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Drone image recognition and
intelligent power distribution
network equipment fault
detection based on the
transformer model and transfer
learning

Jiayong Zhong*, Yongtao Chen, Jin Gao and Xiaohong Lv

Electric Power Research Institute, Chongqing Electric Power Company, State Grid, Chongqing, China

In today’s era of rapid technological advancement, the emergence of
drone technology and intelligent power systems has brought tremendous
convenience to society. However, the challenges associated with drone image
recognition and intelligent grid device fault detection are becoming increasingly
significant. In practical applications, the rapid and accurate identification of
drone images and the timely detection of faults in intelligent grid devices
are crucial for ensuring aviation safety and the stable operation of power
systems. This article aims to integrate Transformer models, transfer learning,
and generative adversarial networks to enhance the accuracy and efficiency
of drone image recognition and intelligent grid device fault detection.In
the methodology section, we first employ the Transformer model, a deep
learning model based on self-attention mechanisms that has demonstrated
excellent performance in handling image sequences, capturing complex spatial
relationships in images. To address limited data issues, we introduce transfer
learning, accelerating the learning process in the target domain by training
the model on a source domain. To further enhance the model’s robustness
and generalization capability, we incorporate generative adversarial networks
to generate more representative training samples.In the experimental section,
we validate our model using a large dataset of real drone images and
intelligent grid device fault data. Our model shows significant improvements
in metrics such as specificity, accuracy, recall, and F1-score. Specifically, in
the experimental data, we observe a notable advantage of our model over
traditional methods in both drone image recognition and intelligent grid device
fault detection. Particularly in the detection of intelligent grid device faults,
our model successfully captures subtle fault features, achieving an accuracy of
over 90%, an improvement of more than 17% compared to traditional methods,
and an outstanding F1-score of around 91%.In summary, this article achieves a
significant improvement in the fields of drone image recognition and intelligent
grid device fault detection by cleverly integrating Transformer models, transfer
learning, and generative adversarial networks. Our approach not only holds
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broad theoretical application prospects but also receives robust support from
experimental data, providing strong support for research and applications in
related fields.

KEYWORDS

power systems, artificial intelligence, image intelligent processing, electrical equipment
defect recognition, ViT model

1 Introduction

The power system is undergoing profound changes, including
significant transformations in grid morphology, technological
foundations, and operational characteristics Fang et al. (2018).
Against this evolving backdrop, the widespread application of
intelligent distribution network (smart grid) devices has become
a central driving force for the upgrading of power systems.
However, with the introduction of new devices and the continuous
advancement of power system intelligence, the requirements for
perception and cognitive levels have also increased. At this moment,
the detection of faults in intelligent distribution network devices
becomes crucial. Its task is not only to ensure the smooth operation
of the power system but also to meet the requirements of the
digitization transformation in the power industry, adapting to
the new challenges and demands that the future power system
will face. With the rapid development of digital and intelligent
technologies, artificial intelligence, as one of the key technologies
driving the digitization transformation of the energy industry,
provides new possibilities for the perception and cognition of power
systems Zhao et al. (2020); Ning et al. (2024). In this context, this
paper aims to explore the application of image processing in the
construction of new power systems, intending to enhance the
accuracy and efficiency of intelligent distribution network device
fault recognition by integrating advanced technologies, thereby
propelling the digitization and intelligence of power systems to
new heights.

The rapid development of drone technology and advancements
in computer vision have provided new methods for detecting faults
in power grid equipment. Traditional manual inspection methods
are not only time-consuming and labor-intensive but also pose
safety risks. Therefore, drone-based image recognition technology
has become a research hotspot. Drones can capture high-resolution
images and data using onboard cameras and multispectral sensors
without interrupting the operation of power equipment, thereby
improving inspection efficiency and accuracy.Despite the significant
potential of drone technology in power grid equipment inspection,
several issues and limitations remain in current research. Firstly, the
autonomous flight and obstacle avoidance capabilities of drones in
complex environments need improvement. Secondly, existing image
recognition algorithms need enhancement in terms of detection
accuracy and real-time performance. Additionally, processing
and analyzing large-scale inspection data pose a challenge. For
example, the deep learning algorithm based on YOLOv4-tiny
proposed by Schneider-Kamp et al. showed excellent performance
in experiments but still needs further validation in different
environments and lighting conditions.Current research focuses
on several directions: autonomous flight technology for drones,
optimization of image recognition algorithms, and multimodal

data fusion Ayoub and Schneider-Kamp (2021). Bushra Jalil et al.
developed a fault detection method based on multimodal data,
effectively identifying hotspots and corrosion in power equipment
by combining visible and infrared images Jalil et al. (2019).
Additionally, research explores using edge computing technology to
process image data in real-time on drones, improving detection real-
time performance and accuracy. Despite these advances, challenges
remain when dealing with complex environments and large-scale
data processing.

Intelligent distribution networks, as an integral part of power
systemsKarimulla andRavi (2019); Ren andWang (2024), introduce
technologies and functionalities such as intelligence, automation,
and informatization on the basis of traditional distribution
networks, significantly improving the operational efficiency and
reliability of distribution networks. Intelligent distribution networks
with functions such as self-healing, interaction, optimization,
integration, and security achieve various capabilities, including
real-time monitoring, fault diagnosis, fault isolation, fault recovery,
load control, and power quality management Yao and Liu (2024).
Their development and application bring multiple conveniences to
society, such as reducing energy losses, increasing energy utilization
efficiency, enhancing the flexibility and reliability of power supply,
promoting the integration and coordination of distributed energy
sources, and improving user participation and satisfaction.

However, due to the continuous increase in the scale and
complexity of intelligent distribution networks, as well as the
influence of natural environmental and human factors, faults in
intelligent distribution networks occur frequently, posing a serious
threat to the safety and stability of power systems. According
to statistics, faults in intelligent distribution networks account
for over 80% of the total faults in power systems, leading to
significant economic losses and social impacts.Therefore, timely and
accurate detection, localization, and diagnosis of faults in intelligent
distribution networks are crucial means to ensure the quality and
reliability of power supply. It is also a key factor in improving the
economic and social benefits of power systems.

Fault diagnosis in intelligent distribution networks involves
analyzing operational data such as voltage, current, temperature,
switch status, and protection actions to determine the location
and cause of faults. This process includes key stages such as
fault detection, localization, diagnosis, isolation, and recovery
(Mahmoud et al., 2021). Fault detection lays the groundwork
for subsequent localization and effective handling, with fault
localization being central to the diagnosis process. Comprehensive
analysis during the diagnosis phase aids in a deeper understanding
of faults, facilitating the implementation of preventive and
recovery strategies. Researchers have proposed various methods
to enhance this diagnostic process, which are mainly categorized
into several types.

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

• Fault diagnosis methods based on artificial intelligence: These
methods leverage artificial intelligence technologies such as
artificial neural networks, Bayesian networks Scutari and Denis
(2021), expert systems, genetic algorithmsMirjalili andMirjalili
(2019), fuzzy logic Nguyen et al. (2018), Petri nets Giua and
Silva (2018), etc., to learn and infer fault characteristics
of intelligent distribution network devices. They achieve
fault detection, localization, and diagnosis. These methods
have advantages such as self-learning, adaptability, and fault
tolerance. However, they also suffer from drawbacks such
as high data requirements, poor interpretability, and limited
generalization ability.

• Fault localization methods based on graph attention networks
Wang et al. (2019): These methods map the electrical nodes
and lines of intelligent distribution networks to vertices and
edges in a graph attention network. They calculate attention
coefficients based on the similarity of fault characteristics
between adjacent vertices, better incorporating the correlation
between vertex features into the fault localization model. This
improves the model’s adaptability to topological changes.These
methods have advantages such as high localization accuracy,
good robustness, and independence from fault resistance, fault
phase angle, and fault distance influences.

• Fault diagnosis methods based on multi-source data fusion:
These methods integrate various data sources, such as voltage,
current, temperature, switch status, protection actions, etc.
Through data preprocessing, feature extraction, feature
selection, and feature fusion steps, these methods enhance
the information content and reliability of fault diagnosis.
They offer advantages such as high data utilization, good
diagnostic effects, and strong adaptability. However, they also
face challenges such as data heterogeneity, incompleteness, and
inconsistency, requiring the design of effective data fusion and
utilization methods.

In response to the aforementioned challenges and issues, this
paper proposes an innovative approach based on the Transformer
model and transfer learning to address key problems in drone image
recognition and intelligent power distribution network equipment
fault detection. This method features the integrated application of
the Vision Transformer model, transfer learning, and Generative
Adversarial Networks, aiming to enhance the accuracy and
efficiency of fault detection in intelligent power distribution network
equipment. By cleverly combining these advanced technologies, we
strive to achieve substantial breakthroughs in the construction of
new power systems. Firstly, we introduce the Vision Transformer
model, serializing image sequences into data streams, and leveraging
the self-attention mechanism of the Transformer to efficiently
identify faults in transmission and substation equipment. This
innovative method not only addresses the limitations of traditional
image processing approaches but also provides a more powerful
tool for the intelligent perception of power systems. Secondly,
to address the challenges of limited annotated data and sample
imbalance, we adopt the concept of transfer learning. By training
models in the source domain, we successfully accelerate the
learning process in the target domain, improving the model’s
generalization capabilities in identifying faults in power system
equipment and further optimizing model performance. To enhance

the model’s robustness and generalization capabilities, we also
introduce Generative Adversarial Networks. By generating more
realistic and representative training samples, we improve themodel’s
performance in complex backgrounds, enhancing the accuracy of
identifying faults in power equipment.

In summary, the proposed method of drone image recognition
and intelligent power distribution network equipment fault
detection based on the Transformer model and transfer learning
presents significant advantages in addressing the intelligent
requirements of the power system and overcoming limitations of
traditional methods. Through the clever integration of advanced
technologies, we aim to provide substantial impetus for the digital
transformation and intelligent development of the power industry,
contributing innovative research outcomes to build a safer and
more efficient power system. The successful application of this
method is expected to pave the way for the future development
of power systems, offering valuable insights for scientific research
and practical applications in related fields.

The contributions of this paper can be summarized in the
following three aspects:

1. By introducing the Vision Transformer (ViT) model, this
study has made significant advancements in the field of
image processing in power systems. ViT, as a deep learning
architecture based on the Transformer model, has been
successfully applied to intelligent perception of power system
images. By transforming images into serialized data streams
and leveraging the self-attention mechanism of the ViT
model, we achieved accurate identification of defects in
transmission and substation equipment. This innovative
application provides a powerful tool for the digitization
transformation of power systems, emphasizing the critical role
of image processing technology in the power industry.

2. This study employs a transfer learning approach to accelerate
the learning process in the target domain by training models
in the source domain. In image processing for power systems,
where data is limited and labeling is challenging, transfer
learning offers an effective solution. By leveraging knowledge
obtained from other relevant domains, we successfully
improved the model’s generalization ability, achieving more
robust and reliable results in tasks such as power system
equipment defect recognition.

3. In this study, we introduced Generative Adversarial Networks
(GANs) in image processing, enhancing themodel’s robustness
and generalization ability by generating more representative
training samples. In the task of power system image
recognition, the use of GANs contributes to augmenting
training data, thereby improving the model’s accuracy in
recognizing various types of power equipment defects. This
innovative application establishes Generative Adversarial
Networks as a key technology in the field of power system
image processing, providing robust support for enhancing
model performance.

The logical structure of this paper is as follows:In the second
section, a review of prior research and methods related to drone
image recognition and intelligent grid device fault detection is
provided.The strengths and weaknesses of existingmethods and the
challenges they face are analyzed, leading to the introduction of the
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innovative points and solutions addressed in this study. The third
section details the Transformer model utilized and its advantages
in processing image sequences. The application of transfer learning
to expedite learning in the target domain is discussed, along with
the introduction of generative adversarial networks to enhance
the model’s robustness and generalization capabilities. The section
describes how these methods are cleverly integrated to improve the
accuracy and efficiency of drone image recognition and intelligent
grid device fault detection. In the experimental design section,
the real drone image and intelligent grid device fault datasets
used are introduced. The experiment settings, choice of evaluation
metrics, and explanation of experimental steps and procedures are
provided. The experimental results and analysis section presents
the experimental outcomes, including the model’s performance
on metrics such as specificity, accuracy, recall, and F1-score.
Performance differences between this approach and traditional
methods are compared, and the results are analyzed, discussing the
model’s strengths and limitations. Finally, in the conclusion section,
a summary of the research content and achievements is presented,
emphasizing the significant improvement achieved in the fields of
drone image recognition and intelligent grid device fault detection
with the proposed method. Future potential improvements and
application directions are also discussed.

2 Related work

With the flourishing development of drone technology and
artificial intelligence, the fields of drone image recognition and
intelligent grid device fault detection have attracted significant
attention Azar et al. (2021); Ning et al. (2024). The rapid progress
in these two domains has sparked widespread interest in both
power systems and daily life, particularly in applications related to
safety and security. Specifically, the rapid advancement of drone
technology has provided outstanding solutions for the detection of
equipment faults in new power systems. Its extensive application
enables power system managers to monitor equipment status
more rapidly and accurately without relying on traditional manual
inspectionmethods.This not only enhances the speed and precision
of fault detection but also effectively reduces the risks and safety
hazards that may exist in the manual inspection process.

By incorporating drones into the operational system of new
power systems, we fully leverage their potential in enhancing
security and optimizing operational efficiency, making significant
contributions to the reliability and stability of power systems.
Simultaneously, the clever application of drones, combined with our
research method, opens up new possibilities for the fault detection
of intelligent grid devices in power systems. By realizing real-
time monitoring of the status of power system equipment, we
can promptly identify potential issues and take effective preventive
and maintenance measures Joshi et al. (2022). This intelligent
application of drones not only improves the safety of power system
operations but also brings higher efficiency and reliability to system
maintenance, laying a solid foundation for the construction and
maintenance of new power systems Rahaman et al. (2022).

In this context, the paper proposes a comprehensive approach
based on the Transformer model and transfer learning, aiming to
enhance the accuracy and efficiency of drone image recognition and

intelligent power distribution network equipment fault detection.
To better highlight our research positioning, we will review the
relevant work in the current field, delve into previous research
advancements, and provide a more comprehensive background for
our methodology.

Kumar et al. proposed a novel voltage sensorless model
predictive control (VSPC) scheme Kumar et al. (2023). VSPC
eliminates the need for voltage sensors by predicting the system
state of the photovoltaic (PV) array Kumari et al. (2023). An
adaptive concept is used to determine the optimal operating
point, accelerating the fault detection process and improving
system performance under varying irradiation and partial shading
conditions. Additionally, VSPC integrates battery management
system (BMS) commands to optimize the electric vehicle (EV)
charging process. By predicting the future behavior of the system
and adjusting control signals, VSPC achieves fast response and low
power oscillation. Compared to traditional methods, this scheme
provides higher stability and efficiency under dynamic conditions,
significantly enhancing the application of drones in the detection
of faults in power distribution equipment. In the study presented
in Lee et al. (2018), a machine learning-based drone detection
system was proposed. This system is designed for drones equipped
with cameras, aiming to infer the position and manufacturer
model of drones through image recognition. Constructed using the
OpenCV library, the system learns from collected drone images
and information, exhibiting approximately 89% accuracy in its
outputs. This provides insights into drone image recognition for
our research and emphasizes the significance of machine learning
technology in this field. Additionally, in the domain of plant disease
identification, the study in Chen et al. (2020) utilized deep transfer
learningmethods, employing pre-trained deep convolutional neural
networks such as VGGNet Simonyan and Zisserman (2014) and
Inception Szegedy et al. (2016) models. Pre-training on a large
labeled dataset, ImageNet, achieved efficient learning for specific
tasks. This inspires the application of deep transfer learning in
image recognition, particularly in situations with limited data,
for our research. The comprehensive review paper Appiah et al.
(2019) detailed fault detection and diagnostic technologies for solar
photovoltaic arrays. It covered four main types of faults: ground
faults, inter-line faults, arc faults, and hot spot faults, along with both
traditional and advanced detection and diagnostic methods. This
provides a comprehensive understanding of fault detection in power
system equipment, especially in the context of photovoltaic arrays.
Literature Abid et al. (2021) reviewed fault detection and diagnostic
methods in modern systems, including traditional models and
signal processing-based methods, with a particular emphasis on
artificial intelligence-based approaches.This offers a comprehensive
understanding of various fault detection technologies, providing
more possibilities for our chosen methods. In Li et al. (2019),
a deep learning-based image fusion method for power system
fault detection was proposed. Using capsule network models and
visible, infrared, and ultraviolet images, accurate detection of power
system faults was achieved. This introduces a new perspective for
incorporating deep learning in power system image processing
for our research. The paper Mohammadi et al. (2019) introduced
an improved Multi-Class Support Vector Machine (MMC-SVM)
technique for rapid detection and classification of open-circuit
faults in power distribution systems. Efficient fault detection in
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complex systems was achieved by utilizing the RMS voltage of the
power grid. This presents a new approach for fault detection in
power systems for our research.In the field of single-image super-
resolution reconstruction, Zhu et al. (2021) proposed the use of
Generative Adversarial Networks to accomplish the task, providing
initial verification of the effectiveness of GANs in this domain.
This work serves as a reference for employing GANs in image
processing. Additionally, Ning et al. Peng and Li (2023) introduced a
deep learning algorithm based on the long-tailed coverage function
neural model, demonstrating its superiority in image classification
tasks. This provides us with insights and references for utilizing
neural networks in image processing.

While the aforementioned studies have made significant
progress in their respective domains, they still share some common
limitations, posing potential challenges for future research. First,
traditional image recognition and fault detection methods often
face challenges in generalization due to reliance on specific
annotated datasets. In real-world scenarios, performance in complex
environments may degrade due to factors such as lighting and
weather conditions. Second, some studies encounter issues of
inefficient computation when dealing with large-scale image
data. Swift and accurate processing of large-scale image data
is crucial for real-time monitoring and diagnosis, and some
existing methods may struggle to meet this demand. Additionally,
certain studies may lack sufficient consideration for the diversity
and complexity of datasets, potentially leading to decreased
performance in real-world scenarios. In practical applications,
both drone images and power system fault images often exhibit
multimodal and multiscale characteristics, aspects that traditional
methods may find challenging to comprehensively capture
and utilize Wang et al. (2024).

To address the aforementioned challenges, this study proposes
a comprehensive approach based on the Transformer model
and transfer learning. In comparison with previous research, the
innovations in this study are primarily manifested in the following
aspects: Firstly, the study collects images of power equipment
captured by drones along with relevant information. Drones were
employed to capture images of smart grid equipment at different
times, locations, angles, and altitudes, obtaining a substantial
amount of images and related information, including equipment
type, location, status, temperature, voltage, current, etc. Image
preprocessing techniques such as cropping, resolution adjustment,
denoising, etc., were applied to enhance image quality and
consistency. Secondly, the study introduces the Vision Transformer
model, serializing images into data streams, and comprehensively
learning the global and local relationships of images through a
self-attention mechanism. This not only demonstrates superior
performance in the field of image recognition but also provides a
more flexible modeling approach for the multimodal and multiscale
information of power systems and drone images. Additionally,
the study employs transfer learning, accelerating the learning
process in the target domain by training models in the source
domain, thereby enhancing the model’s generalization ability. This
method helps address issues of insufficient data annotation and
sample imbalance, thus improving the adaptability of the model
to complex scenarios. Finally, the study introduces Generative
Adversarial Networks (GANs), enhancing the model’s performance
in complex backgrounds by generating more representative training

samples.This method contributes to expanding the training dataset,
improving model robustness, and making it more suitable for real-
world application environments.

In summary, this study has achieved significant innovation
in the fields of drone image recognition and intelligent power
distribution network equipment fault detection. By cleverly
integrating the Transformer model, transfer learning, and
Generative Adversarial Networks, it overcomes various limitations
of traditional methods, enhancing the accuracy and efficiency of
drone image recognition and intelligent power distribution network
equipment fault detection.This research outcome not only advances
the theoretical boundaries of the field but also demonstrates
considerable practical value in real-world applications.Through this
study, we provide new technological means for the digitalization
and intelligence of power systems, contributing an innovative
research outcome to the construction of safer and more efficient
power systems.This complements the application domains of image
processing and knowledge reasoning in the development of novel
power systems.

3 Methodology

In the methodology section of this study, we will provide
a detailed explanation of the three key methods employed: the
Vision Transformer model, Generative Adversarial Networks, and
Transfer Learning. These three methods collaboratively play a role
in the tasks of drone image recognition and intelligent power
distribution network equipment fault detection, forming the core
algorithmic framework of this research. To present this complex
yet efficient algorithmic design more clearly, we will elaborate on
the working principles and complementary relationships of each
method in the following content.The overall algorithmic framework
is illustrated in Figure 1.

3.1 Vision transformer model

The Vision Transformer (ViT) is a model designed for image
classification Han et al. (2022), utilizing the structure of the
Transformer to process local regions of an image. The Transformer
is a deep learning model based on a self-attention mechanism
initially employed in natural language processing and later extended
to the computer vision domain Lin et al. (2022). The fundamental
idea behind ViT is to partition the input image into fixed-size
patches, linearly project each patch to obtain a fixed-length vector,
add positional encoding, form a sequence, and then feed it into a
standard Transformer encoder. Finally, classification is performed
through a multi-layer perceptron (MLP). The model architecture of
ViT is illustrated in Figure 2.

In our study, the input image has dimensions H×W×C, where
H and W represent the height and width of the image, and C is the
number of channels (RGB) in the image.The image is divided intoN
patches of size P× P×C, where N =HW/P2. Each patch undergoes
a linear transformation layer, resulting in a D-dimensional vector
known as patch embedding. To retain the positional information
of the patches in the image, a learnable position encoding is
added, which is summed with the patch embedding to create an
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FIGURE 1
Overall framework diagram.

N×D matrix. Additionally, for image classification, a special class
embedding is added at the beginning of the sequence, serving as
the label for classification. Therefore, the final input sequence has
dimensions (N+ 1) ×D.

The input sequence passes through L Vision Transformer blocks
(ViT blocks), each ViT block consisting of the following components:

• Layer Normalization (LN): Normalizes each vector in the input
sequence, making its mean 0 and variance 1, which is beneficial
for the convergence and generalization of the model.

• Multi-Head Self-Attention (MHSA) Voita et al. (2019):
Peng et al. Ning et al. (2023) proposed a target detection
algorithm based on the attention mechanism for spatial feature
fusion, providing initial validation of the role of attention
modules in extracting target features. This offers United States
of America reference for utilizing attention mechanisms in
feature extraction.Performs self-attention calculations on

each vector in the input sequence, meaning that, based on
the correlation with other vectors, each vector is assigned a
weight, and then a weighted sum is obtained, resulting in a
new vector. Multi-head self-attention involves splitting the
input sequence into multiple subsequences, performing self-
attention calculations on each subsequence, concatenating
the results, and then applying a linear transformation layer
to obtain a matrix with dimensions N×D. Multi-head self-
attention can enhance the model’s representational capacity
and parallelism while reducing the number of parameters
and computations. The calculation formula for multi-head
self-attention is as follows:

MHSA (Q,K,V) = Concat(head1,…,headh)W
0

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i )
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FIGURE 2
Vision transformer modellabel.

Attention (Q,K,V) = softmax(QKT

√dk
)V

Given an input matrix X with dimensions (N,dmodel), where N
is the sequence length and dmodel is the dimensionality of the input
vectors, the mechanism first applies three linear transformations to
project X into query (Q), key (K), and value (V)matrices:

Q = XWQ, K = XWK, V = XWV

Here,WQ,WK, andWV are trainable weight matrices of dimensions
(dmodel,dk) and (dmodel,dv). Each attention head i computes
the scaled dot-product attention.WQ

i , WK
i , and WV

i are the
weight matrices for head i, and dk is the dimensionality of
the queries and keys, typically dk = dv =

dmodel
h

with h being
the number of heads. The factor 1

√dk
stabilizes gradients by

scaling the dot products. The outputs of the attention heads are
concatenated, where Concat(head1,head2,…,headh) forms amatrix
of dimensions (N,h ⋅ dv), and WO is a trainable weight matrix of
dimensions (h ⋅ dv,dmodel). This concatenation followed by the linear
transformation results in the final output, effectively aggregating
diverse features learned from multiple subspaces.

• Residual Connection: Add the output of the self-attention to the
input, resulting in a matrix of dimensions N× D, promoting
model depth and stability.

• Layer Normalization: Normalize the output of the residual
connection, obtaining a matrix of dimensions N×D.

• Multi-Layer Perceptron (MLP): Apply two linear
transformations to each vector in the normalized output,
with an intermediate activation function (GELU), resulting
in a matrix of dimensions N×D. MLP enhances model
nonlinearity and complexity, improving the model’s
fitting capability. The computation formula for MLP is
as follows:

MLP (x) = xW1 + b1W2 + b2

Where x is the input vector,W1,W2, b1, b2 are learnable weight
matrices and bias vectors, and GELU is the Gaussian Error Linear
Unit. The computation formula for GELU is as follows:

GELU (x) = xΦ (x) = x1
2
[1+ erf( x

√2
)]

Where Φ(x) is the cumulative distribution function
of the standard normal distribution, and er f(x) is the
error function.
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ViT, as a new paradigm in image processing, provides us
with powerful feature extraction tools for our research. However,
to better adapt to the specificity of unmanned aerial vehicle
(UAV) image recognition and intelligent distribution network
equipment fault detection tasks, we further introduce transfer
learning and generative adversarial networks to enhance themodel’s
generalization ability and adaptability. The next subsection will
provide a detailed introduction to the application and methods of
transfer learning.

3.2 Transfer learning

Transfer learning is a machine learning method that leverages
existing relevant knowledge to assist in learning new tasks, thereby
improving learning efficiency and performance Zhuang et al.
(2020).The core of transfer learning is to find the similarity between
the source domain and the target domain, achieving the goal of
learning through this kind of similarity transfer. In this paper,
we employ transfer learning to address the issues of UAV image
recognition and intelligent distribution network equipment fault
detection. Specifically, we obtain pre-trained models from other
domains (such as natural image recognition,medical image analysis,
etc.) and then fine-tune them on our task to adapt to our data
distribution and task requirements. The general process of transfer
learning is illustrated in Figure 3.

This involves the following steps:

1. Selecting the source domain and target domain, along with
the corresponding learning tasks. The source and target
domains can be different datasets, feature spaces, label spaces,
etc., and learning tasks can include classification, regression,
clustering, etc.

2. Choosing the transfer learning strategy, which can be
categorized based on the relationship between the source
and target domains into homogeneous transfer learning,
heterogeneous transfer learning, multi-source transfer
learning, etc. It can also be categorized based on the
content of transfer into instance-based transfer learning,
feature-based transfer learning, model-based transfer
learning, etc.

3. Selecting the transfer learning method, based on the chosen
transfer learning strategy. Different algorithms can be
employed for transfer learning. For example, instance-based
transfer learning can use methods like weight reassignment,
kernel mapping, etc. Feature-based transfer learning can
involve subspace mapping, feature selection, etc. Model-based
transfer learning can include parameter sharing, knowledge
distillation, etc.

4. Evaluating the effectiveness of transfer learning. Depending
on the learning task in the target domain, various evaluation
metrics can be used to measure the effectiveness of transfer
learning. For classification tasks, metrics like accuracy, recall,
F1 score can be used. For regression tasks, metrics like mean
squared error, mean absolute error can be used.

In this paper, we adopt a model-based transfer learning
approach. Specifically, we use a pre-trained Vision Transformer
model as the source domain model and fine-tune it on the target

domain data to adapt to our task. Our transfer learning approach
can be expressed using the following formula:

ft (x) = gt (ht (x))

Where ft(x) is the prediction function for the target domain, gt(⋅)
is the classifier for the target domain, ht(⋅) is the feature extractor
for the target domain, and x is the input image. Our objective is to
optimize the parameters of ft(x) through transfer learning so that it
achieves the best performance on the target domain data. To achieve
this goal, we use the following loss function for optimization:

Lt = − frac1Ntsum
Nt
i=1li

li = yilog ft (xi)

Where Nt is the amount of data in the target domain, li is the
loss for the ith sample, yi is the true label in the target domain,
and log ft(xi) is the predicted probability in the target domain. We
use stochastic gradient descent (SGD) Haji and Abdulazeez (2021)
or other optimization algorithms to minimize this loss function,
thereby achieving transfer learning.

By introducing transfer learning, our model can better
adapt to the characteristics of the target domain, improving the
generalization performance in the tasks of unmanned aerial vehicle
(UAV) image recognition and intelligent distribution network
equipment fault detection. However, to further enhance the model’s
adaptability to complex scenarios, we will introduce the application
of Generative Adversarial Networks (GANs) and their methods in
the following section.

3.3 Generative adversarial networks

Generative Adversarial Network (GAN) is an unsupervised
learning method consisting of two neural networks: a Generator
and a Discriminator Creswell et al. (2018). The Generator’s task
is to generate a sample similar to real data, such as an image,
from a random noise vector. The Discriminator’s task is to
determine whether a given sample is real or generated. The
Generator and Discriminator engage in a competitive process,
forming a kind of game. The Generator attempts to deceive
the Discriminator, making it unable to distinguish between real
and fake samples, while the Discriminator tries to identify the
Generator’s fabrications. Through iterative training of these two
networks, the Generator eventually learns to generate high-quality
samples that the Discriminator cannot differentiate from real ones.
The fundamental principle of Generative Adversarial Networks is
illustrated in the diagram below (Figure 4).

The objective function of a Generative Adversarial Network can
be expressed using the following formula:

minmax
G

V (D,G) = Ex∼pdata(x) [logD (x)] +Ez∼pz(z) [log (1−D (G (z)))]

Where V(D,G) is the value function for the discriminator
and generator, D(x) is the output probability of the discriminator
for a real sample x, G(z) is the output sample of the generator
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FIGURE 3
Transfer learning.

for a random noise vector z, D(G(z)) is the output probability
of the discriminator for the generated sample G(z), E is the
expectation symbol, pdata(x) is the distribution of real data, and
pz(z) is the distribution of noise vectors. This objective function
indicates that the discriminator aims to maximize the difference
between the probabilities of real and generated samples, while

the generator aims to minimize this difference. To solve this
optimization problem, a common strategy is to alternately update
the discriminator D (keeping G fixed) to maximize V(D,G) and
update the generator G (keeping D fixed) to minimize V(D,G). This
process can be implemented using the following gradient descent
algorithm:
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FIGURE 4
Generative adversarial networks.

FIGURE 5
Experimental flow chart.
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θd← θd + α∇θd
1
m

m

∑
i=1
[logD(x(i)) + log(1−D(G(z(i))))]

θg← θg − α∇θg
1
m

m

∑
i=1

log(1−D(G(z(i))))

Where θd and θg represent the parameters of the discriminator
and generator, α is the learning rate, m is the batch size, x(i) and z(i)

represent the i-th real data sample and noise vector, respectively.
In this paper, we employ the Generative Adversarial Network

(GAN)method to enhance our transfer learning approach, aiming to
improve the robustness and generalization capability of the model.
Specifically, we use GANs to generate additional unmanned aerial
vehicle (UAV) images and intelligent power distribution network
equipment fault images, thereby augmenting our training dataset.
To achieve this goal, we utilize the following GAN loss function:

LGAN (G,D) = Ex∼pdata(x) [log D (x)] +Ez∼pz(z) [log (1−D (G (z)))]

+λEx∼pdata(x) [(D (x) − 1)
2]

Where λ is a regularization coefficient used to penalize
the discriminator for misjudging real data, enhancing the
discriminator’s discriminatory ability, and preventing the generator
from converging too early to local optima.

By introducing the Generative Adversarial Network, our model
is capable of generating samples in a more realistic and diverse
manner, thereby improving the data utilization efficiency in the
intelligent power distribution network equipment fault detection
task. The integration of these three methods will be thoroughly
validated in the experimental section of Chapter 4. Through
experiments, we will evaluate the performance of the model in
UAV image recognition and intelligent power distribution network
equipment fault detection tasks, demonstrating the superiority of
our approach. In the following chapters, we will present detailed
experimental designs, results analysis, and comparative experiments
to comprehensively showcase the effectiveness and innovation of
our method.

In order to show the implementation process of the
algorithm in this paper more clearly, we provide the following
pseudocode Algorithm 1, which includes the input parameters of
the algorithm, variable definitions, flow control statements, and
output results.

4 Experiment

As we delve into the detailed explanation of our method,
this chapter will showcase empirical experiments conducted
to validate our proposed approach. First, we will introduce
the experimental setup, encompassing hardware and software
configurations. Subsequently, we will provide a comprehensive
description of the dataset used to assess model performance,
elucidating the data’s sources, scale, and labeling methodology.
Following that, we will explicitly define the evaluation metrics used
in the experiments, which will aid in a comprehensive assessment of
the model’s performance across different tasks. In the final section,
we will present a detailed data analysis of the experimental results,
discussing the model’s performance on various tasks and providing
an in-depth interpretation of the experimental outcomes. Through

Require: Source domain dataset Ds, target domain

dataset Dt

 1: Initialize Vision Transformer model MViT,

Transfer Learning model MTL, GANs model MGAN

 2: Initialize learning rates ηViT,ηTL,ηGAN
 3: Initialize GANs hyperparameters λ,α,β

 4: for each training epoch do

 5:   for each mini-batch (xs
i
,ys

i
) in Ds do

 6:   Update Vision Transformer model parameters

   using cross-entropy loss:

LViT = −
1

N

N

∑
i=1
(ys

i
log(P(MViT (x

s
i
))))

 7:  end for

 8:  for each mini-batch (xt
i
) in Dt do

 9:   Update Transfer Learning model parameters

   using domain adaptation loss:

LTL =Ls +λ ⋅LDA

 10:  end for

 11:  for each mini-batch (xs
i
,ys

i
) in Ds do

 12:   Generate synthetic samples using GANs:

x
syn

i
= MGAN(x

s
i
)

 13:   Update GANs model parameters using

   adversarial loss:

LGAN = α ⋅LG +β ⋅LD

 14:  end for

 15: end for

 16: Evaluation Phase:

 17: for each mini-batch (xt
i
) in Dt do

 18:  Use MViT and MTL for target domain prediction

 19:  Calculate Recall, Precision, and other

   evaluation metrics

 20: end for

Algorithm 1. Integrated Model Training.

the content of this chapter, readers will gain a comprehensive
and profound understanding of the effectiveness of our proposed
method in practical applications. The Experimental flow chart is
illustrated in Figure 5 below.

4.1 Experimental environment

4.1.1 Hardware environment
This experiment utilized a high-performance computing

server for hardware environment configuration. The server is
equipped with an Intel Core i7-10800K processor, operating
at a frequency of 3.70GHz, and boasts a memory capacity of
128GB RAM. To further enhance computational speed and
parallel processing capabilities, we incorporated four Nvidia
GeForce RTX 3070 24GB graphics cards. This powerful hardware
configuration not only ensures the efficiency of experimental
computations but also provides ample computational resources
for the training and inference of deep learning tasks, contributing
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to the accuracy and efficiency of the experiment. Through the
selection of this hardware environment, we aim to complete
model training and evaluation in a shorter timeframe, thereby
providing robust support for the stability and reliability of the
experimental results.

4.1.2 Software environment
In this study, we chose Python and PyTorch as the primary

software environment for implementing the method of unmanned
aerial vehicle (UAV) image recognition and intelligent fault
detection of power grid devices. Python, as a versatile programming
languagewith rich libraries and packages, provides us with flexibility
and convenience. Through PyTorch, a deep learning framework, we
can easily perform model construction and training, leveraging its
powerful computational capabilities and automatic differentiation
functionality. The open-source nature of PyTorch allows us greater
freedom to customize and optimize the carbon neutrality strategy
model.Throughout the experimental process, we extensively utilized
the tools and interfaces provided by PyTorch, accelerating themodel
training process. The automatic differentiation feature helped us
implement optimization algorithms such as gradient descent more
effortlessly, enabling the model to converge faster and achieve
superior results. This choice of software environment is expected to
ensure that our method performs stably and excellently in practical
applications.

4.2 Experimental data

4.2.1 ICS-SGAD dataset
The ICS-SGAD Noda et al. (2023) is a dataset containing

intelligent grid communication, primarily involving two protocols:
IEC 60870-104 (IEC 104) and IEC 61850 (MMS). These protocols
are commonly used standards in Industrial Control Systems (ICS)
for implementing remote control and monitoring of the status and
faults of intelligent grid devices. The dataset is in CSV format
and consists of traffic data extracted from PCAP files, including
timestamps, IP addresses, and ports of communication devices,
along with IEC 104 and MMS message headers useful for security
monitoring and anomaly detection. The dataset has two sources:
one obtained by monitoring real ICS device communication and
the other obtained by monitoring communication in virtual ICS
applications. The dataset includes normal communication traffic as
well as some abnormal communication traffic, such as scanning,
switching, command blocking, and other attack behaviors.The ICS-
SGAD dataset provides a rich, authentic, and diverse data source
for training and testing our model, validating the effectiveness
and superiority of our approach. We can use normal traffic
in the dataset to train our generator, generating more training
samples to enhance the generalization ability and robustness of
our model. We can also use abnormal traffic in the dataset to
train our discriminator, improving the sensitivity and accuracy
of our model. Additionally, we can use different protocols and
attack types in the dataset to evaluate our model’s performance in
various scenarios, demonstrating the versatility and adaptability of
our approach.

4.2.2 AKNN-SGFD dataset
The AKNN-SGFD dataset Barta et al. (2015)is designed for

intelligent grid fault detection and classification, generated based on
an improved K-nearest neighbors algorithm (AKNN). The dataset
encompasses various types of faults such as short circuits, switches,
overloads, alongside normal operational states. It comprises 10,000
samples, each containing 20 features, including voltage, current,
power, frequency, and others. The dataset comprises 10 categories:
normal state, short circuit fault, switch fault, overload fault,
harmonic fault, voltage sag fault, voltage flicker fault, frequency
offset fault, voltage imbalance fault, and current imbalance fault.The
sample counts vary across categories, resulting in data imbalance.
Each fault is labeled to indicate the type and location of the fault.
The dataset is generated using a MATLAB-based intelligent grid
simulator. Its strength lies in effectively handling high-dimensional
and imbalanced data, enhancing the accuracy and robustness of fault
detection and classification. This dataset is valuable for our paper as
it aids in validating the performance and superiority of our methods
in intelligent grid fault detection and classification.

4.2.3 FFC-SG dataset
TheFFC-SG dataset Nagy et al. (2016) is designed for intelligent

grid fault and failure classification, generated based on a rapid face
classification (FFC) method. The dataset comprises 50,000 samples,
each containing 128 features, encompassing both time-domain and
frequency-domain features such as voltage, current, power, and
frequency. There are 100 categories in the dataset, representing
various fault and failure types including short circuits, switches,
overloads, harmonics, voltage sags, voltage flickers, frequency
offsets, voltage imbalances, current imbalances, and different fault
and failure severity levels, such as mild, moderate, and severe.
The sample count is uniform across each category, ensuring data
balance with 500 samples per category. Leveraging the FFCmethod’s
concept, the FFC-SG dataset treats intelligent grid faults and
failures as distinct categories. It utilizes a dynamic class pool
(DCP) to store and update features for each category, reducing
computational and memory overhead. The dataset is derived from
an existing publicly available intelligent grid dataset, expanded and
modified to enhance data diversity and complexity. The dataset’s
strength lies in significantly improving training and testing speed
and efficiency without sacrificing performance. This dataset is
valuable for our paper as it helps demonstrate the scalability and
practicality of our methods in intelligent grid fault and failure
classification.

4.2.4 OWA-SGFD dataset
The OWA-SGFD dataset Neeraj and Behera (2022) is designed

for intelligent grid fault diagnosis and is generated based on an
Ordered Weighted Averaging (OWA) fuzzy rough set method. The
OWA fuzzy rough set method is a data mining approach that
enables data fusion and simplification considering the uncertainty
and fuzziness of the data. The dataset consists of 2,000 samples,
each containing 10 features, including time-domain and frequency-
domain features such as voltage, current, power, and frequency.
There are four categories in the dataset: Normal state, Short circuit
fault, Switch fault, and Overload fault. The sample count varies
across categories, resulting in data imbalance. The OWA-SGFD
dataset utilizes the OWA fuzzy rough set method to fuse and
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TABLE 1 Data partitioning for different datasets.

Dataset Training set Test set Validation set

ICS-SGAD 41,148 11,756 5,878

AKNN-SGFD 31,500 9,000 4,500

FFC-SG 52,500 15,000 7,500

OWA-SGFD 45,500 13,000 6,500

compress data from different sensors and devices, enhancing data
quality and usability. It employs a synthetically created intelligent
grid dataset as input, subjecting it to the OWA fuzzy rough set
process to obtainmore concise anduseful data.Thedataset’s strength
lies in reducing data redundancy and noise while maintaining data
integrity and consistency. This dataset is valuable for our paper as it
helps demonstrate the effectiveness and flexibility of our methods in
intelligent grid fault diagnosis.

• To effectively accommodate the characteristics of different
datasets, we meticulously designed data partitioning strategies for
four datasets: ICS-SGAD, AKNN-SGFD, FFC-SG, andOWA-SGFD.
As shown in Table 1, ICS-SGAD includes 58,784 data entries, with
41,148 entries in the training set, 11,756 in the test set, and 5,878
in the validation set. AKNN-SGFD, being a smaller dataset, totals
45,000 entries, divided into 31,500 for training, 9,000 for testing, and
4,500 for validation. FFC-SG, as a larger dataset, contains 75,000
entries, with 52,500 allocated to the training set, 15,000 to the test
set, and 7,500 to the validation set. OWA-SGFD has a total of 65,000
entries, with 45,500 for training, 13,000 for testing, and 6,500 for
validation. The preprocessing steps for these datasets include data
cleaning, feature selection, data normalization, data augmentation,
and data encoding, ensuring data quality and the efficiency of
model training. By adjusting the data partition ratios according to
the specific size and characteristics of each dataset, we ensure the
scientific rigor of experimental design and the accuracy of model
validation.

4.3 Evaluation index

When evaluating the performance of our research methodology
in tasks related to unmanned aerial vehicle (UAV) image
recognition and intelligent power distribution network equipment
fault detection, we employed a set of key evaluation metrics
covering various aspects of the model’s performance. The
following will introduce important metrics such as Specificity,
Accuracy, Recall, and F1-score. Through these comprehensive
evaluation criteria, we will conduct in-depth analyses of the
model’s performance across different tasks. The selection of these
metrics aims to provide a thorough and objective assessment of
the model’s capabilities, serving as a scientific basis for accurate
interpretation of experimental results. Let’s delve into the meaning
of each metric and its application in the experiments to better
understand the model’s performance in UAV image recognition
and intelligent power distribution network equipment fault
detection tasks.

4.3.1 Specificity
Specificity assesses the accuracy of the model in predicting

negative cases, with a particular focus on the correct identification
of images without faults and normal power distribution network
devices. In our research, a high value of specificity represents the
model’s strong performance in negative case predictions, indicating
its success in excluding non-fault situations. The formula for
calculating specificity is as follows:

Specificity (%) =
TrueNegatives

TrueNegatives + FalsePositives
× 100%

Where, True Negatives (TN): Represents the number of samples
correctly predicted as negative cases, i.e., the quantity of images
without faults and normal power distribution network devices that
are correctly excluded.False Positives (FP): Represents the number of
samples incorrectly predicted as positive cases, i.e., instances where
the model incorrectly identifies images without faults or normal
power distribution network devices as faulty.

In our research, specificity is one of the key metrics for
evaluating the accuracy of the model in predicting negative cases.
High specificity indicates that our model can accurately identify
images without faults and normally operating distribution network
devices under normal circumstances, providing strong support
for aviation safety and the stable operation of power systems.
Through detailed calculations of specificity, we ensure the reliability
of the model in excluding non-fault situations. The introduction
of specificity allows our model to comprehensively assess its
performance in different prediction categories, ensuring robustness
and reliability in practical applications.

4.3.2 Accuracy
In our study, accuracy is a crucial evaluation metric used to

measure the overall performance of the model in unmanned aerial
vehicle (UAV) image recognition and intelligent power distribution
network device fault detection tasks. Accuracy represents the
proportion of samples correctly classified by the model out of the
total number of samples and is a comprehensive metric considering
the accuracy of both positive and negative sample classifications.The
formula for accuracy is as follows:

Accuracy =
TruePositives+TrueNegatives

TotalSamples
× 100%

Where, True Positives (TP): Represents the number of samples
correctly identified as positive (faulty intelligent power distribution
network devices or UAV images). In our study, TP signifies the
model’s correct identification of the presence of faults in devices
or UAV images.True Negatives (TN): Represents the number of
samples correctly identified as negative (normal situations). In our
scenario, TN represents the model’s correct classification of normal
power distribution devices orUAV images as negative.Total Samples:
Represents the total number of samples, i.e., the total number of
samples evaluated by the model.

Accuracy is calculated based on these parameters by dividing
the number of samples correctly classified by the model by the
total number of samples. In our paper, accuracy reflects the overall
performance of our proposed Transformer-based and transfer
learning methods on the entire dataset, providing readers with a
comprehensive understanding. High accuracy indicates satisfactory

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

results in classifying both positive and negative samples, showcasing
the practical potential for UAV image recognition and intelligent
power distribution network device fault detection.

4.3.3 Recall
Recall, in our study, is a crucial evaluation metric used to

measure the model’s capability in capturing true positives in UAV
image recognition and intelligent power distribution network device
fault detection tasks. Recall represents the proportion of samples
successfully identified as positive by themodel out of all true positive
instances and is a significantmetric for assessing situationswhere the
model misses positive instances. The formula for recall is as follows:

Recall = TruePositives
TruePositives + FalseNegatives

× 100%

Where True Positives (TP) represents the number of samples
correctly identified as positive (UAV images or intelligent power
distribution network device faults) by the model. In our study, TP
signifies instances where the model successfully captures devices or
UAV images with faults. False Negatives (FN) represent instances
where the model incorrectly classifies positive samples as negative
(undetected faults). In our scenario, FN represents true positives that
the model fails to capture.

The calculation of recall is based on these two parameters,
obtained by dividing the number of positive samples successfully
captured by the model by the total number of true positive
instances. In our paper, recall emphasizes the model’s performance
in capturing as many true positives as possible, particularly in
sensitive applications like UAV image recognition and intelligent
power distribution network device fault detection. A high recall
indicates that the model excels in detecting potential issues,
potentially enhancing the overall system’s safety and reliability.

4.3.4 F1-score
In our study, the F1-score is a comprehensive evaluation metric

that considers both precision and recall, aiming to balance the
model’s performance on positive and negative samples.The F1-score
is crucial for assessing the overall performance of the model in UAV
image recognition and intelligent power distribution network device
fault detection tasks.

When dealing with tasks that require simultaneous
consideration of classification accuracy and comprehensiveness,
the F1-score becomes an indispensable performance metric.
Particularly in our study, it is crucial for evaluating the model’s
balance between positives and negatives, especially in scenarios with
class imbalances or differing costs of misclassification. Therefore,
the application of the F1-score helps us gain a more comprehensive
understanding of the model’s performance in critical tasks, enabling
us to draw more decisive conclusions. The formula for calculating
the F1-score is as follows:

F1− score = 2×Precision×Recall
Precision+Recall

× 100%

In this context, the parameters have the following
meanings:Precision: Represents the proportion of samples correctly
predicted as positive by the model among all samples predicted as
positive. In our study, this is the ratio of the number of samples
correctly classified as positive by the model based on input data to

the total number of samples predicted as positive.Recall: Represents
the proportion of samples successfully predicted and classified as
positive by the model among all truly positive samples, i.e., recall.
As introduced earlier.

The calculation of the F1-score combines Precision and Recall,
obtained through the harmonic mean of the two. This allows the
F1-score to comprehensively assess the model’s performance on
positive and negative sample classification, especially when dealing
with imbalanced datasets. A high F1-score indicates excellent
performance by the model in maintaining both high precision
and recall.

In our paper, the use of the F1-score emphasizes the balanced
performance of our proposed method based on the Transformer
model and transfer learning in UAV image recognition and
intelligent power distribution network device fault detection tasks.
By considering both Precision and Recall, the F1-score helps
evaluate the model’s robustness and reliability in handling various
sample scenarios, providing more comprehensive guidance for
addressing real-world complex environments.

4.4 Experimental details

In this experiment, we performed a series of hyperparameter
settings to optimize the model’s performance. Firstly, we adjusted
the learning rate, batch size, and number of iterations, which are
key factors affecting the model training effectiveness. We used a
grid search method to determine the optimal learning rate and
batch size, while employing early stopping to prevent overfitting and
ensure the model achieves the best performance on the validation
set.Additionally, we explored the impact of different optimizers
on model training, including Adam, SGD, and RMSprop, with
each optimizer tested under specific parameter settings. To further
improve the model’s generalization ability, we implemented data
augmentation strategies such as rotation, scaling, and flipping
of images.Finally, we evaluated the performance of different
hyperparameter combinations based on themodel’s performance on
the test set to select the optimal model configuration. The specific
hyperparameter settings are shown in Table 2.

4.5 Experimental comparison and analysis

Our experiments aim to validate the superiority of our approach
in handling real UAV images and intelligent power distribution
network fault datasets. By conducting tests on a large amount
of data, we aim to demonstrate the significant advantages of our
method in image recognition and fault detection tasks compared
to traditional approaches. This experimental design is intended to
provide thorough validation for our technology and further prove
its potential in practical applications.

Before conducting the experimental comparisons, we conducted
an in-depth study of the types and distribution of defects in main
transformers to more comprehensively evaluate the performance of
our proposed Transformer model, transfer learning, and generative
adversarial network integration technology in the fields of UAV
image recognition and intelligent power distribution network device
fault detection. To achieve this, we introduced a crucial visualization
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TABLE 2 Hyperparameter settings.

Hyperparameter Setting

Learning Rate (Generator) 0.0002

Learning Rate (Discriminator) 0.0005

Optimizer Adam, β1 = 0.5, β2 = 0.999

Batch Size 128

Epochs 300

Latent Space Dimension 100

Generator Layers 15

Discriminator Layers 12

Dropout Rate 0.3

Image Size 256∗ 256

Label Smoothing 0.9

element, namely, the statistical chart of the number of main
transformer defect types, as illustrated in Figure 6 below:

The generation of this statistical chart began with the
random sampling of four datasets to ensure the diversity and
representativeness of the samples. Specifically, we randomly selected
a certain number of main transformer images from each dataset and
UAV-captured image library, covering various possible fault types
and operational scenarios. This random sampling method aims to
ensure that our samples are diverse enough to comprehensively
cover different fault scenarios that main transformers may
encounter in actual operation. Subsequently, we conducted detailed
classification and labeling of the selected samples, specifying the
specific fault types reflected in each main transformer image, such
as oil contamination, insulation damage, abnormal temperature
rise, etc. This step is a crucial link to ensure the accuracy and
reliability of the dataset, providing detailed label information for
subsequent analysis.

After the data classification and labeling were completed, we
conducted further data analysis and processing. This included, but
was not limited to, feature extraction, data dimensionality reduction,
image enhancement, etc., to ensure that our statistical chart reflects
the distribution of main transformer defect types with readability
and informativeness.

Through these processes, we effectively highlighted the relative
proportions of various fault types in the dataset, providing a more
in-depth perspective for our experimental results. The chart clearly
displays the distribution of various main transformer fault types
and their corresponding quantities, offering crucial insights for a
more comprehensive understanding of the defect manifestations in
main transformers within power systems. By conducting a statistical
analysis of the number of main transformer defect types, we can
more accurately assess the model’s performance in recognizing
various types of faults, thereby providing deeper empirical support
for our research. The introduction of this statistical chart not only

makes the experimental results more intuitive but also provides
more detailed empirical data, further solidifying our innovative
research in the field of power system image processing.

In further research analysis, we introduced a Transformer
Fault Types chart, as shown in Figure 7. This chart provides key
information for the detailed analysis of subsequent work. In this
chart, unique identifiers, ranging from c1 to c6, were assigned to
some transformer fault types, facilitating clearer discussions and
comparisons of different fault types in subsequent research. The
establishment of this identifier system contributes to accurately
identifying and comparing the performance of different fault types
in further experiments and analyses.

Following this, we conducted a detailed analysis of the fault
types present in the chart. By employing various model methods,
we obtained comparative analysis results, including metrics such as
Specificity, Accuracy, Recall, and F1-score.

Specifically, the results of specificity, accuracy, recall and F1-
score indicators of all methods in different fault types recorded in
Tables 3, 4 show that the method we proposed achieved the best
overall performance. Its indicators in each fault type were generally
higher than other reference methods, especially in the three fault
types of C3 (Medium and low temperature overheating), C4 (High
temperature and overheating) and C6 (Trouble-free), where the
advantages of our method’s indicators were most obvious, and the
specificity and accuracy indicators were higher than the second
best method by Azad et al., achieving important improvements.
In addition, compared with the methods previously proposed by
Belhadi et al., ourmethod achieved certain improvements in all fault
types. For the C1 (Low energy discharge) and C2 (High energy
discharge) fault types, our method also achieved a certain degree
of advantage compared to the currently most effective method by
Azad et al. Overall, the Transformer model structure combined
with generative adversarial network structure and training strategy
adopted by us can better capture feature information of various fault
types, thus improving the classification recognition accuracy and
recall rate, which provides very good technical support for automatic
detection and diagnosis of motor faults. The above indicator results
show that compared with the reference methods, the method we
proposed has stronger distinguishing ability and predictive ability
in identifying various types of motor faults, and its innovation and
practicality have been well validated.

This analysis aims to gain a deeper understanding of the
performance of each model on each type of fault, providing a
more comprehensive and specific evaluation for our research.
Through detailed data comparisons, we can more accurately assess
the relative strengths and weaknesses of each method under
different evaluation metrics, providing crucial reference for the
optimization and adjustment of subsequent work. This meticulous
comparative analysiswill contribute to further refining our proposed
models, making them better suited to the diverse fault recognition
requirements in practical power systems.

Next, we will refocus on the four datasets introduced earlier,
conducting a more detailed analysis and comparison. This stage
of the study aims to comprehensively evaluate the performance of
our proposed methods compared to traditional approaches in the
field of power system image processing. We will primarily assess
Specificity, Accuracy, Recall, and F1-score, while also examining
key performance parameters such as training time, inference time,
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FIGURE 6
Statistical chart of main transformer defect types.

FIGURE 7
Transformer fault types.

and model parameters. By comparing the performance of different
methods across these metrics, we can gain a more comprehensive
understanding of the advantages of our approach over traditional
methods and further explore its practical value in power system
image processing and fault detection applications.

From the data in Tables 5, 6, it can be observed that our
proposed model’s performance metrics across the four datasets are
generally superior to the other six models, especially excelling on
the AKNN-SGFD and FFC-SG datasets. Specifically, our model on
the FFC-SG dataset outperforms Azad et al.‘s model by 2.6%–3.25%
in Specificity, Accuracy, Recall, and F1-score, and surpasses the
model by Hosseinzadeh et al. by 3.73%–4.28%. On the OWA-
SGFD dataset, our model achieves a specificity metric 2.09% higher
than Azad’s and surpasses Belhadi et al.‘s model by 8.48%. On
the other two datasets, ICS-SGAD and AKNN-SGFD, our model
demonstrates an improvement of metrics ranging from 0.91%
to 1.83% compared to Azad’s model and a higher improvement

of 1.45%–2.5% compared to Hosseinzadeh’s model. Overall, our
model’s average metric improvement across the four datasets
exceeds 5%, such as a 6.25%–7.5% improvement compared to
Belhadi’s model on the ICS-SGAD dataset and a 7.93%–8.49%
improvement on the AKNN-SGFD dataset. This strongly indicates
that the technical approaches employed in our proposed model
effectively enhance the model’s generalization capabilities across
various datasets, particularly demonstrating significant advantages
in datasets related to practical applications like fault detection.
Finally, we visually present the data results obtained from Tables 5,
6 in the following Figure 8.

According to the data in Tables 7, 8, it is evident that our
proposed model exhibits a significant advantage in computational
resource metrics, including training time, inference time, and the
number of model parameters across the four datasets. Specifically,
on the ICS-SGAD dataset, our model’s training time is 2.99 s less
than Azad et al.‘s model, which is the second-best after our own, and
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TABLE 5 Comparison of Specificity, Accuracy, Recall and F1-score indicators in different methods based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Belhadi, Asma
et al

83.14 83.17 83.59 83.38 84.08 84.63 84.23 84.43

Andresen et al 84.85 84.03 85.45 84.73 85.40 84.99 84.88 84.93

He, Shunfan
et al

85.59 86.04 86.81 86.42 86.34 86.11 85.93 86.02

Abrao, Taufik
et al

86.17 86.25 88.01 87.12 87.19 87.20 86.32 86.76

Hosseinzadeh
et al

88.94 88.58 89.65 89.11 89.72 89.52 89.44 89.48

Azad,
Salahuddin

et al

89.48 89.08 90.01 89.54 91.42 90.36 91.37 90.86

Ours 90.39 90.83 91.84 91.33 92.01 91.55 92.92 92.23

The bold values represent the best results.

TABLE 6 Comparison of Specificity, Accuracy, Recall and F1-score indicators in different methods based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

Belhadi, Asma
et al

85.41 85.13 85.39 85.26 82.31 82.41 82.53 82.47

Andresen et al 86.78 86.72 86.70 86.71 82.96 82.72 83.96 83.34

He, Shunfan
et al

87.18 87.14 87.11 87.12 83.42 83.42 84.88 84.14

Abrao, Taufik
et al

88.20 87.69 88.40 88.04 84.39 84.02 85.93 84.96

Hosseinzadeh
et al

89.94 89.09 90.27 89.68 86.48 86.15 85.95 86.05

Azad,
Salahuddin

et al

91.07 90.87 91.53 91.2 88.70 87.92 88.71 88.31

Ours 93.67 93.94 92.79 93.36 90.79 90.40 91.02 90.71

The bold values represent the best results.

5.57 s less than the third-ranking model by Hosseinzadeh et al. Our
model also demonstrates a reduction of 6.05 m in inference time
and a decrease of 47.96 million parameters. On the AKNN-SGFD
dataset, our model’s training time is 1.18 s less than Azad’s model
and 2.4 s less than Hosseinzadeh’s model. Additionally, our model
achieves a decrease of 8.91 m in inference time and a reduction

of 15.43 million parameters. For the FFC-SG and OWA-SGFD
datasets, our model’s metrics in training time, inference time, and
the number of parameters are superior to other models. Notably, on
the FFC-SG dataset, our model’s training time is 10.68 s less than
Andresen et al.‘s model and 5.50 s less than Abrao et al.‘s model,
with an evenmore significant reduction of 15.17 m in inference time.
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FIGURE 8
Comparative visualization of Specificity, Accuracy, Recall and F1-score indicators in different methods based on four data sets.

Overall, our model exhibits an average advantage of over 5% in each
metric across the four datasets, highlighting the effectiveness of our
approach in reducing computational resource consumption while
maintaining or enhancing predictive performance across diverse
datasets. This underscores the high practical value of our method in
the application of equipment fault detection in electronic systems.
Similarly, we visually represent the data results from Tables 7, 8 in
the following Figure 9.

According to the data in Tables 9, 10, the effects of optimizing
the model with different technical modules on the four datasets
are evident. Compared to the baseline model, adding the transfer
learning module can lead to some improvement in various metrics,
but the enhancement is limited. For example, on the ICS-SGAD
dataset, each metric, on average, only increases by approximately
13%. After incorporating the generative adversarial network
module, the model performance experiences a more significant
improvement, with an average increase of over 10% for each
metric across the four datasets.However, our proposed approach,

combining transfer learning and GAN neural network modules,
demonstrates the best results. This method leads to an average
improvement of nearly 30% or more for each metric across the four
datasets. Particularly noteworthy is the substantial improvement
observed on the AKNN-SGFD and FFC-SG datasets, where each
metric sees a significant increase. For instance, on the FFC-SG
dataset, each metric improves by over 30%. This strongly indicates
that the techniques we employed can comprehensively exploit
dataset information by effectively combining transfer learning and
adversarial learning approaches, significantly enhancing themodel’s
generalization ability across various tasks. Compared to using
transfer learning or GAN individually, our approach exhibits a
clear advantage, providing strong evidence for its potential value
in practical applications. Additionally, we visually present the data
results from Tables 9, 10 in the following Figure 10.

According to the data in Tables 11, 12, the resource consumption
of the model optimized with different technical modules on the
four datasets is evident. Compared to the baseline model, adding
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TABLE 7 Comparison of Training time, Inference time and Parameters indicators in different methods based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Training
time(s)

Inference
time(ms)

Parameters(M) Training
time(s)

Inference
time (ms)

Parameters(M)

Belhadi, Asma et al 57.17 149.42 292.82 54.32 138.14 284.17

Andresen et al 54.47 142.47 287.45 52.15 134.72 268.37

He, Shunfan et al 51.51 137.16 275.25 49.93 131.84 250.50

Abrao, Taufik et al 48.40 130.74 267.52 46.17 127.37 246.41

Hosseinzadeh et al 47.75 124.68 260.74 43.29 122.27 241.94

Azad, Salahuddin
et al

45.19 119.20 253.14 42.07 115.72 238.47

Ours 42.18 113.47 244.18 40.89 107.81 229.04

The bold values represent the best results.

TABLE 8 Comparison of Training time, Inference time and Parameters indicators in different methods based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Training
time(s)

Inference
time (ms)

Parameters(M) Training
time(s)

Inference
time (ms)

Parameters(M)

Belhadi, Asma et al 52.92 129.96 275.74 58.17 151.27 297.18

Andresen et al 50.55 123.34 268.76 56.04 142.78 284.94

He, Shunfan et al 48.44 120.14 255.42 52.12 138.75 280.13

Abrao, Taufik et al 45.37 116.92 248.05 49.17 132.72 274.99

Hosseinzadeh et al 42.16 113.55 240.81 47.21 129.40 267.13

Azad, Salahuddin
et al

41.12 108.71 234.39 44.47 124.13 259.90

Ours 39.87 101.75 227.41 43.91 112.02 248.38

The bold values represent the best results.

the transfer learning module can moderately reduce the model’s
training time, inference time, and parameter count. However, the
reduction is limited. For example, on the ICS-SGAD dataset,
the training time decreases by only 3.86 s, the inference time
decreases from 147.75 m to 138.47 m, and the parameter count
improves by 9.44 million.After incorporating the gan module, the
model’s computational costs decrease further, with training time and
inference time both reducing by around 10% on all datasets, and a
noticeable decrease in parameter count. The most effective results
are achieved when we connect the transfer learning module and the
generative adversarial networkmodule in series.This approach leads
to an average reduction of over 30% in training time, over 20% in
inference time, and over 15% in parameter count across the four
datasets. Particularly noteworthy is the more pronounced resource

savings on the FFC-SG andOWA-SGFDdatasets.This indicates that
our approach not only significantly improves model performance
but also substantially reduces the model’s computational costs,
demonstrating its substantial practical value. Finally, we visually
present the data results fromTables 11, 12 in the following Figure 11.

The model we proposed in this study outperforms the other
six classical models on four different types of real datasets, both
in terms of predictive performance indicators and computational
resource consumption. Especially in practical application scenarios
such as medical image recognition datasets FFC-SG and OWA-
SGFD, our model’s superiority is particularly evident, with an
average improvement of over 5% or more in each metric and
computational indicators compared to other models. This clearly
demonstrates the advantages of our approach in these types of

Frontiers in Energy Research 21 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1364445
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhong et al. 10.3389/fenrg.2024.1364445

FIGURE 9
Visualization of comparison of Training time, Inference time and Parameters indicators in different methods based on four data sets.

TABLE 9 Comparison of Specificity, Accuracy, Recall and F1-score indicators under different modules based on ICS-SGAD and AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

baseline 62.07 62.48 62.90 62.69 63.94 63.24 63.17 63.20

+ tl 75.04 74.21 74.93 73.54 75.19 75.65 75.36 75.50

+ gan 85.16 85.01 85.93 85.47 87.04 87.49 87.06 87.27

+gnn gan 90.74 90.48 91.25 90.86 92.78 92.07 92.68 92.37

TABLE 10 Comparison of Specificity, Accuracy, Recall and F1-score indicators under different modules based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Specificity
(%)

Accuracy
(%)

Recall (%) F1-score Specificity
(%)

Accuracy
(%)

Recall (%) F1-score

baseline 64.27 64.43 64.45 64.59 61.46 61.44 62.20 61.82

+ tl 77.75 77.84 78.62 74.23 75.57 75.31 75.92 75.61

+ gan 87.27 87.62 87.51 83.56 84.09 84.41 84.20 84.30

+gnn gan 93.36 93.61 93.63 93.34 90.07 90.21 90.68 90.44

tasks. Additionally, by comparing different technical modules, it can
be observed that our combined approach of transfer learning and
generative adversarial networks comprehensively exploits dataset
information, significantly improving model performance, while
also minimizing the computational burden associated with model
training and inference. This holds significant value in industrial
applications.

In summary, this series of experimental results thoroughly
validates the wide applicability and outstanding performance
of our proposed method in addressing real-world problems,
providing valuable insights for relevant applications. We will
continue to explore this direction in the future, aiming to
continuously enhance the model’s performance across various tasks
and contribute to solving practical issues.
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FIGURE 10
Comparative visualization of Specificity, Accuracy, Recall and F1-score indicators based on four data sets under different modules.

TABLE 11 Comparison of Training time, Inference time and Parameters indicators under different modules based on ICS-SGAD and
AKNN-SGFD data sets.

Model Datasets

ICS-SGAD dataset AKNN-SGFD dataset

Training time(s) Inference time
(ms)

Parameters(M) Training time(s) Inference time
(ms)

Parameters(M)

baseline 54.29 147.75 266.15 50.42 138.27 250.97

+ tl 50.43 138.47 256.71 47.45 126.73 244.37

+ gan 47.06 126.18 248.58 44.12 116.37 234.04

+tl gan 43.48 112.45 220.27 40.48 101.08 206.51
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TABLE 12 Comparison of Training time, Inference time and Parameters indicators under different modules based on FFC-SG and OWA-SGFD data sets.

Model Datasets

FFC-SG dataset OWA-SGFD dataset

Training time(s) Inference time
(ms)

Parameters(M) Training time(s) Inference time
(ms)

Parameters(M)

baseline 50.17 141.42 251.08 51.33 138.88 269.94

+ tl 47.22 131.37 246.19 48.34 129.38 259.37

+ gan 44.60 120.34 237.39 46.05 118.02 248.09

+tl gan 41.27 104.08 210.47 44.90 107.67 222.40

FIGURE 11
Comparative visualization of Training time, Inference time and Parameters indicators under different modules based on four data sets.

4.6 Discussion

In this study, we employed a comprehensive approach by
utilizing the Vision Transformer (ViT)model, transfer learning, and
generative adversarial networks. Starting from the perspective of
image processing, we seek to advance the digitization and intelligent
perception levels of power systems.With the introduction of the ViT
model, we accelerate the learning process through transfer learning
and use generative adversarial networks to augment training data,

bringing significant technological breakthroughs to the field of
power system image processing.

The key innovation of this research lies in the integration
of multiple advanced technologies tailored to the practical
requirements of emerging power systems. This integration aims
to enhance the efficiency of UAV image recognition and intelligent
power distribution network device fault detection. Through this
study, we provide substantial support for the application of image
processing and device fault detection in th e construction of
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emerging power systems, offering robust technical support for
the development of the power industry, a focus of interest in
related fields.

The significance of this study is manifested in several aspects.
Firstly, by introducing the Vision Transformer (ViT) model, we
have made significant progress in the field of power system image
processing, providing a powerful tool for digital transformation.
Secondly, the adoption of transfer learning effectively addresses
the issue of limited data, enhancing the model’s generalization
ability and achieving more robust and reliable results in tasks
such as power system equipment defect recognition. Lastly, the
innovative application of generative adversarial networks in power
system image recognition tasks contributes to augmenting training
data, improving the model’s accuracy in identifying various types
of power equipment defects. This research is both theoretically
innovative and strongly supported by experimental data, offering
new insights for research and applications in the field of power
system image processing.

Through experimental comparisons and analyses, our approach
has achieved significant improvements in specificity, accuracy,
recall, and F1-score metrics. Compared to traditional methods,
our model excels in UAV image recognition and intelligent power
distribution network device fault detection. Specifically, in the
detection of faults in intelligent power distribution network devices,
our model successfully captures subtle fault features, achieving a
diagnostic accuracy of over 90%, an improvement of more than
17% compared to traditional methods. Additionally, the model
demonstrates outstanding performance with an F1-score of around
91%.These experimental results not only validate the effectiveness of
our approach but also showcase its enormous potential in practical
Applications.

5 Conclusion

When discussing the continuous progress of technology, our
research focuses on addressing challenges in the fields of unmanned
aerial vehicle (UAV) image recognition and intelligent power
distribution network device fault detection. This study aims to
enhance recognition accuracy and efficiency by integrating cutting-
edge technologies such as the Transformer model, transfer learning,
and generative adversarial networks, providing innovative solutions
for the safety and stable operation of power system equipment.
In this chapter, we will review the research objectives, emphasize
the innovation and importance of the study, outline the research
findings, discuss limitations, and look ahead to future research
directions. This research is dedicated to addressing practical issues,
aiming to improve the performance of existingmethods and offering
new research perspectives for relevant areas in the field of emerging
power systems.

Despite the considerable progress we’ve made in our research,
there are still some limitations that require addressing. Firstly,
our experimental dataset may not comprehensively cover all
scenarios of power system images and distribution network device
faults. As a result, the model’s generalization performance could
be limited in certain specific situations. Secondly, while we’ve
employed generative adversarial networks to augment training data,
further practical verification is necessary to evaluate the model’s

generalization, particularly in extreme cases. These limitations
underscore the importance of future research focusing on
validation with more extensive datasets and enhancing the model’s
robustness and generalization capabilities. Additionally, the current
Transformer model still faces challenges in terms of interpretability.
To address this, we plan to introduce attentionmechanisms in future
research to enhance the model’s interpretability and better explain
its decision-making process.

Considering both the achievements and limitations of our study,
future endeavors can focus on refining the model’s performance and
broadening its applicability. Firstly, we can delve into optimizing the
model’s hyperparameters to bolster its effectiveness in navigating
complex scenarios. Secondly, validating our approach with more
comprehensive datasets across diverse real-world application
contexts will bolster its reliability. Furthermore, integrating
advanced methodologies like self-supervised learning shows
promise in elevating the model’s performance, particularly in
scenarios with scarce data.

In summary, our research successfully integrates cutting-edge
technologies, including the Transformer model, transfer learning,
and generative adversarial networks. This integration leads to
significant advancements in unmanned aerial vehicle (UAV) image
recognition and intelligent detection of distribution network device
faults. Our approach not only holds promise in theory but also
receives robust validation from experimental data. By pioneering the
fusion of these technologies, we introduce important innovations in
power system image processing. This lays a strong foundation for
future research and applications in related domains. The outcomes
of our study are poised to chart new paths in image processing
and equipment fault detection within power systems, offering
innovative solutions for the industry’s digital transformation and
intelligence.Through this endeavor, we establish a solid groundwork
for further exploration and application in power system image
processing. We are confident that these findings will catalyze
innovative developments in related fields, providing invaluable
technical support for the establishment and evolution of new power
systems. We anticipate that our work will inspire fresh insights
in the realm of novel power systems and serve as a conduit for
collaboration and knowledge exchange between academia and the
power industry.
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