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Deep learning-based solar power
forecasting model to analyze a
multi-energy microgrid energy
system

Sai Sasidhar Punyam Rajendran* and Alemayehu Gebremedhin

Department of Manufacturing and Civil Engineering, Norwegian University of Science and
Technology, Gjøvik, Norway

Multi-energy microgrids (MEM) are a new class of power grids focusing on
the distributed form of generation and integrating different energy sectors.
The primary idea of MEM is to increase renewable energy share in the final
energy demand while maintaining the energy balance at all times. However,
integrating renewable technology into the grid has some technical limitations
that must be analyzed before being deployed in the real world. This study
examines the impact of increasing renewable penetration and portfolio design
on a multi-energy microgrid energy system from a technical standpoint. As
the accuracy of the system analysis is primarily a factor of modeling accuracy,
an artificial neural network-based model is trained and deployed to develop
forecasts for solar power generation. The forecasting model is integrated with
the EnergyPLAN simulation tool to analyze the multi-energy microgrid system
regarding renewable share in primary energy consumption and import/export of
energy from the primary grid. TheNorwegian energy system is considered a case
study, as the energy generation and consumption patterns are interesting from
both renewable energy and demand contexts for a cold country. One interesting
conclusion is that the portfolio and capacities of coupling components such as
combined heat and power plants negatively impact renewable integration, while
heat pumps positively impact renewable integration by increasing renewable
energy utilization. Additionally, the photovoltaic system size has a high degree
of correlation to imports and exports compared to wind generation systems.

KEYWORDS

multi-energymicrogrid, energy system analysis, solar power forecasting, deep learning,
artificial neural network, EnergyPLAN

Abbreviations: ANN, artificial neural network; ARIMA, auto-regressive integrated moving average;
ARMA, auto-regressive moving average; CEEP, critical excess electricity production; CHP, combined
heat and power system; CPP, central power plant; DER-CAM, Distributed Energy Resources Customer
Adoption Model; DL, deep learning; EEEP, exportable excess electricity production; GW, giga watt; kW,
kilo watt; kWh, kilo-watt hour; MAE, mean absolute error; MEM, multi-energy microgrid; ML, machine
learning; MWh,mega-watt hour; NTNU, Norwegian University of Science and Technology; PES, primary
energy supply; PV, photovoltaic systems; RES, renewable energy share; RMSE, root-mean-squared
error; RNN, recurrent neural network.
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1 Introduction

Climate change has forced us to reconsider the conventional
means of meeting the energy demand, using fossil fuels, and
stimulated research to develop clean and sustainable energy systems
(Sorrell, 2015). Generation of electrical energy from renewable
sources has been an attractive option as they have minimal
emissions and are available indefinitely. Recent advancements, such
as reduced manufacturing costs, improved design, new battery
technologies, better control strategies, and incentives provided
by the government, have promoted the installation of renewable
systems. However, some economic and technological challenges
exist when integrating renewable systems into the grid, such as
high investment costs, intermittent generation, the need for batteries
to provide temporal support, and dependence on the climate and
geographical location (Ahmed et al., 2020). All these factors have
made the grid integration of renewable energy systems a challenge
and an exciting research area.

The current electric distribution grids cannot handle renewable
integration as they are primarily designed for centralized power
generation (Lopes et al., 2007). Consider the generation profile of
photovoltaic (PV) systems, which reach peak power production
close to noon. If most households are equipped with PV systems
and the excess electrical generation is fed to the grid, this will lead
to grid instability. These issues have led to a concept called the
weak grid, which is the inability of the grid to handle the forced
injection of excess renewable generation (Alam et al., 2020). Instead
of injecting the power into the grid, there is also an option to discard
the excess generation, known as renewable curtailment, which is not
an energy-efficient solution.

Much research has been dedicated to efficiently accommodating
excess renewable generation, reducing renewable curtailment, and
improving the overall energy efficiency. One optimal strategy is
to diversify the generation portfolio with some non-renewable
systems, such as diesel generators and micro-turbines, and auxiliary
components, such as energy storage systems. Microgrids are a class
of distribution grids that can efficiently coordinate renewable energy
systems by designing energy management strategies to improve
reliability, resilience, security, and efficiency (Hussain et al., 2019).

The concept of microgrids was further extended tomulti-energy
microgrids (MEMs) integrating multiple energy sectors such as
electrical, transportation, heating, and cooling sectors, reducing
emissions and energy wastage (Perry et al., 2008; Bartolini et al.,
2020). Coupling components such as combined heat and power
(CHP), heat pumps, and electric boilers couple electrical and heating
sectors, while electric vehicles and charging stations couple electrical
and transportation sectors (Calise et al., 2021). Heat pumps and
electric boilers efficiently convert the excess renewable generation
and store it in heat storage systems, which are 50 times cheaper
than battery storage systems (Aydin et al., 2015). Vehicle-to-grid
and vehicle-to-building technologies enable electric vehicles to act
as mobile energy carriers and support the grid in times of need. All
these factors show that integrating multiple energy sectors increases
the synergy of the system and improves the energy efficiency by
reducing wastage.

Even though MEMs are an effective solution to developing
sustainable and clean energy systems, designing such systems is
challenging because of the underlying coupling characteristics and

the complex interaction between componentswith diverse operating
characteristics (Zhou et al., 2021). The installation cost of MEM is
high; therefore, there is a need to evaluate the energy system in terms
of the technical and economic feasibility. Hence, in the planning
phase of MEMs, a feasibility analysis is critical in evaluating the cost
and assessing the risk based on the existing infrastructure, available
renewable generation, energy demand, and consumption patterns
(Martínez Ceseña et al., 2018).

1.1 Literature study

An energy system can be analyzed in different aspects such as
technical, economic, environmental, social, reliability, sustainability,
and resilience. Vidal-Amaro et al. (2015) studied the Mexican
energy system and designed the portfolio to reduce the dependence
on fossil fuels. In contrast, the energy system of Pecs was analyzed in
Kiss (2015) from the sustainability, energy security, and affordability
perspectives. Sandvall et al. (2015) focused on utilizing the excess
heat to reduce the generation of biomass-based CHP and the
net CO2 emissions. Eales et al. (2018) focused on the technical
assessment of the solar-based microgrid in a developing country,
Malawi. One intriguing observation is that the expected energy
usage is five times higher than the designed energy limit. Hence, the
forecast of energy usage in developing countries is highly uncertain
and should be considered when designing the supply in the early
stage. An interesting case study developed in Ahmad and Alam
(2017) proved that operating the PV and storage systems in grid-
connected modes is the most optimal choice from economic and
environmental perspectives.

Abdilahi et al. (2014) analyzedaSomalilandurbanarea to reduce
the energy cost and increase renewable penetration. One significant
finding is that increasing therenewablepenetrationby58%decreased
energy costs by 30% and net present cost by 25% compared to the
diesel-based microgrid. Singh et al. (2016) focused on developing a
feasibility study to design a cost-effective microgrid energy system
and determined the optimal capacities of the PV, wind, battery, and
biomass energy systems to meet the load for a rural area.The energy
system was also simulated for a critical case, such as the loss of an
energy source, and the system performance was still satisfactory. In
contrast, Orhan et al. (2014) performed feasibility studies for islands
in Australia from both economic and environmental perspectives.
Sahoo et al. (2015) focused on analyzing a solar-basedmicrogrid for
an educational institution to reduce fuel costs and emissions and
increase renewable usage by 50%.

A life cycle assessment study was developed in Li et al. (2016)
for an industrial microgrid in China.The study analyzed the impact
of increasing renewable penetration on reliability, emissions, and
improved energy efficiency by utilizing the local waste heat. There
was a significant reduction in energy usage by 57% and emissions by
66% compared to the existing system, only if there are no restrictions
in the land area where renewables are deployed. According to
the study by Parag and Ainspan (2019), the net benefits to the
Israeli economy by moving from conventional power generation
to microgrids are approximately 13 million dollars. Adefarati and
Bansal (2019) analyzed the role of green technologies, such as
renewables, and assessed in terms of life cycle cost and emissions
and reliability indices.
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Most of the studies focused on the energy system’s performance
in terms of economics and emissions. However, increasing the
renewable capacity causes some technical issues because of its
intermittence, and the required measures have to be taken in the
design stage to ensure performance is maintained. Hence, this study
analyzes the MEM to improve the system performance regarding
sustainability, grid stability, and energy utilization.

One essential requirement in performing the analysis is the
development of mathematical models that can help analyze the
energy system and its performance in the real world. However, no
such mathematical models can represent the real-world scenario
100%. Notably, modeling renewable energy systems is challenging
because the generation depends on many factors such as weather,
cloud coverage, wind speed, geographical location, and design
(Ahmed and Khalid, 2019). Much research has been dedicated
to developing forecasting models to predict renewable generation
and design the energy system’s size, dispatch strategies, and
market operation.

Different modeling techniques have been used to develop
mathematical models that can be used for solar power forecasting,
such as physical, statistical, spatial correlation, probabilistic, and
intelligent models (Ahmed and Khalid, 2019). Physical forecasting
models are better for short-term predictions and use physical
parameters instead of historical data and complex meteorological
models. Studies (Dolara et al., 2015; Mayer and Gróf, 2021)
extensively review the physical forecasting models used in energy
system analysis. In contrast, statistical models use mathematical
models that use historical data to detect a pattern or relationship
in the data using time series models such as curve fitting,
moving average (Pascual et al., 2015), and auto-regressive models
(Louzazni et al., 2020). A combination of auto-regressive and
moving averages, called ARMA, has proved to give a better trade-off
in performance (Huang et al., 2012). However, when the forecasting
horizon of these models is large, the model performance decreases
(Ahmed and Khalid, 2019). Another commonly used forecasting
model is probabilistic-based modeling. The solar power generation
is represented using a normal distribution function, and the
parameters are estimated using the historical data (Waqar et al.,
2019).

Even though the above models have successfully predicted
solar generation within acceptable forecasting accuracy, when the
renewable penetration is high in an energy system, much better
forecasting models are needed to capture the complex relationships
between multiple factors. This is where intelligent forecasting
models such as machine and deep learning excel. Deep learning
models have been phenomenal compared to machine learning
algorithms as they can handlemassive quantities of data,model non-
linearity, and capture complex patterns. As they extract the features
automatically, their performance is relatively high (Dargan et al.,
2020). Moreover, with recent advancements in smart metering
technology, the data availability has increased, which improves the
modeling accuracy.

Wazirali et al. (2023) have provided a detailed review of the
application of intelligent modeling techniques for energy and
load forecasting. Rodríguez et al. (2018) developed an artificial
neural network (ANN)-based solar power prediction model for
microgrid control. Netsanet et al. (2016) used the ANN modeling
technique to develop a PV power forecasting model. Additionally,

the prediction accuracy was improved by correlation analysis,
sensitivity analysis, and Garson’s algorithm to find the optimal
parameters of the ANN.Moreira et al. (2021) focused on developing
a PV forecasting model for the energy management of microgrids
using the ANN ensemble and applied mixture design of experiment
(MDE) technique to find the best networks for the ensemble.
The fuzzy logic-based model was developed for pre-processing
the dataset and improving the prediction accuracy of the ANN
model in Sivaneasan et al. (2017). A long short-term memory
network, a specialized variant of the class recurrent neural network,
was employed to construct the PV forecasting model, as detailed
in Qing and Niu (2018). Further advancements were made by
researchers in Wen et al. (2019), who expanded this approach for
load forecasting and formulated an optimal strategy for microgrid
load dispatch.

A detailed review of the modeling techniques and tools for
multi-energy systems is provided by Klemm and Vennemann
(2021). Among the 13 identified tools, only EnergyPLAN and
oemof are notable for their capacity to consider various assessment
criteria, including economic, emissions, energy efficiency, and
social aspects. Software tools such as HOMER (Abdilahi et al.,
2014; Orhan et al., 2014; Kumar et al., 2019), energyPRO (Kiss,
2015), and DER-CAM (Stadler et al., 2014; Jung and Villaran, 2017;
Mashayekh et al., 2017)were applied to develop cost-efficient energy
systems. EnergyPLAN was the tool of choice for two case studies
in Østergaard (2012); Østergaard (2013). The former case study
validated the role of compression heat pumps in efficient wind
power integration, while the latter analyzed the role of different
energy storage systems. Prina et al. (2019) integrated a multi-
objective evolutionary algorithm and EnergyPLAN for the long-
term planning of the Italian energy system. A solar energy-based
MEMplanningmodel for Iran was developed using EnergyPLAN in
Noorollahi et al. (2021). Herc et al. (2022) integrated EnergyPLAN
and python-based optimization software EPLANopt to design the
energy system.

However, most studies have given little importance to renewable
forecasting accuracy when analyzing the energy system. Hence,
this study mainly focuses on developing an accurate ANN-based
forecast model and integrating it into a simulation tool to study
the MEM. Section 2 briefly discusses the methodology designed in
the study. Section 3 discusses the modeling of ANN-based solar
power forecasting and the EnergyPLAN simulation tool to evaluate
the MEM energy system. Section 4 discusses the forecasting model
performance and developed scenarios to assess the MEM from a
technical standpoint. Section 5 concludes with some critical insights
from this study.

2 Methodology

Analyzing the energy system before installing it can help
understand its performance and plan some energy strategies and
policies to improve sustainability of the energy system. Remarkably,
the impact of a higher share of renewable energy systems in terms
of grid stability, reduction in emissions, and cost-effectiveness has to
be studied thoroughly. Figure 1 shows the different steps involved in
developing a solar power forecasting model and analyzing theMEM
system using the EnergyPLAN simulation tool.
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FIGURE 1
Steps in developing the solar power forecasting model and integrating it with the EnergyPLAN simulation tool.

2.1 Artificial neural network

ANNs belong to the class of deep learning with an architecture
that, to some degree, mimics the neurons in the human brain. A
general architecture of ANNs contains neurons arranged in layers
connected by weights. The data are input to the model, and in the
training phase, the weights of the connections are updated based
on the optimization algorithm, such as the stochastic gradient, to
minimize the training loss. Figure 2 shows an example of a simple
feed-forward ANN with a single hidden layer, and the output of a
node j in layer i is given by Eq. 1 (Wen et al., 2019):

yj = f(
n

∑
k=1

ωkjyk − θj), (1)

where f is the activation function and ωkj is the weight
connecting the nodes j and k in layers i and i− 1. yk is the output
from node k in layer i− 1, θj is the bias of node j, and n is the total
number of nodes in layer i− 1. After calculating all the outputs, the
error is calculated by Eq. 2 (Wen et al., 2019):

e = (yp − ya)
2. (2)

yp is the predicted or forecasted value, and ya is the actual value.
The weight parameters are updated when processing all the samples

in the training dataset using Eq. 3 (Wen et al., 2019), where γ is the
learning rate.

ωkj← ωkj − γ
∂e
∂ωkj
. (3)

The training phase is divided into three phases: the feed-
forward phase, where the data are passed through all the layers and
computations are performed using the weights. The output layer
gives the final prediction based on learning the patterns from the
data. The weights are adjusted using the back-propagation training
algorithm based on the error between predicted and actual data.
One key advantage of the ANN is the ability to capture the non-
linear patterns in the data because, after the calculation from a
single neuron, it is also passed through an activation function before
feeding it to the next neuron.

2.2 EnergyPLAN simulation tool

A wide range of computer software applications has been
deployed to model and analyze the energy system, and they
fall under either the optimization or simulation category.
Optimization methodologies that utilize an endogenous framework
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FIGURE 2
Simple feed-forward network with one input, hidden, and output layer.

are considerably more intricate than simulation models that adopt
an exogenous perspective.

EnergyPLAN is a freeware software program developed by
a research group at Aalborg University. These are primarily
used for modeling smart energy systems with multiple energy
sectors and identify pathways to increase renewable energy share
(RES), as shown in Figure 3. It is a deterministic and analytical
simulation tool that helps analyze the energy system performance
for high renewable penetration. The primary advantage of
EnergyPLAN is that it provides multiple assessment criteria
such as economy, energy efficiency, social, and emissions. In
contrast, other software tools like HOMER, DER-CAM, and
energyPRO only provide the option to analyze the system from
a financial standpoint (Klemm and Vennemann, 2021). Moreover,
according to Bouw et al. (2021), EnergyPLAN distinguishes itself
from the other analysis tools by providing remarkable detail and
consideration to modeling each sector, such as electricity, heating,
cooling, industry, and transportation. This approach helps capture
complex interdependencies, understand the synergy between
multiple energy sectors, and develop energy strategies to reduce
energy wastage.

The EnergyPLAN simulation tool has a simple user interface
and provides detailed models for energy components such as PV
power, onshore and offshore wind power, CHP plants, wave power,
hydro, heat pumps, concentrated solar power, tidal power, bio-
based, and power-to-X technologies.Themodel simulates for 1 year
with a 1-h resolution, and the user has to select the capacity
and hourly distribution profiles for the components to analyze the

system. Additionally, the user can also consider adding nuclear,
geothermal, and waste incineration plants to the portfolio and
assess the system. Energy demands such as electrical, heating,
transportation, and industrial demands can bemodeled, making the
analysis more diverse.

EnergyPLAN allows the user to select between technical and
economic optimization strategies to study the system performance
for the designed portfolio. The units are dispatched based on the
marginal cost and market profits in an economic optimization
strategy. However, in the technical optimization strategy, the units
are dispatched based on the pre-defined endogenous priority, giving
preference to RES and minimizing the use of CHPs and boilers. The
output of the EnergyPLAN simulation tool is the annual production,
fuel consumption, import/export of electricity, total investment
and operation costs, and carbon dioxide emissions aggregated
over a year.

A detailed review and the application of EnergyPLAN
across various geographical locations and research objectives are
provided in Østergaard et al. (2022). An advanced analysis of
the EnergyPLAN software tool is provided in Lund et al. (2021)
that explains the algorithms and computational structure. The
main advantage of EnergyPLAN is less computation time for
the simulation and the pre-defined energy system models. For a
feasibility study, the main objective is to study the existing system
response to new policies, such as increased RES, adoption of new
technologies, demand response, and management strategies. In this
context, EnergyPLAN is selected as the tool for analyzing a MEM
from a technical standpoint.
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FIGURE 3
Technologies and energy flow on which EnergyPLAN is developed (Lund et al., 2021).

3 Model

3.1 Forecasting model

The dataset is the main requirement for developing an ANN-
based forecasting model, and the model accuracy is a factor in the
quality and quantity of the data. Solar power forecasting primarily
comes under the supervised learning class, in which the dataset
contains information such as weather elements that influence the
generation and the corresponding generation value.The solar power
generation data are collected from the solar panels installed on a
campus building at NTNU, Gjøvik. The panels used are SunPower
X20-327-COM1, comprising a total of 280 modules mounted on
the flat roof at an inclination of 10° with the azimuth angles of
50° and −130°. The total PV area is 456.6 sq. m, with a peak
power production of 91.56 kW. The corresponding weather data
for this location are collected from the website2, which has 20
weather elements.

1 http://www.solardesigntool.com/components/module-panel-

solar/Sunpower/2731/SPR-X20-327-COM/specification-data-

sheet.html

2 https://www.visualcrossing.com/

Basic analysis plots on the solar power generation data are
shown in Figure 4, giving a basic understanding of the trend of the
generation profile. Figures 4A, B give the generation profile for three
random days in the month of April and the whole year. The figures
indicate that solar power is susceptible to the time of the day, with
generation reaching a peak at noon when there is abundant solar
radiation and the season with the daily average being high in the
summer. The correlation Figure 4C gives a basic understanding of
the weather elements that impact solar power generation the most.
It is clear that solar radiation, UV index, and temperature positively
impact PV generation, while humidity and snow depth negatively
affect PV generation.

3.1.1 Model architecture
An ANN has one input and output layer, and the number of

hidden layers controls the capacity and complexity of the model to
handle data. After experimenting with different numbers of hidden
layers, Figure 5 shows the ANNmodel with three hidden layers used
in this study. Each node in the input layer represents an input feature,
and there are a total of 26 input features that are used to train the
model. Since the model is trained on solar power generation data
collected over a year, there are 8,670 samples. Of these samples, 75%
is used for training and the remaining for validation.
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FIGURE 4
Basic plots on the PV power generation dataset. (A) Solar power generation profile for a period of 3 days in the month of April. (B) Solar power
generation, averaged over the day, for a whole year classified based on the seasons. (C) Correlation plot between input features and solar power
generation.

3.1.2 Model regulations
In the training phase of the ANN-based forecasting model,

the following regulations are adopted to improve the model

performance. Since the input features have different units and scales,
to avoid bias to certain input features and improve convergence,
normalization is done to convert training data into scalar by using
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FIGURE 5
Schematic representation of the artificial neural network with three hidden layers.

Eq. 4, where xi is the original value, and min and max are the
minimum and maximum values of the corresponding variable,
respectively.

x′i =
xi −min

max−min
. (4)

Overfitting is a common issue in the model training phase and
is more profound if the data have much noise. Hence, a dropout
layer is added to improve the model performance on the unseen
data. ANNs can automatically extract the features since solar power
is specifically dependent on the season. An additional categorical
column is added, determiningwhether the season iswinter, summer,
spring, or autumn, on which one hot encoding is done before
inputting it to the model.

Adam optimizer is used to update the model weights as
it performs better in convergence for larger datasets. Since the
activation function is the parameter that can capture the non-
linearity, the ReLu activation function is suitable for regression class
problems and is used for the hidden layers. However, the sigmoid
activation function is used for the output layer.

Model tuning is required to select which model has the best
performance. Many factors affect the model performance, such as
the number of hidden layers, learning rate, optimizer, number of
neurons, and activation function. To perform a hyperparameter
search, visualize, and document the training metrics, a Python
library called wandb3 provides a sweep feature to assess the model
performance for different combinations of hyperparameters. The
search space used for hyperparameter tuning is shown in Table 1.

3.1.3 Model evaluation
The developedmachine learningmodel is regression-based.The

most common metrics used for the model evaluation are mean

3 https://wandb.ai/site

TABLE 1 Search space of hyperparameters.

Hyperparameter Range

Number of neurons in layers 2, 3, and 4 [32, 64, 128]

Epochs [50, 100, 200]

Dropout size [0.2, 0.3, 0.4]

Batch size [8, 16, 32, 64]

absolute error (MAE), mean-squared error (MSE), root-mean-
squared error (RMSE), and R-squared score. MAE, RMSE, and R-
squared score are calculated based on Equations 5–8, where yi, ŷi,
and ̄y are the actual, predicted, and mean values, respectively, and
the total number of samples in the dataset is denoted by n (Wen
 et al., 2019).

MAE = 1
n

n

∑
i=1
|yi − ŷi|, (5)

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2, (6)

RMSE = √ 1
n

n

∑
i=1
(yi − ŷi)

2, (7)

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − ̄y)

2
. (8)

The lower the MAE and RMSE values, the better the model
performance. R-squared score, or the coefficient of determination,
is a much better metric to assess the fit of a regression model that
quantifies howmuch variance in the target variable can be explained
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by the input variables. The value ranges from 0 to 1, and the closest
score to 1 suggests themodel has a better fit, meaning that themodel
can capture the underlying relation between the input features and
the target variable.

3.2 EnergyPLAN model

In the last phase, the deep learning model developed in the
above section is used to develop predictions and create a distribution
file, which serves as the input to the EnergyPLAN simulation
tool. The first input is the aggregated demand for a year and the
corresponding distribution file. There is also an option to provide
additional electrical demand, electric heating and cooling demand,
flexible demand, and fixed import/export. The heating demand in
EnergyPLAN can be classified as district heating and individual
heating, consisting of micro-CHPs, boilers, solar thermal heating,
heat pumps, and electric heating. Additional energy demand sectors
such as cooling, industry, transport, and desalination can also
be designed.

The user can select the renewable energy source, capacity,
stabilization share, corresponding distribution file, and correction
factor in the supply section. The capacities of CHP plants, boilers,
compression heat pumps, and solar thermal inputs are designed for
the thermal energy system. Electric and thermal storage systems can
also be included in the portfolio to support the system in terms
of need. The user can also select the type of fuel inputs to the
generation systems.The investment and operational costs for all the
energy components, fuel, and electricity market prices are updated
in the model.

EnergyPLAN conducts technical energy system analysis in four
stages, as shown in Figure 6. Initially, it calculates annual and hourly
electricity production based on distribution files and capacities
provided as the input. In the second stage, computations that do
not involve electricity balancing, such as heat demand, non-flexible
electricity demand, and heat provided by the industry, are done. In
the third stage, a series of steps are carried out to give a solution to
minimize fuel consumption. In the first step, the heat production
from the renewable systems and waste heat from industry is given
priority. Subsequently, electricity demand is adjusted based on
flexible demand specified as an input to match the supply given
certain constraints. If balancing the electrical supply and demand
is selected as the operation strategy for the CHP, calculations in step
1 are replaced by an approach in which heat pumps are deployed at
CHP plants to minimize the electricity export.

Hydropower is optimized in step 4 to reduce the critical excess
electricity production (CEEP) and exportable excess electricity
production (EEEP). The operation of the electrolyzer and thermal
storage system is optimized in steps 6 and 7 to reduce the CEEP
and EEEP and improve the system’s flexibility. The vehicle-to-
grid characteristic of electric vehicles is utilized in step 8 to
balance the supply and demand further. Electricity storage is
modeled as hydro storage, and the primary operating strategy
is to avoid CEEP. In the final step, strategies to reduce the
critical excess electricity production involve adjusting the renewable
generation, CHP operations, implementing electric heating, CO2
hydrogenation, and giving priority based on user specification. In

the final stage, EnergyPLAN computes all the energy system costs
(operating costs and fuel costs), emissions, exports, and imports.

The output can be copied to a clipboard, displayed on a screen,
or printed, and EnergyPLAN also offers the option to visualize the
results graphically. There is also an option to run serial calculations
for a single input for a different range of input values and select the
output parameter to be tracked. Furthermore, the toolbox developed
in Cabrera et al. (2020) is used to run multiple energy system
scenarios with varying capacities of renewable energy systems and
for different portfolios.

4 Results and discussions

4.1 Norwegian energy system

Exploring energy system design for cold climates offers valuable
insights from both generation and demand perspectives. This paper
focuses on Norway as a case study due to the distinct characteristics
of PV generation in such regions. Notably, PV generation in Norway
exhibits negligible output during certain winter days due to short
daylight hours, limited solar irradiance, and snow accumulation on
panels. Conversely, the energy demand in Norway during the winter
months is high, predominantly due to the reliance on electric heating
to satisfy the increased heating requirements.

Based on the report by Det Norske Veritas (DNV4), Norway
has electrified almost 48% of its final energy consumption, and
most of the power generation is from renewable hydropower, 92%.
However, when considering only the residential sector, 53% of the
energy is used for space heating and 20% forwater heating.However,
according to Statnett5, there will be an increase in the electric
demand by 24 TWh by the year 2027. Following this, there is an
additional investment of 60–100 billion NOK to increase electricity
generation and upscale the electricity grid. Hence, adopting MEMs
is beneficial as they can operate in a stand-alone mode, avoid
additional investments in the transmission lines, and better handle
the integration of renewables and prosumers.

The dataset designed in Berg and Löschenbrand (2022) is
downloaded and analyzed for the Norwegian energy system. The
readings from smart meters installed in Trøndeleg, Norway, are
collected. The load dataset readings are at a 1-h resolution between
1 January 2015, 00:00 a.m. and 31 December 2015, 23:00 p.m. For
security purposes, the readings are shown as a ratio to maximum
load. Despite the dataset originating from 2015, our primary interest
lies in the load profile which allows for its applicability. The
wholesale electricity prices from Nord Pool are also provided in the
energy dataset. The load profile, solar power generation profile, and
electricity prices are converted into distribution files and used as
input for the simulation.

4 https://www.dnv.com/Publications/energy-transition-norway-

2021-212201

5 https://www.statnett.no/en/about-statnett/news-and-press-

releases/news-archive-2022/increased-consumption-results-in-a-

negative-norwegian-energy-balance-from-2027/
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FIGURE 6
Flowchart of the EnergyPLAN technical simulation strategy (Lund et al., 2021).

4.2 Solar power forecasting

The ANN-based forecasting model developed in Section 3.1 is
trained on PV generation data obtained from a university campus

in NTNU, Gjøvik. The dataset consists of PV power output for 1
January 2020–31 December 2020, of which 75% is used to train
the model and the remaining for testing. The model is tuned for
different combinations of hyperparameters, and the model with the
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FIGURE 7
Analysis of model performance measured by mean-squared error (MSE) loss across epochs.

FIGURE 8
Comparison between the actual and forecasted power generation from the ANN model.

best performance in terms of R-squared score is selected. Figure 7
shows the selected model performance regarding the mean-squared
error for the training and validation datasets. The R-squared score
for themodel on the test dataset is approximately 0.873, which shows
that the ANN model has a good fit. The values of MAE, MSE, and
RMSE are 0.0302, 0.0048, and 0.069, respectively. Figure 8 shows a
comparison plot on the forecasted values and actual data.

4.3 EnergyPLAN simulation

The main focus in this paper is to examine how the
system performs when increasing the PV and wind capacities.
Furthermore, it explores the potential benefits of integrating
coupling components like CHP plants and heat pumps into the
energy mix.
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TABLE 2 Portfolio for developed scenarios.

Scenarios PV Wind CPP CHP HP Boilers

Scenario A ✓ ✓ ✓ × × ×

Scenario B ✓ ✓ ✓ ✓ × ✓

Scenario C ✓ ✓ ✓ × ✓ ✓

Scenario D ✓ ✓ × ✓ ✓ ✓

TABLE 3 Capacities of energy components used in the study.

Energy component Capacity

PV [20,24,29,35,42,51,62] kW

Wind [20,24,29,35,42,51,62] kW

CPP [10,14,20] kW

CHP [10,14,20] kW-e

HP [10,14,20] kW-e

Boilers 200 kJ/s

The total energy demand for a Norwegian household is
established at 19.6 MWh/year6. Assuming the MEM services 50
residences, the aggregated electrical and heating consumption is
estimated at 0.45 GWh/year and 0.57 GWh/year, respectively. This
study develops four distinct scenarios with different portfolios, as
shown in Table 2. In scenario A, the central district heating network
is the only source for meeting heating needs. In contrast, scenarios
B and C operate independently of the central district network,
with CHP, HP, and auxiliary boilers meeting the heating demand.
The scenarios are first modeled in the EnergyPLAN simulation
tool and saved as a template. The MATLAB toolbox simulates the
energy system for varying capacities of energy components, as
shown in Table 3.

The output from the EnergyPLAN simulation tool, after
developing the scenarios and running the simulation, includes
annual costs, carbon emissions, import, export, fuel consumption,
and renewable share. RES, import, and export are consideredmetrics
to assess the performance of theMEMsystem for different scenarios.
The outputs from the simulation are recorded and imported into
Python to analyze the system results graphically and conclude.

4.3.1 Renewable energy share
RES can be considered from two different aspects: primary

energy consumption and electricity production. As we consider the
energy system as a whole, RES in primary energy consumption is
considered in this analysis as it gives a clear idea of how renewable

6 https://www.ssb.no/435431/energy-consumption-in-households-in-

norway.gwh-kwh

and clean generation meets the total energy demand (electrical and
heating).The variation in the RES for scenarios A, B, and C is shown
in Figure 9.

In scenario A, as depicted in Figure 9A, the RES decreases as
the power plant capacity increases. A similar pattern is evident in
scenario B, as illustrated in Figure 9B, which recorded the highest
RES at 18.6%when CHP capacity is at the least. Conversely, scenario
C, as demonstrated in Figure 9C, shows an upward trend in RES as
heat pump capacity increases, achieving the highest renewable share
among the scenarios at 43%.

An increase in power plant capacity, from 10 to 20 kW, led
to a 10.71% reduction in the RES. Consequently, the increase in
the CHP capacity decreases the RES by 8.06%. This suggests that
increasing the CHP capacity has an inverse impact on the adoption
of renewable energy. The reason is that since CHP systems are the
primary heat source, power generation is relatively high due to the
proportional relationship between electricity and heat generation in
a CHP system.

When the heat pump capacity is increased from 10 to 20 kW-e,
the increase in the RES is approximately 47%. This shows that heat
pumps positively impact renewable energy utilization and reduce
energy wastage. In addition, one key takeaway is that the increase
in the RES is significantly higher with an increase in wind capacity
compared to PV capacity.

4.3.2 Import
In the case of energy systems with high renewable penetration,

one common issue is the need for import from the primary grid
due to renewable technology’s uncontrollable, non-dispatchable,
and intermittent nature. Particularly, since the PV generation is
almost zero in the winter season, the high PV installations will have
negligible power generation and require imports from the primary
grid. This is particularly an issue when designing self-sufficient and
sustainable energy systems. Hence, the energy import when the
renewable share is increased must be studied in detail in the design
stage to make optimal decisions on capacity. Figure 10 shows the
energy imported from the primary grid for the developed scenarios.

For scenarios A and B, as shown in Figures 10A, B, one
observation is that the increase in the power plant and CHP capacity
decreases the import from the primary grid. Interestingly, the energy
import trend is the same, irrespective of having either power plant
or CHP in the portfolio. For both scenarios, when the PV and wind
capacity are increased from 20 to 62 kW, the decrease in the import
is approximately 30%.

Conversely, as the heat pump capacity is increased in scenario
C, as shown in Figure 10C, there is an increase in the import, with
the highest import of all scenarios. The decrease in the imported
energy when moving from high to low renewable penetration is
approximately 24%. The primary reason for this phenomenon is
that in scenario C, the heat demand is predominantly addressed by
heat pumps and boilers, leading to an increased electrical demand
compared to other scenarios where heat is supplied by a central
district heating network or CHP systems.

4.3.3 Export
One of the primary advantages of having a grid-connectedMEM

is that the microgrid can provide grid stability at times of need.
However, when excess electricity is exported to the primary grid,
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FIGURE 9
Assessment of renewable energy share in primary energy supply for scenarios (A), (B), and (C).

it will lead to grid instability and congestion as the primary grid
is not designed to handle it. This issue is more profound in PV
systems as the maximum generation is achieved at a particular time,
leading to an issue of curtailment. Hence, when increasing the PV

capacity, the impact on the export has to be analyzed, and measures
have to be taken to ensure that the excess energy generation
can be utilized locally instead of feeding it to the grid. This will
reduce energy waste and improve renewable energy utilization. The
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FIGURE 10
Assessment of imported energy from the main grid for scenarios (A), (B), and (C).

variation in the energy exported for different scenarios is shown
in Figure 11.

Since renewable energy is uncontrollable, all the exported energy
is the excess renewable generation that cannot be utilized locally.

In scenario A, as shown in Figure 11A, the increase in exports to
the primary grid is solely due to the increased renewable capacity
independent of power plant capacity. Interestingly, the increase
in the CHP capacity in scenario B, as depicted in Figure 11B,
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FIGURE 11
Assessment of exported energy to the main grid for scenarios (A), (B), and (C).

has increased the export. This finding supports the observation
presented in Section 4.3.1, which suggests that CHP systems
negatively influence the adoption and efficiency of renewable
energy sources.

Scenario B has the highest export of 60.23 MWh/year,
while scenario C, as shown in Figure 11C, has the
lowest export of 11.37 MWh/year. This shows that
heat pumps can better handle higher capacities of
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TABLE 4 Comparative analysis of performance metrics for the developed scenarios.

Scenario RES in PES in % Import in MWh/year Export in MWh/year

Minimum Maximum Minimum Maximum Minimum Maximum

Scenario A 13.6 16.8 158.57 170.97 0.46 10.657

Scenario B 15 18.6 158.57 170.97 3.5 20.243

Scenario C 37.1 43 361.6 392.12 0.01 3.868

Scenario D 27 32.3 208.49 224.0 0.9 11.46

renewable systems by using the curtailed power to meet
heat demands.

4.3.4 Portfolio design
Table 4 shows the influence of varying the MEM portfolio

configuration on the system dynamics. Consider scenario C, even
though the renewable share is high and exported energy is less than
the other scenarios. There is still a need to import the energy from
the primary grid, which decreases the self-sufficiency of the MEM.
In contrast, scenarios A and B have the least imports compared to
other scenarios but have a high export share to the primary grid,
which could lead to grid instability. Hence, a careful analysis should
be carried out to understand the interaction between multiple
factors and improve the system’s performance. To achieve the trade-
off between the parameters, CHP and heat pumps are added to the
portfolio in scenario D.

Figure 12 compares the performance of the MEM for different
scenarios. As shown in Figure 12A, scenario D is better than
scenarios A and B, in terms of RES, but falls short compared
to scenario C by 24.88%. However, Figure 12B clearly shows
that scenario C needs an import of 392.12 MWh/year, which is
75% higher than scenario D. Furthermore, energy export has
an intriguing pattern, as shown in Figure 12C, where export for
scenario D is significantly less than scenario B. Moreover, the export
is higher than scenario C and higher than scenario A by only
7.5%. Scenario D shows that adding CHP and HP improves the
system performance; however, further analysis is required to decide
the optimal capacities of the CHP and HP to achieve the best
performance from the system.

4.4 Sensitivity analysis

The primary goal of this research is to perform a feasibility
study to design the portfolio and analyze the impact on the MEM
performance in the context of energy security and sustainability
when subjected to renewable energy fluctuations, especially in the
case of high renewable energy penetration. In the case of energy
security, exported energy can be considered as a factor as excess
export can lead to grid instability and the lack of efficientmeasures to
use the energy locally. In contrast, focusing on the imported energy
criteria helps improve the sustainability and self-sufficiency of the
energy system.

In this study, one of the primary contributions is the
development of an accurate solar power forecasting model
to improve the precision of the analysis in order to avoid
overestimation or underestimation of solar generation and
make informed decisions on portfolio design and optimal sizes.
Understanding the benefit of an accurate model for analysis can be
achieved by developing an equation-based solar power forecasting
model from the study in Berg and Löschenbrand (2022). The
forecasted generation is loaded into scenarioD to analyze the energy
system as discussed in Table 2 and energy component capacities
given in Table 3.

The performance metrics for the ANN-based and equation-
based forecasts are filtered for the maximum capacity of wind
and heat pump and the minimum capacity of CHP and are
plotted as shown in Figure 13. Figure 13A shows that the equation-
based model overestimates the renewable generation share and
also underestimates the imported and exported energy from the
primary grid, as shown in Figures 13B, C.The primary reason could
be that the equation-based model only considers the temperature
and solar radiation and does not include external factors, such as
snow or cloud coverage, which are key features when training the
ANN-based model. One key observation is that as the PV capacity
increases, the difference also increases, showing that the model
accuracy has a significant impact when dealing with energy systems
with higher renewable penetration.

In a particular case, maximum capacities for the renewable
components are considered for scenario D to understand the impact
of renewable generation variability on microgrid performance. For
this scenario, the import and export profiles are extracted from
the EnergyPLAN optimization and plotted against the renewable
generation, as shown in Figure 14. Initial analysis shows that the
PV generation significantly influences the export trend with a
correlation of 0.655, as shown in Figure 14A. On the contrary, a
negative correlation was observed between the PV generation and
the import of approximately 0.476, as shown in Figure 14B. In
comparison, wind generation has less impact than PV generation,
with a 0.225 correlation for the export (Figure 14C), and −0.274
correlation for the import, as shown in Figure 14D.

A feasibility study is a critical planning stage, where the main
objective of the microgrid system engineer is to assess the system
for given parameters such as available renewable generation, energy
demand, consumption patterns, and other social factors. In both
studies (Bai et al., 2019; Shahbazbegian et al., 2023), a technical
and economic analysis was carried out for a MEM, but little
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FIGURE 12
Comparison of analysis metrics for scenarios (A), (B), (C), and (D).

emphasis was given to modeling the solar generation forecasting.
A similar issue was also seen in Kovačević Markov and Rajaković
(2019), where a feasibility study was developed for a MEM.

However, Graça Gomes et al. (2021) developed an equation-based
model to forecast solar generation, which was used to develop an
optimization model to decide the optimal size of the microgrid
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FIGURE 13
Comparison of performance metrics for the ANN-based forecasting model and equation-based model. (A) Comparison of RES in PES. (B) Comparison
of imported energy. (C) Comparison of exported energy.

energy components. Kamal et al. (2022) also used an equation-based
solar forecast model to study the economic feasibility of amicrogrid.
A similar forecast model was used to design a resilient microgrid in
Masrur et al. (2022).

Most studies use a simple equation-based model for the
energy system analysis; however, solar power generation is highly
susceptible to seasonal variations directly impacting economic and
technical viability. During winters, there are some days and months
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FIGURE 14
Comparative analysis of renewable energy generation and electricity
trade. (A) PV generation vs. electricity export. (B) PV generation vs.
electricity import. (C) Wind generation vs. electricity export. (D) Wind
generation vs. electricity import.

when there is almost zero solar generation; hence, during this
period, investments in PV systems are not economically viable with
an increased import, as shown in Figure 14B. In contrast, during the
summer, solar generation is almost in excess and energy demand
is lower because of the low heating demand. Due to this, excess
generation is fed back to the grid, evident from Figure 14A. Hence,

when deciding the optimal capacity of the PV systems, accurate
modeling techniques can help improve the precision of the analysis
and make informed decisions when designing the portfolio.

5 Conclusion

This study discusses the analysis of the MEM system with
the objective of increasing the renewable share in meeting both
the electrical and heating loads. The discussion was extended
to developing accurate mathematical models for precise energy
system analysis. An ANN-based model was developed to forecast
the solar power generation. The deployed model could predict
solar power generation with an accuracy of 87%. The model was
further integrated into the EnergyPLAN tool to model and simulate
different energy scenarios. The Norwegian energy system was used
as a case study, and scenarios were developed to understand the
impact of increasing renewable penetration and the role of coupling
components such as CHP plants and heat pumps.

Some of the interesting conclusions from the study were that
portfolio design has a significant impact on the MEM performance.
Installing a CHP in the energy system has considerably decreased
imports from the primary grid but increased exports. This shows
that a higher share of CHP will reduce renewable energy utilization.
On the contrary, adding heat pumps has improved renewable energy
utilization by converting the excess energy generation to meet the
heating demand. However, the addition of heat pumps increases the
electric grid size and the imports from the primary grid as well. It
was also concluded that the impact of PV system size on imports
and exports is significantly higher than that of wind energy systems.
Moreover, the modeling accuracy has a significant impact on the
analysis as well.

5.1 Future scope

The scenarios were developed considering only CHP plants
and heat pumps. However, the scenarios could be extended to
include energy storage, fuel cells, electric boilers, and solar thermal
energy systems. In this study, a deep learning-based algorithm was
developed to forecast solar power; however, the impact of wind
generation on the system performance is significantly higher than
that of PV generation. Hence, a detailed model for wind generation
should be developed to make the analysis more accurate. The
forecastingmodel developed in this study is deterministic, and since
renewable generation is subject to uncertainties, the model can be
further extended to quantify uncertainty.
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