across four datasets: Smart Grid, AMI,
Smart Meter, and Pecan Street. Our analysis reveals that the GAN
model consistently outperforms the other models in terms of
accuracy, recall, F1 score, and AUC across all datasets. For example,
in the Smart Grid Dataset, GAN achieves an accuracy of 94.72,
which is notably higher than the accuracy of the other models.
Similarly, in the AMI Dataset, GAN exhibits superior performance
with an accuracy of 93.31 compared to the other models. Moreover,
the GAN model consistently demonstrates the highest AUC values,
indicating its excellent discriminative power in distinguishing
between classes. In the Smart Meter Dataset, GAN achieves an
AUC of 92.91, while other models fall short. In conclusion, our
experimental results, as shown in Table 4, clearly demonstrate the
superiority of the GANmodel in terms of classification performance
across various datasets. The GAN model consistently achieves
higher accuracy, recall, F1 score, and AUC compared to alternative
models, making it the preferred choice for our task. For the basic
GANmodel, we believe that the reason for its superior performance
on certain data sets may be its simple and effective structure. Basic
GANmodels have fewer parameters and computational complexity,
making themeasier to train anddeploy. Furthermore, the basicGAN
model may be better suited to specific types of data distributions,
allowing it to perform better than improved GANmodels on certain
data sets. However, we also note that improved GAN models may
perform better on other datasets, indicating that model selection
depends heavily on specific data and task requirements. For a visual
representation of these results, refer to Figure 9, which provides a
visualization of the table contents.

5 Conclusion and discussion

The research of this article is dedicated to solving the
anomaly detection problem in smart power distribution systems. By
proposing a Transformer-GAN model that combines Transformer
and GAN technology, it achieves excellent performance on multiple
data sets. We conduct extensive experiments on four different
datasets (Smart Grid Dataset, AMI Dataset, Smart Meter Dataset,
and Pecan Street Dataset) and conduct comprehensive evaluations
through performance metrics such as accuracy, recall, F1 score, and
AUC, It is demonstrated that our method has significant advantages
in anomaly detection tasks. Whether in terms of accuracy, recall
or F1 score, our model performs well on various datasets,
providing a powerful solution for anomaly detection in smart power
distribution systems.

Although our model achieves satisfactory experimental
results, there are still some shortcomings. First, the training
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and tuning process of the model requires a long time and
a large amount of computing resources, which may limit its
application in actual production environments. Secondly, the model
is sensitive to data quality and timeliness, requiring high-quality
labeled data and real-time updated data to maintain performance.
These issues need to be further addressed and improved in
future research.

Future work will focus on resolving the above shortcomings
and expanding the scope of the research. First, we will work
hard to improve the training efficiency of the model and explore
faster optimization algorithms and hardware acceleration methods
to reduce training time and resource consumption. Second, we
plan to introduce automated data labeling and cleaning techniques
to reduce reliance on high-quality labeled data while improving
the model’s robustness to incomplete or noisy data. In addition,
we will further explore the adaptive learning mechanism of the
model to improve its adaptability and stability to changes in
power system operation. Finally, we believe that the research
results of this article have a positive impact on the stability and
security of smart power distribution systems, and are expected to
provide stronger support and guarantee for the reliability of future
power systems.
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